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Large Eddy Simulation of Separated

Flow over a Wall-Mounted Cube
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1
and M. Rahnama

�

Large eddy simulation of 
ow over a wall-mounted cube in a channel was performed at a Reynolds

number of 40000. The structure function modeling of the subgrid-scale stress terms was used

with three slightly varying versions of its selective type. The convective terms were discretized

using a QUICK scheme, along with a relatively coarse grid. A series of time-averaged velocities

and turbulent stresses were computed and compared with experimental data to examine the

performance of these models. The structure function model yielded de�cient mean 
ow structure

and turbulence statistics compared with the selective structure function. While none of these

models could reproduce experimental results exactly, the results of time-averaged streamline

plots and turbulent kinetic energy for one of the selective structure function models showed

less discrepancy with experimental data compared with other models. It was shown that

implementation of a wall function does not improve the results considerably and, in general,

with a coarse grid resolution, it is possible to obtain some reasonable results as compared to the

experiment.

INTRODUCTION

Turbulent 
ow past three-dimensional blu� bodies has
attracted much attention because of the wide range of
engineering applications, such as electronic boards and
the 
ow around tall buildings. Accurate prediction of

ow characteristics is required in such applications to
be sure of a safe and economical design. Numerical
simulation of 
ow in such con�gurations is capable
of revealing detailed information, which is much more
necessary than its experimental counterpart.

A wall-mounted cube subjected to the 
ow in
a channel is a basic geometry (Figure 1) with some
important phenomena, such as 
ow separation with
partial reattachment, wake 
ow periodicity and large-
scale turbulence structures. There is a vast amount
of literature about experiments undertaken for this
geometry [1-6]; among them being the comprehensive
work of Martinuzzi and Tropea [5] for a Reynolds
number of 40000. Their 
ow picture given in Figures 2a
and 3a shows the very complex 
ow nature, in spite of
its simple geometry. As observed in these �gures, the
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Figure 1. Geometry of computational domain and
schematic of recirculation zones.


ow separates in front of the cube; in the mean there
is a primary separation vortex and, also, a secondary
one, while, instantaneously, up to three separation
vortices were detected. The main vortex bends as
a horseshoe vortex around the cube into the wake;
having a typical converging-diverging behavior. The

ow separates at the front corners of the cube on
the roof and sidewalls. In the mean, it does not
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Figure 2. Time-averaged computations of streamline
plots at the 
oor of the channel by (a) Experiments [5], (b)
OEM model [10], (c) LDKM model [10], (d) Computations
of Shah and Ferziger [9], (e) SF model, (f) MSSF model,
(g) SSF1 model, (h) SSF2 model, (i) SSF2-WF model, all
at Re = 40000 and (j) SSF2 model at Re = 3200.

Figure 3. Comparison of time-average streamline plots at
plane z = 0 obtained from (a) Experimental data and
(b-f) Present computations.

reattach on the roof. A large separation region develops
behind the cube that interacts with the horseshoe
vortex. Numerical investigation of such complex 
ow
con�guration is a challenge for researchers in the �eld
of computational 
uid mechanics.

Various authors have done numerical predictions
of turbulent 
ow over a wall-mounted cube in a channel
using Direct Numerical Simulation (DNS), Large Eddy
Simulation (LES), Reynolds-Averaged Navier-Stockes
equations (RANS) [7] and, recently, Detached Eddy
Simulation (DES) [8]. In fact, several international
workshops have been held on this 
ow con�guration [7].
The two Reynolds numbers used in these computations
were 3000 and 40000. These workshops indicated that
LES is able to predict the main characteristics of such

ow con�guration more accurately than RANS and
much more cheaply than DNS computations. The
subgrid-scale models used in these computations were
Smagorinsky, dynamic and mixed models. Many of
these LES computations used a �ne grid resolution
(more than 106 nodes for low Reynolds number). Shah
and Ferziger [9] reported LES simulation of 
ow around
a cubic obstacle at Re = 40000 with 192 � 64 � 96
grid points. Using no wall function for the region near
the wall, these simulations approach Direct Numerical
Simulation (DNS), resolve the near-wall streaks and
may be described as Quasi-DNS (QDNS) [10]. In such
circumstances, the in
uence of the Subgrid-Scale (SGS)
model is then small. Although these LES were carried
out with considerable success, the extension of this kind
of simulation to a higher Reynolds number and more
complex geometry implies very high computational
costs.

Recently, Iaccarino et al. [11] studied the accuracy
of unsteady RANS turbulent models in predicting 
ow
around a square cylinder and over a surface-mounted
cube that is located in a channel with a 3-cube-height
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in a spanwise direction. Their simulations were done
with a �2�f turbulence model. Results showed that an
improved prediction of reattachment lengths and vor-
tex shedding could be obtained with unsteady RANS
calculations at the expense of higher computational
time, compared to the steady RANS calculation of
Rodi [12]. It was mentioned that steady computations
produce an erroneously long wake, because they omit
an important component of the averaged 
ow �eld, i.e.,
the periodic vortex shedding.

The most recent published work in this 
ow
con�guration is that of Kranjovic and Davidson [10,13]
who have published calculations for an LES simulation
of 
ow over a surface-mounted cube for Re = 40000.
They reported the results of their two computations:
A dynamic one-equation subgrid-scale model and one
with no SGS model. They used a coarse grid for
their computations with a low resolution near the wall.
However, as compared with the results obtained from
a high near-wall resolution, a good correspondence was
observed. Their results of time-averaged streamwise ve-
locity showed a good correspondence with experimental
data, but, they observed a poor agreement for other
components of the velocity. The Reynolds stresses com-
puted with their model showed much better predictions
than those without an SGS model, as compared to
the experiment. They argued that improved results
with a coarse grid could be obtained, because of the
more accurate equation dynamic model proposed by
Davidson [14].

There is an extensive body of work on 
ow
over a cube mounted inside a channel. However,
computations could be performed using new types of
subgrid-scale stress tensor modeling to evaluate their
performance. Murakami [15] reported the results of
applying new models and new methods of LES in the
computation of 
ow over blu� bodies. One of those
models, which has not been applied to this geometry, is
the Structure Function model (SF) [16,17]. This model,
based on the eddy viscosity hypothesis, uses the local
kinetic energy spectrum. As the SF model was too
dissipative for two-dimensional vortices, the Selective
Structure Function (SSF) model was proposed, in
which three-dimensional e�ects could be much better
implemented than SF [17]. Various authors used SF
and SSF for di�erent 
ow con�guration, such as a
backward facing step, a blu� rectangular plate and,
recently, a wall-mounted cube [17-19].

In the present study, SF and SSF models of LES
were used for computation of turbulent 
ow over a wall-
mounted cube. As the number of grid points plays
an important role in lessening the computational time
and cost of LES, the authors directed their attention
toward investigating the e�ect of coarse grid resolution
in the present computation. They evaluated this by
using both di�erent versions of SSF and wall function

implementation in a near-wall region. The results
were then compared with previous published works and
experimental data.

MATHEMATICAL FORMULATION AND

COMPUTATIONAL DETAILS

Mathematical Model

Turbulent 
ow over blu� bodies may be modeled
by LES, where the larger three-dimensional unsteady
turbulent motions are directly represented, while the
e�ect of small scales of motion is modeled. To do
this, a �ltering operation is introduced to decompose
the velocity vector (ui) into the sum of a �ltered (or
resolved) component, ui, and a residual (or subgrid-
scale) component, u0i. This operation can be repre-
sented with a �lter of width �x, such that convolution
of any quantity f(xi; t) by the �lter function G�x(xi)
is in the following form:

f(xi; t) =

Z
f(yi; t)G�x(xi � yi)dyi; f 0=f�f:

(1)

The equations for the evolution of the �ltered
velocity �led are derived from Navier-Stokes equations.
These equations are of the standard form, with the
momentum equation containing the residual stress
tensor. The application of the �ltering operation
to the continuity and Navier-Stokes equations gives
the resolved Navier-Stokes equations, which, in non-
dimensional incompressible form, are as follows:

@ui
@xi

= 0; (2)

@ui
@t

+
@

@xj
(uiuj) = �

@P

@xi
+

1

Re
r2ui �

@�ij
@xj

; (3)

where P is the pressure, u1, u2 and u3 are the
streamwise, cross-stream and spanwise component of
velocity, respectively, which govern the dynamics of the
large, energy-carrying scales of motion. The Reynolds
number is de�ned as UmeanH=�, where Umean and H
are the average velocity of the entrance pro�le and cube
height, respectively. The e�ect of small scales upon the
resolved part of the turbulence appears in the Subgrid
Scale (SGS) stress term, �ij = uiuj �uiuj , which must
be modeled.

The main e�ect of the subgrid-scale stresses is
dissipative, i.e. it withdraws energy from the part of
the spectrum that can be resolved. One model for
subgrid-scale stress term �ij is based on its dependence
on the �ltered strain rate through an eddy-viscosity:

�ij = �t(
@ui
@xj

+
@uj
@xi

) +
1

3
�kk�ij : (4)
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In this study, the eddy viscosity (�t) is evaluated
using Subgrid-Scale (SGS), Structure Function (SF)
and Selective Structure Function (SSF) models. In
the Structure Function model, the eddy-viscosity is
evaluated according to Lesier and M�etais [16]:

�SFt (x;�c; t) = 0:105C
�3=2
k �c

p
F2(x;�c; t); (5)

where �c = (�x1 � �x2 � �x3)
1

3 is the geometric
mean of the meshes in the three spatial directions. Ck

is the Kolmogrov constant and F2 is the local structure
function constructed with the �ltered velocity �eld
u(x; t):

F2(x;�c; t) =
1

6

3X
i=1

D
[u(x; t)� u(x+�xi; t)]

2

+ [u(x; t)� u(x��xi; t)]
2
E� �c

�xi

� 2

3

;
(6)

F2 is calculated with a local statistical average of square
(�ltered) velocity di�erences between x and the six
closest points surrounding x on the computational grid.
In some cases, the average may be taken over four
points parallel to a given plane.

In the selective version of the Structure Function
model, the eddy-viscosity is switched o� in the regions
where the 
ow is not enough three-dimensionally. The
three-dimensional criterion is as the following: One
measures the angle (�) between the vorticity at a given
grid point and the average vorticity at the six closest
neighboring points (or the four closest points in the
four-point formulation). If this angle were less than
20�, the most probable value, according to simulations
of isotropic turbulence at the resolution of 323�643, the
eddy viscosity would be canceled and only molecular
dissipation would act. In this situation, the 
ow is
locally close to a two-dimensional state. As compared
to the original SF model, this subgrid-scale model
dissipates the resolved scale energy at fewer points
of the computational domain, as compared to the SF
model. The model constant of 0.105 (see Equation 5)
has then to be increased to satisfy energy conservation.
It is calculated by requiring the eddy viscosity, given
by the SSF model averaged over the entire computa-
tional domain to equal the corresponding one obtained
with the SF model. One �nds that the constant in
Equation 5 has to be multiplied by 1.56 [17].

�SSFt (x;�c; t)=0:1638�20�(x; t)C
�3=2
K �c[F2(x;�c; t)]

1=2;
(7)

where �20�(x; t) is the indicating function based on the
value of (�):

�20�(x; t) =

(
1 if � � 20�

0 if � < 20�
(8)

The results of computations using Equation 7 are called
SSF1 in this paper. Suksangpanomrung et al. [18] used
a smoothly varying function rather than an abrupt cut-
o�, �0

20�(x; t) instead of �20�(x; t), which is evaluated
using a smoothly varying function, de�ned as:

�0

20�(x; t) =

8>>><
>>>:
0 for � < 10�

e�(
d�
3�
)2 for 20� � � � 10�

and d� = j�� 20�j

1 for � > 20�

(9)

In Equation 9, all angles are in radian. This method
was used by Suksangpanomrung et al. [18] for separated

ow over a blu� rectangular plate and the results
were in good agreement with experimental data. This
model was used in the present computation with results
mentioned in the name of SSF2.

Recently, Ackermann and M�etais [20] proposed
a modi�ed version of the Selective Structure Function
model. They argued that the Modi�ed Selective
Structure Function model (MSSF) respects, in a better
way, the energetic exchanges between the resolved and
subgrid scales, as compared to the Selective Structure
Function model (SSF) and automatically adjusts itself
to the discretization thinness of the most energetic
scales. In the model of MSSF, the eddy viscosity is
computed from:

�MSSF
t (x;�c; t) = CMSSF��c(x; t)C

�3=2
K

�c[F2(x;�c; t)]
1=2; (10)

where CMSSF is a constant very close to 0.142 and
��c(x; t) is given by:

��c(x; t) =

(
1 if � > �c

0 if � < �c
(11)

�c is the critical angle, which is a function of the ratio
of cut-o� wave-number, Kc, to the wave-number Ki,
Kc=Ki, at which the spectrum peaks (see Ackermann
and M�etais [20]). It was shown that if �c were taken
as equal to 20�, the classical SSF model, Equation 7,
would be obtained with a reduced constant of 0.142
instead of 0.1638. Therefore, for computations of
MSSF, Equation 9 is used with a change of constant
from 0.1638 to 0.142.

Numerical Method

The governing equations presented in the preceding
section were discretized using a �nite volume method
with a staggered grid. The convective terms were
discretized using a QUICK scheme. The QUICK
scheme has some de�ciencies, such as large numerical
dissipation, as compared with the Central Di�erence
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(CD) scheme. However, it was already used in a
LES simulation of 
ow over a wall-mounted cube [7],
especially in LES computations using no subgrid-scale
model. An important issue in LES computations is
that of using, at least, a second order accuracy of both
time and spatial discretization of the equations. On the
other hand, the CD has the shortcoming of producing
an oscillatory solution in the coarse grid computation.
As the primary objective of the present computations
was to select one of the three versions of the SSF model
on a coarse grid, the QUICK scheme was used in these
computations.

The convective and di�usive 
uxes in the mo-
mentum and energy equations were treated explicitly
in the present computations. A third order Runge-
Kutta algorithm is used for the time integration in
conjunction with the classical correction method at
each sub-step. The continuity Equation 1 and the
pressure gradient term in the momentum Equation 2
are treated implicitly, while the convective and di�usive
terms are treated explicitly. This method, called a
semi-implicit fractional step, provides an approach that
does not use pressure in the predictor step as in the
pressure corrector method (such as the well-known
SIMPLE family of algorithms). The linear system of
pressure is solved by an e�cient conjugate gradient
method with preconditioning. Further details on the
numerical method are given in Suksangpanomrung [21].

Computational Domain and Boundary

Condition

The computational domain consists of a plane channel
with a cubic obstacle of dimension (H) mounted on
one of its walls (Figure 1). Channel height is selected
as 2H , due to the available experimental data that
were reported for a cube with a half channel height
dimension [7]. The spanwise width of the channel
was selected as 7H , such that the cube is located in
the middle with an equal distance from the spanwise
boundaries of 3H . The upstream distance from the

front side of the cube to the inlet boundary was
selected as 3H and the downstream distance was 6H .
These selected dimensions were based on the previous
published works mentioned in [7,9,10,12,13].

The boundary conditions used in the present
calculations are as follows: The inlet boundary con-
dition was selected as a fully developed turbulent
velocity distribution (one-seventh power law). It is
noteworthy that this inlet boundary condition does
not exactly correspond to that of the experiments.
However, comparison of velocity pro�le and Reynolds
stress at the upstream of the cube (x=H = �1:0)
shows negligible discrepancies with experiments for the
SSF2 model, as observed in Figure 4. In other words,
the di�erence between the experimental inlet velocity
pro�le and the one used in the present computations
of the SSF2 model, diminishes upstream of the cube.
The outlet boundary condition is of a convective type
with Uc equal to the mean velocity, as follows:

@u1
@t

+ Uc
@u1
@x1

= 0: (12)

Obviously, such a convective boundary condition is
capable of predicting unsteady 
ow behavior at the exit
with good accuracy. The spanwise boundary condition
was selected as periodic. The minimum grid spacing
used in the present computations is 0.03 in all three
dimensions adjacent to the cube surface with a grid
expansion ratio of 1.05. Using a no-slip boundary
condition with such a grid resolution near the wall
may raise the question of accuracy. To answer this
question, the computations were performed with a
wall function calculation [22]. The results showed a
negligible di�erence in predicted velocity components
near the wall. The number of grid points used in
the present computation was 113 � 51 � 100 in the
x-, y- and z-direction, respectively. This was based
on the computations of Krajnovic and Davidson [10].
They used three di�erent grid point distributions:
82 � 50 � 66, 162 � 66 � 98 and 210 � 66 � 114 and
compared the mean reattachment lengths upstream

Figure 4. Time-averaged streamwise, cross stream and Reynolds stress pro�les at plane z = 0 and x=H = �1:0.
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and downstream of the cube, XF and XR, respectively,
with the experiment. The percentage of error in
82 � 50 � 66 grid points was 6.73 for XF and 14.28
for XR, which reduced to 5.77 and 9.75, respectively,
for 210�66�114 grid points. Such a decrease in error is
not economical when there is an increase of more than
a million grid points, which increases computational
time drastically. They also reported that very small
di�erences between the mean velocity pro�les were
observed using the medium and �ne grid. As both
SF models and the one-equation model of Krajnovic
and Davidson [10] are based on the spectral kinetic
energy of turbulence, it seems that the same reasoning
could be used for the present computations. The CFL
(Courant-Friedrichs-Lewy) number is less than one for
all computations with the maximum value of 0.95. The
average time in the simulation was 200H=Umean, where
H is the cube height and Umean is the bulk velocity at
the inlet.

RESULTS

Results are presented in the form of time-averaged
quantities, including streamline plots, velocity compo-
nents, Reynolds stress and turbulent kinetic energy.
The present computations were done for Re=40000,
for which the experiments are available, namely, 
ow
visualization studies and the detailed LDA measure-
ments of Martinuzzi and Tropea [5]. They obtained
the 
ow pictures given in Figures 2a and 3a, which
show clearly the very complex nature of the 
ow in
spite of its simple geometry. Figures 2 and 3 show
the streamlines in the near channel 
oor and plane of
symmetry, respectively, for di�erent models used in the
present calculations. All of them show a horseshoe
vortex around the cube and the separation regions
on the roof, lateral sides and behind the cube. The
main point about horseshoe vortex is its converging-
diverging behavior in the experimental measurement.

This phenomenon has not been observed in most of
the previous computations (see Figures 2b, 2c and 2d),
especially for Re = 40000 [9,10]. In the present
work, such behavior was not predicted for most of the
subgrid-scale models used except for the SSF2 model
(see Figure 2h). Such behavior could be observed at a
lower Reynolds number. Our computation for Re=3200
shows clearly this converging-diverging behavior of the
horseshoe vortex (see Figure 2j).

The size and shape of the horseshoe vortex is
clearly shown in Figure 2. As discussed by Martinuzzi
and Tropea [5] (Figure 2a), two recirculation regions
exist upstream of the cube. All calculations predicted
the primary recirculation with its center located at XR.
No author has detected the secondary recirculation
zone, which is very small and close to the front side of
cube, through numerical computation. In the lateral
side of the cube, there are two saddle points, observed
in the experiment (Figure 2a, points S1 and S2) and
separated by a distance. While most computations
detected the point S1, a limited number of them could
predict the point S2 (Figure 2c). In the present
computations, point S2 could be detected by the SSF2
model shown in Figure 2h. Computations obtained
with other models in the present study could not show
clearly the location of these points.

Figure 3 shows di�erent recirculation zones at
plane z = 0. Three recirculation zones are observed
clearly, both in the experiment and in the present com-
putations. The most accurate results, concerning the
downstream recirculation zone, are related to the SSF2
model computation that is observed in Figure 3e. The
size and central location of the downstream recircula-
tion zone obtained from SF, SSF1 and MSSF models
have some di�erences with the experiment. This may
be due to the coarse grid resolution used in the present
computations. Table 1 compares various lengths of sep-
aration regions de�ned in Figure 1. It is observed that
none of the models used can predict both upstream and

Table 1. Reattachment lengths, XR and XF (Figure 1), obtained from models and experiment.

Contribution Number of Grids Minimum Grid Spacing XF XR

Martinuzzi and Tropea (Exp.) [5] 1.04 1.61

Hussein and Martinuzzi (Exp.) [6] 1.04 1.67

SF model 113� 51� 100 0.03 1.11 2.25

SSF1 model 113� 51� 100 0.03 1.036 2.05

MSSF model 113� 51� 100 0.03 1.067 2.13

SSF2 model 113� 51� 100 0.03 0.4 1.62

SSF2 model (with Wall Function, WF) 113� 51� 100 0.03 0.59 1.71

OEM model [10] 82� 50� 66 0.023 0.97 1.380

LDKM model [10] 82� 50� 66 0.023 0.944 1.413

Shah and Ferziger [9] 192� 64� 96 0.006 1.050 1.650



130 M. Farhadi and M. Rahnama

Figure 5. Variation of time-averaged mean streamwise
velocity at plane z = 0.

downstream recirculation lengths correctly. The SSF2
model predicts downstream reattachment length in rea-
sonable agreement with experimental data, except for
the location of its center, but, its value, obtained for the
upstream recirculation length, is too short. It should be
mentioned that computations performed by SSF2 with
a wall function could improve upstream recirculation
length slightly. Other models predict the upstream
recirculation length close to the experimental one, but,
poor correspondence with experimental results were
observed for the downstream recirculation length.

Mean streamwise velocity, integrated in a y-
direction at the plane z = 0, is plotted in Figure 5
for the various models used and compared with ex-
perimental data. All computations follow the trend of
experimental data. Among various models used in the
present computations, SSF2 shows better agreement
with the experiment, especially in the downstream
recirculation region (1:5 < x < 4:0). The e�ect
of inserting a wall function in the SSF2 computation
is observed in this �gure, which shows a negligible
decrease in mean streamwise velocity as compared to
the SSF2 model.

A series of time-averaged resolved velocities and
turbulent stresses are computed and compared with the
experiments in Figure 6. The locations are selected
from x=H = 0:5 to 4.0 at z = 0:0. Results obtained for
locations upstream of the cube were not shown, because
no signi�cant 
ow feature exists in that region except
for a small recirculation region. The computed mean
velocity for this region showed good correspondence
with the experiment, in spite of the di�erences that
exist in the upstream recirculation length computed,
as mentioned in the preceding discussion. While
streamwise velocity distribution near the top surface
of the cube at x=H = 0:5 shows discrepancies with
the experimental data of u � w plane measurements,

its behavior, for most of the region between the top
side of the cube and the channel wall, are in reasonable
agreement with the experiment. The main reason for
such a prediction is the quantitative di�erence between
the experiment and the present computations of the
recirculation region above the cube, which, in turn,
could be a result of low grid resolution and the QUICK
scheme used for the discretization of convective terms.
Among the four turbulence models used in the present
computations, again, SSF2 shows better agreement
with experimental data at x=H = 2:0. Figure 6, also,
shows the cross-stream velocity distribution. Shah and
Ferziger [9] explained that the quality of computational
results deteriorate for a vertical velocity component,
as compared to the experimental data. Computations
of Krajnovic and Davidson [10] showed considerable
discrepancies in the vertical velocity component as
compared to the experiment. As observed in Fig-
ure 6, the authors' computations for a cross-stream
velocity component show good correspondence with
the experimental data, especially those obtained from
the SSF2 model. Another parameter of interest in
this 
ow is the Reynolds stresses. Prediction of the
u0v0 pro�le reveals that all models predict the trend of
experimental results with some discrepancies, except
at x=H = 1:0 for the SSF2 model. Displacement
of the predicted minimum value of u0v0, as compared
to the experiment, is due to the di�erent 
ow �elds
obtained, as mentioned before. As grid resolution and
the discretization scheme is the same for all models, the
question may arise as to why there are di�erences in the
predicted results. The reason for such behavior is the
type of switching-o� of the eddy viscosity in the three
SSF models. As there is a continuous energy cascade
from large to small eddies, the subgrid-scale model used
should reveal this behavior. The MSSF and SSF1 mod-
els, which use a cut-o� function for removing turbulent
eddy viscosity, produce acceptable results when a �ne
grid resolution is used. As a coarse-grid resolution
was used in the present calculations, it is expected
that these two models would not be able to produce
acceptable results. The SSF2 model uses a continuous
type of function for switching-o� the turbulent eddy
viscosity (see Equation 9) and, therefore, could perform
better in a coarse grid resolution. So, results obtained
from SSF2 are more reliable than those from SSF1 and
MSSF.

De�ciency in the predicted turbulent kinetic en-
ergy variation over the cube is observed in Figure 6.
Discrepancies reduce when moving toward the end
point of the upper side of the cube. This is because
of a smaller and thinner separation region as compared
to the experiment, which implies that excessively large
turbulent di�usion should be created in this region.
The pro�le of the computed turbulent kinetic energy
for x=H = 2:0 and 2.5 follows the trend of the exper-
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Figure 6. Time-averaged streamwise, cross-stream, Reynolds stress and turbulent kinetic energy pro�les compared with
experimental data at Re = 40000.

iment, with their values higher than the experimental
ones. It is expected that less discrepancies occur
between the present computation and the experiment
for x=H > 2:5, but, no experimental data were
available for x=H > 2:5. Here, it is observed that
the SSF2 model is able to predict results closer to the
experiment than other models, especially at the leading
edge of the cube.

One of the complex phenomena in the 
ow over
a cube in a channel is the formation of vortices and
their subsequent stretching. Using vorticity isosurfaces
for such phenomena is not suitable, as this method
does not clearly distinguish the vortex near the cube.
In order to identify the 
ow structures more clearly,

the technique of 5[23] was used in the present work.
In this method, the vortex cores are obtained from
instantaneous velocity �elds. The vortex cores are iden-
ti�ed with a region of negative �2, which is the second
largest eigenvalue of the tensor, SikSkj +
ik
kj . The
de�nitions of Sij and 
ij , which are the symmetric and
anti-symmetric parts of the velocity gradient tensor
(ui;j =

@ui
@xj

), are as follows:

Sij = (ui;j + uj;i)=2; (13)


ij = (ui;j � uj;i)=2: (14)

The isosurfaces of the second largest eigenvalue (�2)
were plotted in Figure 7. Figures 7a to 7f show
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Figure 7. Instantaneous isosurfaces of second invariant of
the velocity gradient Q = 2500 with the time di�erence
between the two pictures of tUmean=H = 0:2 (view of the
back face of the body (SSF2 model)).

the formation of a vortex in the top, side and back
faces of the cube surface, along with its stretching and
breakdown into small eddies.

CONCLUSION

Flow around a wall-mounted cube in a channel was
computed using a Structure Function and three slightly
varying versions of Selective Structure Function models
at Re = 40000. A relatively coarse grid resolution
with a minimum grid spacing of 0.03H was used in the
present calculations. It was observed that, in general,
the results obtained from Selective Structure Function
modeling followed the trend of the experimental data
better than those of the Structure Function. Among
the three versions of the Selective Structure Function
models used, the one with a smoothly varying func-
tion (SSF2) was able to reproduce results in better
agreement with the experiment than the others. This
is due to the continuous type of the function used
in switching-o� the turbulent eddy viscosity, which
performs better in a coarse grid resolution as compared
with SSF1 and MSSF models. Modi�ed Selective
Structure Function modeling [20] could not predict
better results than those of the SSF1 model for this
geometry in such a coarse grid. Using a type of wall

function in the present computations showed negligible
improvement in the results as compared with those
obtained from computations with no wall function.

NOMENCLATURE

Ck Kolmogorov constant

E(K) kinetic energy spectrum

G�x(xi) �lter function

H cube height

Kc cut-o� wavenumber

P pressure

Re Reynolds number based on the height
of the cube, UmeanH=�

t time step

u velocity vector

Uc convective mean velocity

ui instantaneous velocity components

Umean average velocity at the entrance

x position vector

xi Cartesian coordinate, x1; x2; x3

� angle

� kinematic viscosity

vSFt turbulent eddy-viscosity obtained from
SF

� minimum grid spacing

�ij subgrid scale (SGS) stress tensor

�xi grid spacing

�20� indicating function, Equation 8
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