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Buckling of Discretely Stringer-Sti�ened

Composite Cylindrical Shells under Combined

Axial Compression and External Pressure
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In this paper, the static buckling of especially orthotropic stringer-sti�ened composite cylindrical
shells subjected to combined axial compression and external pressure is investigated, based
on geometrical non-linear analysis with considering pre-buckling deformations. The kinematic
relation of shells is based on the Donnell non-linear theory and First Order Shear Deformation
(FOSD) is adopted for both shell and sti�eners. Displacements, rotations and interacting forces
are expressed in terms of Fourier series expansions as independent approximate solution functions.
Unknown coe�cients of shell and stringers are related by satisfying continuity conditions of
displacements at their contact areas using Lagrange multipliers. The non-linear equilibrium
equations are obtained using the Ritz method. The e�ects of sensitivity parameters, e.g., shell
lay-ups, di�erent numbers of stringers in the circumference, location of sti�eners (outside vs.
inside) and the discrete versus smeared approach on interaction buckling curves are considered.
Results indicate remarkable di�erences between outside and inside stringer-sti�ened cylinder
buckling loads and also illustrate the fundamental role of shell stacking sequences and sti�ened
shell geometry on the applicability range of the smeared sti�ener approach.

INTRODUCTION

Sti�ened thin cylindrical shells subject to combined
external pressure and axial compression are widely used
in aerospace structures and the o�shore-oil industry.
Research on the buckling and post-buckling of stringer-
sti�ened cylindrical shells in the past three decades
have increased. In the context of experimental studies,
various specimens with di�erent shell and stringer
geometry and boundary conditions were tested under
axial compression by Weller and Singer [1]. Also,
Singer and Abramovich [2] applied vibration tests
to de�ne practical boundary conditions in sti�ened
shells. Weller [3] studied the in
uence of in-plane
boundary conditions on the critical load of axially
compressed simply supported stringer-sti�ened cylin-
drical shells. Sheinman, Shaw and Simitses [4] used a
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smeared sti�ener technique for orthogonally sti�ened
laminated cylinders. Bushnell [5] developed PANDA,
an interactive program, to design minimum weight sti�-
ened cylindrical panel under combined in-plane loads.
Discrete analysis of orthogonally sti�ened composite
cylindrical shells, subjected to combinations of uniform
internal pressure, constant temperature changes and
axial load, were investigated by Wang and Hsu [6].
Abramowitz, Weller and Singer [7] appraised the e�ect
of a sequence of combined loading on the buckling of
sti�ened shells. They showed that order of loading
does not a�ect the buckling loads. Ji and Yen [8]
studied the buckling of orthogonally sti�ened cylinders.
They assumed that stringers can be closely spaced
and treated by a smeared model but that part of a
shell sti�ened with rings was treated as a discrete shell
element. A singular perturbation technique was used
by Shen and his co-workers [9,10] to investigate the
buckling and post-buckling behavior of perfect and
imperfect sti�ened cylinders. Dawe and Wang [11]
applied a �nite strip method to assess the post-buckling
response of sti�ened composite panels. The strip ele-
ment with di�erent nodal lines, was used for modeling
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longitudinal sti�eners. The buckling of axially sti�ened
conical shells under axial compression was studied
by Spagnoli [12]. Di�erent modes of instability, in
particular, local shell and stringer buckling modes and
a global buckling mode through a linear eigenvalue
�nite element analysis were investigated. Haixu [13]
derived equilibrium equations for a double cylindri-
cal shell sti�ened longitudinally and transversely and
subjected to uniform hydrostatic external pressure by
using an adjacent equilibrium method. He calculated
the theoretically critical pressures of panel buckling
and interframe shell buckling. The dynamic buckling
of cylindrical stringer-sti�ened shells was explored
both numerically and experimentally by Ya�e and
Abramovich [14]. They used the ADINA �nite element
code to simulate the static and dynamic buckling loads
of the shells.

The current paper investigates the buckling of
discretely stringer-sti�ened laminated cylindrical shells
subject to combined external pressure and axial com-
pression. The boundary conditions are assumed to be
classical and simply supported. Initial imperfection
is in the form of a buckling mode and its amplitude
is taken as small so as not to a�ect the buckling
load. The critical load is calculated by controlling
the determinant sign of the tangent sti�ness matrix.
Various stringer-sti�ened composite cylinders, di�ering
in the number of sti�eners, laminate architectures and
location of stringer (outside vs. inside), are analyzed
to estimate the range of applicability of the smeared
sti�ener model. Interaction buckling curves are plotted
for di�erent cases and, to compare the results, more
concentration is put on these curves.

THEORY

For the discrete model, displacements, rotations and
interaction forces are expressed in terms of Fourier
series expansions as independent approximate solution
functions. These functions are related by continu-
ity conditions of displacement between the shell and
sti�eners at their contact area by Lagrange multiplier
coe�cients. The equilibrium equations are obtained
using the Ritz method. The linearized equations can
be solved using iterative Newton-Raphson and arc-
length methods [15]. In the smeared sti�ener approach,
shell rigidities are modi�ed based on material and
geometrical properties and the spacing of stringers.
Then, analysis, such as that of an unsti�ened shell,
is carried out.

SHELL AND STIFFENER GEOMETRY

The con�guration of a shell with global coordinates is
sketched in Figure 1. The principal material directions
are speci�ed as 1 and 2. The global coordinate system

Figure 1. Cylindrical shell with coordinate system, key
dimensions and loading.

x, � and z, displacement components U , V , W and
rotations �x and �� are also shown in Figure 1. In
the same �gure, the lateral pressure, q, the axial force,
P , the length, L, the thickness, h, and the radius of
curvature of middle surface, R, are also shown. 	 is the
angle between the principal material axis, 1, and the
x-axis of the shell. Also, deviation of the �ber direction
in the stringer is measured, with respect to the longi-
tudinal axis. Figure 2 shows the stringer coordinate
axes x, � and z in the longitudinal, circumferential and
radial directions, respectively, which are located at its
centroid and which are parallel to those of the shell.
Displacements and rotations of the sti�ener shown in
the mentioned �gure are also measured at the centroid.
Interacting forces, as a result of the contact stresses, are
depicted in this �gure.

Figure 2. Stringer coordinate system and interacting
forces between shell and sti�ener.
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DISPLACEMENTS AND ROTATIONS

The displacements of an arbitrary point of the cylin-
drical shell is expressed as:

U(x; �; z) = U(x; �) + z�x(x; �);

V (x; �; z) = V (x; �) + z��(x; �);

W (x; �; z) =W (x; �); (1)

where U(x; �), V (x; �) and W (x; �) are displacements
of the mid-surface of the shell in axial, circumferential
and radial directions, respectively, and �x(x; �) and
��(x; �) are the rotations of the normal vector to the
surface. Similarly, the stringer displacements in x, �
and z directions are de�ned as [16]:

Us(x; �; z) = Us(x) + z��s(x)�R0��zs(x)�!(�; z)�s;

V s(x; z) = Vs(x) + z�xs;

W s(x; �) =Ws(x)�R0��xs; (2)

where Us, Vs and Ws are sti�ener centroid displace-
ments and �xs, ��s and �zs are rotations of the sti�ener
about the mentioned axes, respectively. !(�; z) is a
warping function of the sti�ener cross section, R0 is the
distance between the stringer centroid and the center of
the cylinder and �s is the unknown warping coe�cient.
Neglecting the shear strain in warping, �s becomes:

�s =
@�xs
@x

: (3)

STRAIN-DISPLACEMENT
RELATIONSHIPS

The strain-displacement relationships at an arbitrary
point of the shell thickness can be expressed as follows:

ex = "x + z�x; e� = "� + z��; ex� = 
x� + z�x�;
(4)

where strains of mid-plane and curvatures, based on
Donnell and the �rst order shear deformation theories
and initial imperfection (Ŵ ), are as follows:
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Similarly, for stringer, the non-zero strains are:
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In these relations, Ŵs is the initial imperfection of
the stringer, which is obtained by substitution of the
stringer position (� = �s) in the shell initial imper-
fection (Ŵ ). Due to the small rotations of sti�eners,
only displacement components are retained in the non-
linear terms of strain. Using Equations 2, the strains
are expressed in terms of displacements and rotations
at the centroid.

CONSTITUTIVE EQUATIONS

The stress-strain relationship for the shell is expressed
as:

f�g = [C]f"g; (7)

where [C] is the generalized material rigidity matrix.
The vector of stress resultants is de�ned as:

f�g = [Nx; N�; Nx�;Mx;M�;Mx�; Qx; Q�]
T ; (8)

N , M and Q are in-plane forces, moments and out
of plane shear components in unit length, respectively.
The generalized strain vector, f"g, is:

f"g = ["x; "�; 
x�; �x; ��; �x�; 
xz; 
�z]
T ; (9)

where "x, "� and 
x� are mid-surface strains and �x and
�� are bending curvatures in x � z and � � z planes,
respectively. �x� is in-plane twist curvature and
xz and

�z represent transverse shear strains. [C] matrix is:

[C] =

2
664
[A] [B] 0 0
[B] [D] 0 0
0 0 A44 0
0 0 0 A55

3
775 ; (10)
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where Aij are membrane rigidities, Bij are membrane-
bending coupling terms, Dij are bending rigidities and
transverse shear rigidities A44 and A55 are de�ned as:

(Aij ; Bij ; Dij) =

Z
h

(1; z; z2)Qijdz;

A44 =

Z
h

Q
44
dz; A55 =

Z
h

Q
55
dz; (11)

whereQij is the transformed reduced sti�ness [17]. The
stress components corresponding to non-zero strains
for the sti�ener are �sxx, �

s
x� and �sxz. Stress-strain

relations at a generic point in the stringer are expressed
as:8<
:
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where Q
s

11
, Q

s

16
, Q

s

44
and Q

s

66
are the transformed

reduced sti�nesses for the stringer. In the case of
orthotropic laminate, Q

s

16 is zero. Integrating Equa-
tion 12 over the sti�ener cross-section, the following
constitutive equation is obtained.

fNxs;M�s;Mzs;M!s; Tss; V�s; Vzsg
T =

[Es]f"xs; ��s; �zs; �!s; 
ss; 
�s; 
zsg
T ; (13)

where Nxs, M�s, Mzs, M!s and Tss are axial force,
bending moments about axes � and z, bimoment and
uniform torsion, respectively. Also V�s and Vzs are
shear forces in � and z directions. The symmetric
(7 � 7) matrix, [Es], is the elasticity tensor, which
represents the material and geometrical properties of
the stringer. Details of the deriving elements of [Es]
for sti�ener with an arbitrary thin-walled cross-section
and with general orthotropic material can be found
in [16,18]. The generalized strain vector, according to
displacements and rotations of the stringer centroid,
are:
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where, "xs is the axial stretch, ��s, �zs and �!s the
bending and warping curvatures, respectively, and 
�s
and 
zs are transverse shear strains due to bending.
Also, 
ss represents the torsional curvature of the
stringer.

FOURIER APPROXIMATIONS

For classical simply supported end conditions, the
double expansions of the Fourier series for shell dis-
placements and rotations are:

U(x; �) = (x � L=2)Ux0

+

MX
m=1

NX
n=0

Umn cos(�mx) cos(n�);

V (x; �) =
MX
m=1

NX
n=1

Vmn sin(�mx) sin(n�);

W (x; �) =
MX
m=1

NX
n=0

Wmn sin(�mx) cos(n�);

�x(x; �) =
MX
m=1

NX
n=0

�xmn cos(�mx) cos(n�);

��(x; �) =

MX
m=1

NX
n=1

��mn sin(�mx) sin(n�); (15)

in which �m = m�=L andM andN are the upper limit
of integer numbersm and n. The unknown coe�cients,
Ux0, Umn, Vmn, Wmn, �xmn and ��mn, are obtained in
each incremental step. The displacement and rotation
functions of sti�eners are assumed as follows:

Us(x) = (x� L=2)Us0 +

MX
m=1

Usm cos(�mx);

Vs(x) =

MX
m=1

Vsm sin(�mx);

Ws(x) =

MX
m=1

Wsm sin(�mx);

�xs(x) =

MX
m=1

�xsm sin(�mx);

��s(x) =
MX
m=0

��sm cos(�mx);

�zs(x) =
MX
m=1

�zsm cos(�mx); (16)
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where Us0, Usm, Vsm, Wsm, �xsm, ��sm and �zsm
are the stringer unknown coe�cient. In Equations 15
and 16, Ux0 and Us0 are required to ensure correct
distribution of stresses in the shell and stringers for
the pre-buckling state. The existing stresses at the
interfacial area between cylindrical shell and stringer
are shown in Figure 2, in terms of forces and moments
per unit length, and their Fourier expansions are as
follows:

�xs(x) =

MX
m=1

�xsm cos(�mx);

��s(x) =

MX
m=1

��sm sin(�mx);

�zs(x) =
MX
m=1

�zsm sin(�mx);

�xs(x) =
MX
m=1

�xsm sin(�mx);

�zs(x) =

MX
m=0

�zsm cos(�mx); (17)

where �xsm, ��sm, �zsm, �xsm and �zsm are unknown
coe�cients. The continuity of displacements at the
interface is required:

gxsj = U(x; �j) +
h

2
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� [Usj(x) + esj��sj(x) � !0j�sj(x)] = 0;

g�sj = V (x; �j) +
h
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gzsj =W (x; �j)�Wsj(x) = 0;
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@W
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+ [(R+ h=2)�zsj(x) + !1j�sj(x)] = 0: (18)

The subscript, j, is related to the jth stringer and !0j
and !1j are warping constants of the top 
ange, which
is in contact with the shell. Also, esj is the distance
from the centroid of the jth stringer to the contact
surface. The variation limit of x is 0 � x � L.

!s(�; esj) = !0j + !1j�: (19)

NON-LINEAR ANALYSIS (DISCRETE
MODEL)

The equilibrium equations of sti�ened cylinders are
obtained by combining the internal virtual work of
shells and sti�eners, external virtual work due to
applied loads and the virtual work of interaction forces.
The non-linear equations are solved by the Newton-
Raphson method. The internal virtual work of the
cylindrical shell is:
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Also, the internal virtual work of longitudinal sti�eners
is:
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The external virtual work, due to axial compression
and external pressure, is:

�W ext

sh =�P

2�Z
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Z
S

�WdS:
(22)

In which P is the axial force per unit length of
the cylinder circumference and qD is the radial dead
pressure. For hydrostatic pressure, P is related to
qD(P = RqD=2). In the case of live external pressure,
which is displacement dependent [19], the second term
of Equation 22 is modi�ed as:
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The virtual work of interacting forces between shell and
sti�eners, with respect to the continuity relations in
Equations 18, is expressed as:

�W� =
X
j

LZ
0

�[�xsjgxsj + �zsjgzsj + ��sjg�sj

+�xsjGxsj +�zsjGzsj ]dx: (24)
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In which
P

j exhibits summation over the total number
of stringers. The total virtual work of the system is:

�W int

sh + �W int

s + �W� � �W ext
sh = 0: (25)

Linearization and discretization of Equation 25 leads
to:2
4Ksh +KL 0 K�s
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�

9=
; : (26)

In which Ksh and Ks are shell and stringer tangent
sti�ness matrices, respectively. KL is the load sti�ness
matrix, which re
ects live external pressure e�ects
and K�s

sh and K�s
s are sti�ness submatrices derived

from interaction forces virtual work. Also, �Ush and
�Us are shell and sti�ener incremental displacement
vectors and ��s de�nes incremental interaction forces.
Residual forces obtained from Equations 20 to 25 are
in the right hand side of Equation 26. To solve Equa-
tion 26, non-linear in shell and sti�ener displacements,
the coe�cient matrix, [K], is decomposed into the
multiplication of three matrices, as follows:

[K] = [L][D][LT ]; (27)

where [L] and [D] are lower triangular and diago-
nal matrices, respectively. The update procedure to
determine the generalized incremental displacement
vector, �U (Equation 26), is based on the full Newton
method. In this method, tangent sti�ness matrix,
[K], and residual vector, R, are modi�ed at each step

and iteration. An error function, de�ned as �U
T
R

(residual work), is used to check the convergence
against a prescribed tolerance. Also, the buckling load
is calculated by controlling the determinant sign of
[K](det[K] =

Q
i

Dii).

NON-LINEAR ANALYSIS (SMEARED
MODEL)

Shell rigidities are modi�ed based on material prop-
erties, cross-sectional dimensions and spacing of
stringers. The stringer-sti�ened shell rigidities, accord-
ing to Figure 3 and [9], are:

[A] =

2
4A11 A12 0
A12 A22 0
0 0 A66

3
5+

2
4E1A1=b1 0 0

0 0 0
0 0 0

3
5 ;

[B] =

2
4B11 B12 0
B12 B22 0
0 0 B66

3
5+

2
4E1A1e1=b1 0 0

0 0 0
0 0 0

3
5 ;

Figure 3. Geometry of a stringer-sti�ened cylindrical
shell.

[D] =

2
4D11 D12 0
D12 D22 0
0 0 D66

3
5

+

2
4E1(I1 +A1e

2
1
)=b1 0 0

0 0 0
0 0 (G1J1=b1)=4

3
5 ; (28)

where E1A1 and G1J1 are the extensional and torsional
rigidities of the stringer in the longitudinal direction,
respectively, I1 is the moment of inertia of the beam
sti�ener cross-section about its centroidal axis and e1
is the stringer eccentricities (positive outside). The
analysis continues as that of an un-sti�ened shell, so,
by eliminating �W int

s and �W� from Equation 25, one
has:

�W int

sh � �W ext

sh = 0: (29)

NUMERICAL RESULTS AND
DISCUSSIONS

The described analysis is used as a base for the
development of a computer program. In the literature,
most of the experimental and analytical results of
stringer-sti�ened shells buckling load are restricted to
those of an isotropic material and a smeared sti�ener
approach. The �rst numerical example, which serves
as veri�cation for the current analysis, including several
isotropic outside stringer-sti�ened cylinders under axial
compression, external pressure and a combination of
both [1,7,10,20], are analyzed by the current discrete
and smeared geometrical non-linear methods. Another
numerical study is designed to compare the results
of miscellaneous stringer-sti�ened cylindrical shells,
di�erent in shell lay-ups, sti�ener geometry, stringer
spacing and method of analysis (discrete vs. smeared).
The results are presented in the form of interaction
buckling curves.
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Table 1. Outside stringer-sti�ened cylindrical shells dimensions (E = 7500 kg/mm2, � = 0:3).

Case
L

(mm)

R

(mm)

h

(mm)
ns (A1=b1h) (e1=h) (I1=bh

3) (G1J1=bD)

A 78.618 120.56 0.204 56 0.717 3.670 2.400 19.839

B 965.20 242.57 0.719 60 1.028 5.830 9.629 16.912

C 200.00 120.27 0.249 84 0.666 4.030 2.770 7.505

D 130.00 120.10 0.254 85 0.590 3.420 1.680 6.563

Table 2. Comparison of experimental and analytical buckling load for various stringer-sti�ened cylindrical shells.

Experimental Geometrical Non-Linear Analysis

Case Type of Results Smeared Model Discrete Model

Loading (m;ncr) (M;ncr) (M;ncr;N)a

A
Axial comp.

(kg/mm)

4.356 [1] 6.110

(10,12)

4.250

(10,11,10)

B
Axial comp.

(kg/mm)

20.43 [20]b

(1,6)

20.39

(10,6)

21.45

(10,5,13)

C1
External press.

(kg/mm2)

0.001355 [7]

(1,10)

0.001316

(10,11)

0.001480

(10,11,10)

C2
Comb. press.

(kg/mm2)

0.001110 [7]c

(1,9)

0.001095

(10,11)

0.001270

(10,10,10)

D
Axial comp.

(kg/mm)

5.334 [10]

(1,9)

5.370

(10,11)

5.450

(10,10,10)

a: M and N represent number of non-zero terms in the axial and circumferential direction, respectively.

b: This result is related to smeared linear theory.

c: qcr in the presence of constant axial compression (P = 1:0587 kg/mm).

ISOTROPIC STIFFENED CYLINDERS

Shell and stringer geometries of four isotropic outside
stringer-sti�ened cylindrical shells with a various num-
ber of stringers are shown in Table 1. For all specimens,
E = 7500 kg/mm2, � = 0:3 and boundary conditions
are classical simply supported. Experimental results
for di�erent loading types, along with the current
analysis buckling loads and their corresponding modes,
are indicated in Table 2. Due to using several terms
to approximate displacements and rotations in the
circumference, discrete model buckling load predictions
are in good agreement with those of experimental
results. Although, in cases B, C and D, di�erences
in the results of discrete and smeared geometrical non-
linear analyses are negligible, in case A, the variation
is signi�cant. In this case, A, local e�ect (panel insta-
bility) is the dominant factor in discrepancy between
the results of smeared analysis and those of discrete
analysis and experiment.

INTERACTION BUCKLING CURVES

Extensive studies exploring the e�ects of stringer
discreteness, shell stacking sequences and location of

sti�ener (inside vs. outside) on interaction buckling
curves are carried out. According to Figure 1, the
dimensions of the assumed shell are; R = 100 mm, L =
100 mm and h = 1 mm. Also, referring to Figure 3, for
sti�eners, A1=b1h = 0:232, e1 = 3:0 mm (outside) and
e1 = �3:0 mm (inside). In all cases, the stringer height
is constant but its width varies. Shell and sti�ener
material properties are E11 = 140 KN/mm2, E22 = 9:1
KN/mm2, G12 = 4:3 KN/mm2, G13 = 4:7 KN/mm2,
G23 = 5:9 KN/mm2 and �12 = 0:3. Stringer lay-up
is taken as constant, (0), and shell stacking sequences
vary according to the following arrangements: (0)8,
(90)8, (0=90=0=90)s, (45=� 45)4T , (75=� 75)4T .

Figure 4 illustrates the convergence of an axial
buckling load versus an increase in number of stringers
in the circumference for the above mentioned shell ar-
chitecture of outside stringer-sti�ened composite shells.
Axial critical loads for un-sti�ened shells are also
indicated in this �gure. For all shell lay-ups except
(0)8, despite di�erences in buckling loads, the trends
of convergence are similar and local instability in the
case of 50 stringers becomes negligible. In the case
of shell arrangement (0)8, due to lack of sti�ening in
the circumferential direction, even for 50 stringers or
more, panel instability plays a fundamental role in the
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Figure 4. Convergence of axial buckling compression of
various stringer-sti�ened cylinders with increasing number
of stringers.

overall buckling load. It is also observed, with respect
to Figure 4, that there is a considerable change in
the load carrying capacity of sti�ened shells when the
number of stringers increases from 10 to 30. Figure 5
shows interaction buckling curves derived based on a
smeared sti�ener approach for various outside stringer-
sti�ened cylinders. Sti�ened shells with an anti-
symmetric lay-up, (75=� 75)4T , exhibit a more stable
area. Similar curves, according to discrete analysis for
inside and outside stringer-sti�ened shells, are plotted
in Figures 6 and 7. Again, shell lay-up, (75=� 75)4T ,
is suitable for outside sti�ening but, in an inside
case, this preference mainly belongs to a (0=90=0=90)s
arrangement. Figures 8 to 10 dictate that for all
shell lay-ups and both discrete and smeared analysis,
outside sti�ening produces substantially more strength
to buckling than that of an inside one. Figures 11
to 13, indicate in
uences of stringer discreteness with
a change in the number of stringers, along with a

Figure 5. Comparison of di�erent outside
stringer-sti�ened composite cylindrical shells for
interaction buckling curve (smeared model).

Figure 6. E�ect of various shell lay-ups on interaction
buckling curve of outside stringer-sti�ened cylinder
(discrete model).

Figure 7. E�ect of various shell lay-ups on interaction
buckling curve of inside stringer-sti�ened cylinder
(discrete model).

Figure 8. E�ect of stringer location (inside vs. outside)
and stringer modeling (smeared vs. discrete) on
interaction buckling curve of sti�ened shells (shell lay-up:
(90)8).
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Figure 9. E�ect of stringer location (inside vs. outside)
and stringer modeling (smeared vs. discrete) on
interaction buckling curve of sti�ened shells (shell lay-up:
(0=90=0=90)s).

Figure 10. E�ect of stringer location (inside vs. outside)
and stringer modeling (smeared vs. discrete) on
interaction buckling curve of sti�ened shells (shell lay-up:
(75= � 75)4T ).

variation of shell architecture for outside stringer-
sti�ened shells. Variation of the interaction buckling
curve for a 10-stringer case, relative to the other two
cases (30 and 50) is noticeable. Figure 11 shows some
increase in the external pressure buckling strength in
the presence of low axial compression (P=Pcr < 0:3).
This e�ect can be explained by considering two factors;
�rst, axial load eccentricity, which produces initial
positive circumferential strain, "� (axial compression is
applied through the shell middle surface) and, second,
the large ratio of A22=A12 in the case of shell lay-
up (90)8. These parameters a�ect the circumferential
force, N�(N� = A12"x+A22"�), which, in turn, releases
some compression force produced by applied external
pressure. For other shell arrangements, despite existing
load eccentricity, the sti�ness ratio, A22=A12, is not so
high to substantially reduce circumferential compres-

Figure 11. In
uence of number of stringers on the
interaction buckling curve of discretely stringer-sti�ened
cylindrical shells (shell lay-up: (90)8).

Figure 12. In
uence of number of stringers on the
interaction buckling curve of discretely stringer- sti�ened
cylindrical shells (shell lay-up: (0=90=0=90)s).

Figure 13. In
uence of number of stringers on the
interaction buckling curve of discretely stringer-sti�ened
cylindrical shells (shell lay-up: (75=� 75)4T ).
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Figure 14. The variation limits of outside
stringer-sti�ened shell circumferential buckling mode for
shell lay-up (0=90=0=90)s .

sion. Also, with an increase in the number of sti�eners
(Nstr: � 30) and a dominating global buckling mode,
buckling strength to combined loading noticeably in-
creases and the mentioned e�ect decreases.

Variation of the circumferential wave number,
ncr, is equivalent to the change, in a tangent direction,
of the interaction buckling curve and, consequently,
the more alteration of ncr, the more non-linearity of
the buckling curve. Figure 14 indicates the lower
and upper bounds of the circumferential mode for
outside sti�ening with shell lay-up (0=90=0=90)s whose
wave number varies from ncr = 5 (axial compression
buckling mode) to ncr = 9 (external pressure buckling
mode). These limits for shell arrangements (90)8 and
(75=�75)4T are (5,8) and (6,9), respectively. For inside
sti�ening, these numbers are restricted to ncr = 6 for
shell lay-up (75=� 75)4T , ncr = 5; 6 in the case of shell
lay-up (90)8 and ncr = 7; 8 for symmetric cross-ply
arrangement, (0=90=0=90)s (Figures 8 to 10).

CONCLUSIONS

Discrete and smeared as two approaches in geomet-
rical non-linear analyses have been implemented to
study isotropic and orthotropic equally spaced stringer-
sti�ened cylindrical shells subject to combined axial
compression and external pressure. On the basis of the
case studies, the following conclusions may be drawn:

1. For isotropic outside stringer-sti�ened cylinders,
the discrete model predicts the axial buckling
load more accurately than those of external and
combined pressures and the maximum deviation
from an experimental axial buckling load is less
than 5 percent. Also, in all loading cases, the
circumferential wave number, ncr, obtained, based

on smeared model analysis, is greater than that of
a discrete one;

2. For outside stringer-sti�ened composite cylindrical
shells, shell stacking sequence (75=�75)4T encloses
a more stable area, while shell lay-up (0=90=0=90)s
exhibits less stability against combined axial com-
pression and external pressure. In inside sti�ening
cases, arrangement (0=90=0=90)s encircles a greater
stable zone than those of lay-ups (90)8 and (75=�
75)4T ;

3. For all shell stacking sequences and both models
of stringer (smeared vs. discrete), outside sti�ening
shows more stability against combined loading than
that of inside sti�ening, especially at a high ratio of
axial compression to external pressure. Also, due
to a wide range of mode variation, outside stringer-
sti�ened cylinders involve a non-linear form, while
inside-sti�ened shells take a nearly linear appear-
ance;

4. Apart from shell stacking sequences, in outside sti�-
ening cases, interaction buckling curves obtained,
based on a smeared model analysis, encompass
those curves plotted according to a discrete model
analysis. The trend for the inside sti�ening case is
opposite;

5. In the case of outside sti�ening, the number of
stringers in the circumference play a fundamental
role in estimating critical load and the interacting
buckling curve. For 10 stringers, panel instability
(shell skin buckling between sti�eners) considerably
a�ects buckling load, while, in the cases of 30 and 50
stringers, local e�ects diminish and the contribution
of sti�eners in the buckling response increases.
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