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Research Note

Cost Evaluation of a Two-Echelon

Inventory System with Lost Sales

and Approximately Normal Demand

M.R. Akbari Jokar* and M. Seifbarghy!

The inventory system under consideration consists of one central warehouse and an arbitrary
number of retailers controlled by a continuous review inventory policy (R, Q). Independent
Poisson demands are assumed with constant transportation times for all retailers and a constant
lead time for replenishing orders from an external supplier for the warehouse. Unsatisfied demands
are assumed to be lost in the retailers and unsatisfied retailer orders are backordered in the
warehouse. An approximate cost function is developed to find optimal reorder points for given
batch sizes in all installations and the related accuracy is assessed through simulation.

INTRODUCTION

A two-echelon inventory system is considered consist-
ing of one central warehouse and an arbitrary number
of retailers with identical ordering batch sizes. The
inventory control policy is assumed to be a continuous
review (R, Q) policy in all installations, which means
that when the inventory position reaches a predeter-
mined value of R, an order of size @ is placed. The
demand processes for a consumable (not repairable)
item are assumed to be independent Poisson and
unsatisfied demands to be lost in all retailers. The
transportation time of each order placed by the retail-
ers is assumed to be constant. A constant lead time
is assumed for replenishing the warehouse orders from
an external supplier and unsatisfied retailer orders to
be backordered in the warehouse and all backordered
orders are filled according to a FIFO-policy. The
reorder point and batch size of the warehouse are
assumed to be integer multiples of the retailers identical
batch size.

One of the oldest papers in the field of continuous
review multi-echelon inventory systems is a basic and
famous one written by Sherbrooke [1] in 1968. He
assumed (S — 1, 5) policies in a Depot-Base system for
repairable items in the American air force and could
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approximate the average inventory and stockout level
in the bases. The result of this paper has been used
by many subsequent researchers because it uses an
efficient approximation for the lead time of the bases
(which is usually one of the complexities of multi-
echelon systems). However, other papers, like [2],
studied Sherbrooke’s model by changing some of its
critical assumptions and gained some more interesting
results.

Continuous review models of multi-echelon in-
ventory systems in the 1980’s concentrated more on
repairable items in a Depot-Base system than on
consumable items. For example, Graves [3] worked
on the determination of the stocking levels in such a
system, Moinzadeh and Lee [4] considered the issue of
determining the optimal order batch size and stocking
levels at the stocking locations by using a power
approximation and Lee and Moinzadeh [5] generalized
previous models on multi-echelon repairable inventory
systems to cover the cases of batch ordering and
batch shipment. On consumable items, Deuermeyer
and Schwarz [6] proposed a simple approximation for
a complex multi-echelon system (one warehouse and
multiple retailers) assuming the backordering of stock-
outs in all installations with a batch ordering policy.
Svoronos and Zipkin [7] proposed several refinements
by considering second-moment information (standard
deviation as well as mean) in their approximations.

In the 1990’s, Axsiter [8] provided a simple
recursive procedure for determining the holding and
stockout costs of a system, consisting of one central
warehouse and multiple retailers with an (S — 1,.5)
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policy, independent Poisson demands in the retailers,
a backordered demand during stockouts in all installa-
tions and constant lead times. Axséiter [9] proposed
exact and approximate methods for evaluating the
previous system for the case of a general batch size
in all installations but with identical retailers. For
the case of non-identical retailers and a general batch
size, Axsiter [10] proposed methods for the exact
evaluation of two retailer cases and an approximate
evaluation for the case of more than two retailers.
Forsberg [11] presented a method for exactly evaluating
the costs of a system with one warehouse and a
number of different retailers using another approach.
The common assumption of the above papers is that
demands during stockout in the retailers are backo-
rdered. However, on some conditions, demands may
be lost. Andersson and Melchiors [12] have proposed
an approximate method for the case of lost sales
when the inventory control policy is (S — 1,5) in all
installations (one warehouse and multiple retailers) and
unsatisfied demands are lost in the retailers. They
also introduced the cost evaluation of such a system
in case of a general batch ordering policy as a future
field of research. This is what is being considered in
this paper.

The contents of this paper are now outlined.
First, a detailed problem formulation is given and
the review of two special single echelon problems that
are referred to later are presented. Then, it will
be explained how to overcome the two important
complexities of the model. After that, the approximate
total cost of the system is presented and discussed for
finding reorder points. Finally, numerical results and
some conclusions and further research opportunities are
presented.

PROBLEM FORMULATION

It is assumed that @ (the identical batch size of all
retailers) is determined through a deterministic model
with a known replenishment cost at both warehouse
and retailers, as many similar papers such as [6,7,9,10]
have done before, to simplify the problem. The
objective is to find the optimal reorder points by
minimizing the total holding costs of the warehouse
and retailers and the stockout costs of the retailers.
Let the following notation be introduced:

N number of retailers,

A; demand rate at retailer 7,2 =1,2,..., NV,

A, demand rate at the warehouse,

L; transportation time for deliveries from the ware-
house to retailer 7,7 = 1,2, ..., N,

o lead time of the warehouse orders,
identical batch size of all retailers,

o batch size of the warehouse,
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R; reorder point of retailer ¢ (integer value, since
demand is one at a time), i = 1,2, ..., N,

R,  reorder point of the warehouse (an integer
multiple of Q),

h; holding cost per unit time at retailer
1,1 =1,2,..., N,

ho holding cost per unit time at the warehouse,

5 penalty cost per unit of lost sale at retailer
,i=1,2,...,N,

C; cost per unit time of retailer 7 in steady state,
1=1,2,...,N,

C, cost per unit time of the warehouse in steady
state,

TC total cost of the inventory system per unit
time in steady state.

REVIEW OF TWO SPECIAL CASES

Review of Exact Solution for Backordering
Problem with Normal Demand

Considering a single-echelon inventory system with a
continuous review control policy, a reorder point of
R and batch size of @, a constant lead time for re-
plenishing orders, demand (per unit time) as a normal
distribution with mean A and standard deviation § and
backordered unsatisfied demand, Axsater [13] presents
formulae for the average stock level (D(Q, R)) and the
average stockout level (B(Q, R)). Assuming the linear
unit costs of holding and stockout, the corresponding
annual costs can be obtained. The results are briefly
reviewed and the parameters are introduced since they
will be used later in the authors approximation.

a1 o (15) n (B2
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The definition of the parameters in the above formulae
is as follows:

@ ordering batch size of a continuous review policy,
R reorder point of a continuous review policy,

L the constant lead time of each order,

' average of lead time demand, u' = \.L,

8" standard deviation of lead time demand, §'=6+/L.
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Review of Exact Solution for Lost Sale
Problem with Poisson Demand

Considering a single-echelon inventory system with a
continuous review control policy, a reorder point of R
and batch size of @, a constant lead time for replen-
ishing orders, demand generated by a Poisson process,
a lost demand during a stockout and R < @ (to make
sure of not having more than one order outstanding at
a time), Hadley and Whitin [14] developed formulae
for the average stock level, (D), and for the average
number of lost sales incurred per unit time, (E).
Assuming the linear unit costs of holding and stockout,
they obtained the corresponding annual cost. Here,
their results are briefly reviewed and the parameters
they have used in their formulae are introduced, since
they will be used in the presented approximation.

Q+\T
_ A RQR+1) QR Q
=0+ 7 ot QLB ()
where:
T =LP(R;\L) — ?P(R+1;>\L), (6)
and:
_Q+AT

The definition of the parameters in the above formulae
is as follows:

@ ordering batch size of a continuous review
policy,

R reorder point of a continuous review policy,

A demand rate (mean of Poisson demand

distribution),

constant lead time,

the expected length of time per cycle that the

system is out of stock,

T  time per cycle.

L
T

and:

P(x;\L) = ie*M(A,—L)i

r=0,1,2,3,..
1!

COMPLEXITIES OF THE PROBLEM

In many multi-echelon systems that which makes the
problem difficult is how to exactly, or approximately,
determine the type of demand in higher echelons
and, also, the real replenishment time of orders, from
the downstream echelons to higher ones, because of
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possible stockouts in the higher ones. In the authors
problem, the same problem occurs and some approxi-
mations are used to tackle them. The approximations
seem to be efficient and reasonable, but they will be
tested through some numerical problems in the next
section. Here, how to analyze the demand in the
warehouse and, also, the lead time of the retailers are
explained.

Demand Analysis in the Warehouse

The average number of cycles per unit time in a
continuous review inventory system when demand is

. . _ A .
lost during a stockout is T~ = T [14], without

any special assumption concerning the nature of the
stochastic processes generating demands and lead times
except to assume that they do not change with time
and that units are demanded one at a time. Equation 7
is just a special case of this relation when the stochastic
process generating demand is Poisson and the lead time
is constant. Since a batch size of ) is ordered in each
cycle, the mean rate of demand (from this inventory
system to a higher echelon) will be T~! in terms of the
batch size of Q.

As Moinzadeh and Lee [4] mention, when the
stockout is backordered in the retailers and the demand
process at each retailer is Poisson, the arrival process
of orders at the warehouse (higher echelon) is a su-
perposition of N arrival processes in the case of one
warehouse and N retailers, so that each inter-arrival
time is Erlang distributed with shape parameter Q.
When the number of retailers in the model is large, the
arrival process can be well approximated by a Poisson
process with mean rate of Ef\;l 2i  Moinzadeh and
Lee also stress that such an approximation has been
used or suggested by Muckstadt [15], Deuermeyer and
Schwarz [6], Albin [16] and Zipkin [17]. However, this
classic Poisson approximation has also been used in
some recent papers, like [18]. The main difference
between the authors model and theirs is that demand
during a stockout is lost instead of backordering in the
retailers.

As Axsiter [13] pointed out, for items with high
demand, it is usually more convenient to model the
demand over a time period by a continuous distribution
and the discrete Poisson demand will become approxi-
mately normally distributed.

Using the spirit of the two mentioned approxima-
tions and extending it for the case of lost sales, one can
assume that when the number of retailers in the model
is large, the arrival process can be well approximated by
a continuous normal demand process with a mean rate

N
of Ao = Z; Q+>\>fiTi
of such a normal demand process can be approximated
by v, (both in terms of the identical batch size of

per unit and the standard deviation
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@, since the retailers’ ordering batch size was identical
and equal to Q).

Approximating the Retailers Lead Time

As mentioned before, retailers at the first echelon of
the model experience independent Poisson demand
processes. Demand during a stockout is assumed to
be lost. Each order that is placed on the warehouse by
each retailer will have a minimum lead time equal to
the transportation time. Since some of the orders are
placed when there is a stockout at the warehouse, the
lead time may be more than just the transportation
time. The real lead time of each retailer order consists
of two components: First, the transportation time of
the orders from the warehouse into the retailer, and
second, an additional waiting time, which results from
a stockout in the warehouse. This waiting time does
not have any clear distribution and it is just known
that it is zero when the orders do not incur stockouts
in the warehouse and has a positive value when they
are backordered in the warehouse.

Based on the approximation of demand at the
warehouse described in the previous section, the stock
in the warehouse behaves just like an inventory system
of the type described before. From Little’s famous
formula in the queuing theory (as Andersson and
Melchiors [12] use it in their approximation), one can
use the expression for the average stock level given by
Equation 1 to obtain the average waiting time of each
retailer order, as given by Equation 8.

It should be noticed that Equation 1 is valid when
customer demands occur one at a time. Since each
retailer orders a batch size, @, Equation 1 can still be
used if one makes the additional assumption that the
batch size and reorder point of the warehouse, @, and
R,, are integer multiples of the identical batch size of
the retailers, Q.

_ B(%, %)
°vQQ
W=—>= =< 8
— (®)
where:
N
i
Ao = N 9
2 i ©)

In the above formula, W is the average waiting time
of the orders placed by retailers. Based on an ap-
proximation, W is added to the transportation time
of each retailer to make the approximate constant lead
time of the orders. This can be used for evaluating the
retailers costs (holding and stockout costs). A, is the
mean rate of demand in the warehouse. Equation 9
follows directly from the result in the previous section.

M.R. Akbari Jokar and M. Seifbarghy

APPROXIMATE TOTAL COST AND
OPTIMIZATION METHOD

Total Cost Function of the System

Based on the results of the previous sections, the total
cost of holding and shortage in the retailers and holding
in the warehouse is as follows:

N
TC=Co+ ) Ci (10)
i=1
The warehouse cost consists of just the holding cost, as
follows:

Q R,
Q' Q
In the above formula, Do(%, %) is the average stock

level in the warehouse and is as follows, using Equa-
tion 3 and noting that @, should be an integer multiple

of Q:

Cy = ho.Dyf ).Q. (11)

Qo
Q R.._(5) R, Qo R,
Do v T =—+__>\0Lo+Bo_7_'
In the above equation, A, is obtained through Equa-
tion 13 (as explained before) and Bo(%, %) is the

average backorder level in the warehouse in terms of
@, which is obtained in Equation 14 using Equations 1
and 2, noting, again, that @), should be an integer
multiple of Q:

RN
Ao=>" A (13)
i=1 Q+>\1Tz
2 Re )\, L
B(%&>_(>‘OLO) H[Q oo
o ’ - Q. )\oLo
>l ()

4 (15a)
and:
o) = [ e,
1 a2
o(z) = e 7. (15Dh)
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Knowing A, and Bo(% %), one can determine W

from the following equation, as explained before:

Qo R,
W = M (16)
Ao

An important point in our approximation is that W
is dependent on JA,, which, itself, is dependent on
T:. Since the stochastic distribution of lead time for
the retailer, 7, is not clear, T; does not have any
exact form in this complicated model. It is, therefore,
approximated by the constant lead time, L;, as given
in Equation 17. The authors experience shows that
the effect of this approximation is negligible on A,.
However, the numerical tests will show how accurate
this approximation is:

. R;
T, = LiP(Ri; )\iLi) — )\—P(RZ + 1, /\sz) (17)
FEach retailer cost consists of shortage and holding costs
as follows:

Ci=m.E; + thl,
i1=1,2,---,N, 0<R; <Q. (18)

In the above formulae, F; is the average number of
lost sales incurred per unit time in retailer ¢ and D;
is the average stock level in retailer ¢. Based on the
approximation shown in the section of “Approximating
the Retailers Lead Time”, L; + W is assumed to be
constant. Using Equations 4 to 6, for the case of a
constant lead time, one has the following;:

As

P = )\iT-I R
o+ /\iTi/[ i) (19)
A\ [QQ+1) QR _—C
= = —Q(L;+W)|+—E;,
RSV B v T RS

T! = (L + W)P(Ri; \i(Li + W)

W p(Ry 4 1ML+ ) (21)

2

TZ’ is the average length of time per cycle, for which
retailer ¢ is out of stock when the lead time is the
constant value, L; + W.

Optimization Method

It is clear that one should find the optimal values of the
reorder points of all installations through minimizing
TC. Since it is a complicated cost function (even Cj
by itself is very complicated as Hadley and Whitin
mention [14]), it is not easy to find the optimal

109

reorder points of the warehouse and retailers. Here,
by defining some new notation, a method is presented
for minimizing the cost function. It is necessary to
state that the reorder point of retailer ¢(R;) is bounded
by 0 and @, 0 < R; < @, since there should not be
more than one order outstanding in each retailer at
any time and this constraint satisfies this condition
for a continuous review inventory system with lost
sales [14]. Furthermore, since there are N retailers
in this model and none of them can have more than
one order outstanding, one has R, > (—NQ). This is
because, if R, < —NQ, then, the reorder point is never
reached in the warehouse.

Since, in the numerical problems, one only consid-
ers the identical retailers case (like many other papers
in the area of multi-echelon modeling), the optimiza-
tion method is based on this assumption. In short, R,
is increased from its lower limit and the optimal, R;,
for all retailers is found. This continues until a local
minimum is reached. Because of the complexity of the
cost function one is not able to prove its convexity.
However, by considering a logical upper limit for the
reorder point of the warehouse (R, ), one can constrain
the solution space. The warehouse reorder point can
be limited by R, < Ao + 3v/A, with the confidence
coefficient of 99.7%. In the numerical tests that will be
presented in the next section, both the optimization
method has been used and the total solution space
has been searched (since both the reorder points are
limited). The results have been the same and this
strongly suggests that the authors local minimum is the
global minimum. The notations used in the algorithm
are as follows:

R,(n) reorder point of the warehouse in stage n,

R optimal reorder point of the warehouse,

R reorder point of the identical retailers in
each stage (0 < R < Q),

R*(n) optimal reorder point of the identical

retailers in stage n,
R* optimal reorder point of the identical
retailers (through all stages),

TC(n) total system cost in stage n (assuming
R(0 < R < Q) and R,(n)),

TC*(n) optimal total system cost in stage n,

TC* optimal total system cost.

Here, the algorithm for finding the optimal reorder
points of the warehouse and the retailers is presented
as follows:

Step 0: Set n =0,

Step 1: Set R,(n) = (—N +n).Q,

Step 2: Set R=0,TC*(n)=a large enough number,

Step 3: Determine T'C'(n) using Equation 10,
assuming that n is a counter of stages,
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Step 4: If TC(n) < TC*(n), then, R*(n) = R and
TC*(n) =TC(n),

Step 5: f R< Q@ — 1, then, R= R+ 1 and go to
Step 3,

Step 6: If n =0, then, n =n + 1 and go to Step 1,

Else:  IfTC*(n) > TC*(n —1), then,
TC*=TC*(n—1), R; = R,(n — 1),
R* = R*(n — 1) and stop,

Else: I TC*(n) <TC*(n—1), then,
n=n+ 1 and go to Step 1.

NUMERICAL RESULTS

In order to determine the power of the authors ap-
proximation, a set of 36 numerical problems have been
designed with the assumption of identical retailers. To
the best of the authors knowledge and, as Andersson
and Melchiors [12] mention, no work has been done
on the case of lost sales in retailers with the policy
of batch ordering in all installations. Since there
were no previous numerical problems as a reference
with which to compare our approximation, a problem
set was developed, which offered a reasonable range
of model parameters. The optimal reorder points
of all installations were found using the optimization
method described in the previous section. As already
mentioned, the same optimal reorder points were found
through searching the total solution space by setting an
upper limit on the warehouse reorder point.

Each numerical problem was, also, simulated 10
times (considering 10 runs for each problem), for the
optimal reorder points obtained from the approximate
model, using GPSS/H simulation software. The sim-
ulation time length of each run is 110000 unit times
with 10000 unit times as a “run in” period. Different
starting random number seeds were employed for each
problem. All of the results show that this length of
time is sufficient for the system to reach a steady state.
This is also clear from the standard deviation of the
total system cost. The cost error is obtained by the
following relation:

Cost Error =

|simulated total cost — approximated total cost|
simulated total cost &22)

The identical retailers’ service level is also reported as
their ready rate (the fraction of time with positive stock
on hand). This can be obtained through Hadley and
Whitin [14] as:

Service Level =

| _ average number of lost sales per unit time
average number of demands per unit time’ (23)
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The above relation has been employed in the approx-
imation and, also, in the simulation model to find the
service levels.

The numerical problems are as in Table 1. The
number of retailers is 20 (a large enough number to
approximate the demand distribution as normal in the
warehouse), the holding costs of the warehouse and the
identical retailers per unit per unit time are assumed
to be 1, h, = h; = 1 and the transportation time for
the identical retailers and, also, the lead time of the
warehouse are assumed to be 1, L, = L; =1. The total
cost and service level results are shown in Table 2.

As can be seen from Table 2, the errors in the
approximate total cost and approximate service levels
are small in comparison with simulated values. The
error levels are consistent with those obtained for
similar approximations used by other researchersin this
area.

CONCLUSION AND FUTURE RESEARCH

In this paper, an approximate cost function is devel-
oped for a two-echelon inventory system with one ware-
house and several retailers, where unsatisfied demand
in the retailers is lost and the control policy is continu-
ous review. The main point of this paper is to assume
lost sales during a stockout in the retailers, since most
of the previous papers had assumed demand during
a stockout to be backordered. Only Andersson and

Table 1. Designed numerical problems.

No Qo | Q| XN | mi | No | Qo | Q| XN | 75
1 116 |8 (05(100| 19 | 32 |16 0.5 100
2 |16 | 8 |0.5]{200| 20 | 32 | 16| 0.5 | 200
3 (16| 8| 1 (10021 |32]|16| 1 |100
4 |16 | 8 | 1 |200| 22|32 |16| 1 |200
5 (16 | 8 |15]100| 23 | 32 |16| 1.5 | 100
6 |16 | 8 |1.5]200| 24 | 32 | 16| 1.5 | 200
7 |16 [16]0.5]100| 25 | 64 | 8 | 0.5 100
8 |16 |16 0.5|{200| 26 | 64 | 8 | 0.5 | 200
9 |16 |16 1 |100| 27 | 64 | 8 | 1 | 100
10 | 16 |16 1 |200| 28 | 64 | 8 | 1 | 200
11 | 16 |16 |1.5]|100| 29 | 64 | 8 | 1.5 | 100
12 | 16 |16 |1.5|200| 30 | 64 | 8 | 1.5 | 200
13 132 |8 |05|100| 31 | 64 | 16| 0.5| 100
14 1 32 | 8 |0.5]|200| 32 | 64 | 16 | 0.5 | 200
15132 |8 | 1 |100| 33 |64 (16| 1 |100
16 [ 32 | 8 | 1 |200| 34 | 64 |16]| 1 |200
17 132 | 8 |15|100| 35 | 64 | 16| 1.5 | 100
18 132 | 8 |1.5]|200| 36 | 64 | 16 | 1.5 | 200
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Table 2. Total cost and service level results.
Approximation Simulation Approximation | Simulation
Total Mean of Standard Cost Service Service Service
No | R, | R; Cost Total Deviation of | Error Level % Level % Level
Cost Total Cost % Error %
1 0 2 | 124.49 126.82 0.07 1.8% 99.38 99.54 0.2%
2 2 | 130.68 131.31 0.15 0.5% 99.38 99.54 0.2%
3 3 | 143.35 144.53 0.17 0.8% 99.15 99.29 0.1%
4 16 3 | 154.56 156.40 0.25 1.2% 99.49 99.54 0.1%
5 24 4 159.82 162.21 0.12 1.5% 99.41 99.47 0.1%
6 16 5 | 170.63 173.57 0.19 1.7% 99.72 99.74 0.0%
7 1 | 196.43 197.80 0.13 0.7% 98.39 98.97 0.6%
8 2 206.26 210.64 0.13 2.1% 99.61 99.78 0.2%
9 3 | 216.96 218.02 0.14 0.5% 99.11 99.43 0.3%
10 | 16 3 | 227.66 232.81 0.20 2.2% 99.67 99.74 0.1%
11 | 16 | 4 | 231.87 236.14 0.15 1.8% 99.43 99.55 0.1%
12 | 16 5 | 245.03 250.92 0.18 2.3% 99.82 99.85 0.0%
13 | -8 2 | 125.90 128.38 0.06 1.9% 99.25 99.39 0.1%
14 | -8 2 | 133.45 134.37 0.16 0.7% 99.25 99.40 0.2%
15 3 | 145.21 147.33 0.18 1.4% 99.06 99.15 0.1%
16 4 | 155.80 159.57 0.16 2.4% 99.76 99.76 0.0%
17 | 16 | 4 | 161.37 164.34 0.23 1.8% 99.36 99.40 0.0%
18 8 5 | 172.09 176.53 0.23 2.5% 99.70 99.69 0.0%
19 0 1 | 199.45 204.09 0.15 2.3% 98.83 99.12 0.3%
20 | -16 2 208.44 207.11 0.26 0.6% 99.14 99.57 0.4%
21 0 3 | 218.10 222.75 0.15 2.1% 99.43 99.59 0.2%
22 0 3 | 229.51 231.18 0.18 0.7% 99.43 99.58 0.2%
23 | 16 | 4 | 234.62 240.80 0.12 2.6% 99.60 99.65 0.1%
24 0 5 | 245.81 249.63 0.26 1.5% 99.68 99.74 0.1%
25 | -24 | 2 | 130.86 137.52 0.16 4.8% 98.77 98.52 0.3%
26 | -16 | 2 | 140.55 146.09 0.16 3.8% 99.29 99.21 0.1%
27 | -8 3 | 150.89 155.87 0.10 3.2% 99.17 99.13 0.0%
28 | -16 | 4 | 160.51 170.32 0.19 5.8% 99.64 99.50 0.5%
29 | -16 | 5 | 165.95 176.28 0.18 5.9% 99.34 99.13 0.2%
30 0 5 | 176.76 184.77 0.31 4.3% 99.75 99.69 0.1%
31 | -32 | 2 | 202.73 209.61 0.18 3.3% 98.88 98.97 0.1%
32 | -32 | 2 | 213.95 219.68 0.11 2.6% 98.88 98.98 0.1%
33 | -16 | 3 | 221.34 226.50 0.12 2.3% 99.28 99.42 0.1%
34 | -16 4 234.61 241.51 0.22 2.9% 99.79 99.82 0.0%
35 0 4 | 237.38 244.29 0.18 2.8% 99.51 99.54 0.0%
36 | -16 | 5 | 249.22 255.54 0.28 2.5% 99.62 99.65 0.0%
Mean 2.3% 99.36 99.44 0.1%
Standard Deviation 1.4% 0.33 0.30 0.1%
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Melchiors [12] have developed an approximate solution
for the case of lost sales using an (S — 1,5) policy in
all installations. The warehouse arrival process has
been approximated by a continuous normal demand
process and each retailer lead time by a constant lead
time, obtaining the average waiting time of the retailers
orders using Little’s formula from the queuing theory.
The approximations were compared with simulation
results for 36 numerical problems. The mean error of
the cost is 2.3 %, which seems to be good. In future
research, the retailers lead time could be approximated
by other distributions and the mean error reduced.
Another future research field is to use a service level
objective for determining the optimal control policy.
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