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A Minimum Route for Machine Tool Travel

M.A. Rahbary1

This paper presents an algorithmic approach to solving the problem of excessive travel in C.N.C.
machine tools, by introducing an e�cient method to compute the shortest path between given
sets of points (origin and destination) in an R2(x; y) plane. When a work piece is located (as an
obstacle) between sets of points, it is proved that the optimum path between these points would
be formed by sequences of connected straight line segments whose intermediate end points
are vertices of an appropriate polygonal (closed control barrier). The case of one origin, one
destination and a set of barriers is considered. This method is computationally e�cient.

INTRODUCTION

The study of numerically controlled machine tool sys-
tems indicates that there are many elements which play
a major role in increasing cycle times. Since manu-
facturing e�ciency is directly in
uenced by machining
cycle time, the attention given to its reduction has
always been great. One of the main elements, which
contributes to the problem of higher cycle time, is the
ine�cient travel of cutting tools.

The central objective of this paper, therefore,
is the development and initial implementation of an
algorithm for planning a suitable path for cutting tools
to travel, which results in a reduction of the cycle
time for manufacturing a part on a machine tool. The
problem of �nding an optimum path between given
points in the presence of barriers has received some
attention in the past, but there have been very few
publications of the �ndings. Some of these algorithms
are proven to be computationally ine�cient or are
di�cult to implement for a particular case.

Of these published algorithms, the oldest is in [1]
where the authors studied the problem of displacement
of an autonomous vehicle on Mars and the latest is in [2]
where the author investigated strategies of cutter path
optimization. Shkel and Lumelsky [3] investigated the
problems of �nding the shortest smooth path between
two points in the plane for robotics applications.
Vaccaro [4] discussed the problem of routing an urban
vehicle. The routing was considered independently, but
the barriers were also represented by line segments.

Wang Dahl, Pollock and Woodward [5] investi-
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gated the shortest pipeline layout between two points
on a ship (with polygon barriers). Larson and Li [6]
allowed the polygons to be convex or non-convex,
but only the rectilinear (Li) norm was considered.
Viegas [7] developed an O(n3) algorithm for the gen-
eration of the shortest-paths network in the context
of evaluating pedestrian displacements from home to
public facilities in towns, using Euclidean distance.

ASSUMPTIONS AND PROBLEM
FORMULATION

It is desired to route a tool tip from a speci�ed start
position to another position within a two-dimensional
work space, avoiding interferences with barriers placed
in between the positions. If one or more paths exist, as
usually is the case, the shortest route must be found.

The following assumptions are made:

1. Only the case of a single origin and destination in
the presence of a single barrier and in the plane R2

is considered. However, the technique is extendable
to more than one barrier and sets of origins and
destinations. It could also be de�ned to work in a
three-dimensional work space;

2. All boundaries (of the space and of the barrier) are
composed of straight-line segments;

3. It is required to �nd the shortest distance between
any origin and destination, such that these paths
do not cross any barrier;

4. Barriers are convex or non-convex closed polygons;

5. No points of origin or destination are located inside
or on the barriers;

6. The route should not intersect any barrier.
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METHOD

The principal problem of �nding an optimum path be-
tween a set of points (origin and destination) is broken
down into a sequence of minor or local problems, which
can be dealt with one at a time.

A set of origins, O = fo1g, and destinations, D =
fd1g, in the plane R2, and a set of barriers to travel,
B = fb1g, are introduced. Before proceeding with any
calculation of an optimum path for any point, it is,
�rst, necessary to reduce the problem to a network or
matrix representation. To do this, it is required to
de�ne control lines drawn parallel to the boundaries of
the barrier in question, in order to de�ne the control
barrier. Control points on the control barrier are the
only de�ned points through which an optimum path
could pass.

Geometrically, a `control point' is de�ned to be
the intersection of two straight lines that are adjacent
members of the set of straight lines forming the super
scribing polygon (control polygon or barrier) around
a piece of equipment. The sides of this polygon are
a prescribed perpendicular clearance distance (say d)
from their respective parallel equipment boundaries.

Figure 1 illustrates the generation of such control
points A, B, C, D, E, F , G and H for a polygon.

The following notation is used: The barrier
(de�ned by control points) denoted `b' (control bar-
rier), is de�ned by the list of its vertices, Vb =
fV0; V1; V2; V3; � � �Vmg, where (m + 1) denotes the
number of vertices of the barrier. This list corresponds
to successive vertices from one end of the barrier to the
other.

PROPERTIES OF SHORTEST PATHS
NETWORK

A few concepts and some theories are �rst introduced:

1. A point is said to be visible [8] from a point
if and only if, the straight line segment joining
these two points crosses no barrier. To solve the
problem of inter-visibility as a practical matter,

Figure 1. Control points for a closed polygon.

it is important to describe a way to determine
the visibility of one point from another. Here,
a straightforward technique follows. Consider the
situation in Figure 2. The segment [P1�P2] joining
points P1 and P2, is a boundary or a control line. It
can be said that the line joining P1 and P2 consists
of all points (x; y), such that:

x = �xp1 + (1� �)xp2;

y = �yp1 + (1� �)yp2; (1)

where:

0 � � � 1:

Similarly, the line joining i and j consists of all
points (x; y), such that:

x = �xi + (1� �)xj ;

y = �yi + (1� �)yj ; (2)

where:

0 � � � 1:

Solving Equations 1 and 2 simultaneously for � and
� gives:

� =
(xp2�xj)(yp1�yp2)� (yp2�yj)(xp1�xp2)

(xi�xj)(yp1 � yp2)� (yi � yj)(xp1 � xp2)
;

� =
(xp2 � xj)(yi � yj)� (yp2 � yj)(xi � xj)

(xi � xj)(yp1 � yp2)� (yi � yj)(xp1 � xp2)
:

For i and j not to be visible, both conditions: 0 <
� < 1 and 0 < � < 1 must be true.

For all other values of � and �, i and j are
visible. If:

(xi�xj) � (yp1�yp2)�(yi�yj) � (xp1�xp2)=0;

the lines are parallel, there is no intersection and i
and j are visible.

Figure 2. Geometry for visibility calculation.
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Figure 3. Locally and globally supporting lines of a
barrier.

2. The line Li (see Figure 3) is locally supporting the
barrier, b (closed polygon), because:

(i) Li contains one vertex at least of b(P1);

(ii) All the points belonging to the intersection
of an arbitrarily small circle, C, of radius
\r" centered at point Pj , lie on one of the
two closed half-planes de�ned by Li, subject
to the direction in which the shortest path
is considered. If the negative (�) direction
is considered, then, the intersection points
should lie on, or to, the left of the half-plane,
or else to the right of the half-plane.

Li is a locally supporting line of the barrier at
P1. The intersection points x1 and x2 are entirely
located to one side of the line Li, (left half-plane);

3. The line Gs1 is globally supporting barrier b (closed
polygon), because:

(i) The line Gs1 contains one vertex at least of
barrier b (P3);

(ii) The line Gs1 satis�es the Case (2) and, there-
fore, locally supports the barrier, b, at P3;

(iii) All the vertices of the barrier, b, lie entirely
on, or to one side of the line. This condition
is also subject to the direction of scanning.

Gs1 is a globally supporting line of the barrier,
b, at P3 and also a locally supporting line at P3
(scanning in a (�) direction), where the vertices
(P0, P1, P2, P3, P4, P5, P6), lie entirely to one
of two sides de�ned by the segment Gs1. The
line, Gs2, is also globally supporting the barrier,
b, at P0 (scanning in a (�) direction). From the
situation discussed above, it can be said that in
any x=y plane (R2) and in the presence of a single
point and a barrier, there can only be two globally

supporting lines to that barrier (Gs1, Gs2), as in
Figure 3.

Theorem

When distances are measured with Euclidean distance,
any optimum path is composed of connected straight
line segments, where;

(a) xo is an origin;

(b) xd is a destination;

(c) vj with j = 0; 1; 2; � � � ; k is a vertex of the barrier
b(j), such that the shortest path connecting xo and
xd intersects the barrier at its vertices and each
intersection point is the second point of the line
segment, which, in turn, is a supporting line of the
barrier at that intersection point.

Proof

As a shortest path consists of a straight line between
two mutually visible points, consider three consecutive
line segments [xo; vj+1], [vj+1; vj+2] and [vj+2; xd], as
illustrated in Figure 4, on the shortest feasible path.
The path is assumed to be nonlinear, otherwise vj+1
and vj+2 would be irrelevant and may be deleted from
the path.

Now, consider points x0

1, x
00

1 , x
0

2 and x00

2 at an
arbitrarily small distance, (r > 0), from vj+1 and
vj+2, respectively. Consider another path, which is
composed of [x0; x

0

1], [x0

1; x
00

1 ], [x00

1 ; x
0

2], [x0

2; x
00

2 ] and
[x00

2 ; xd], which is shorter than the path composed,
[xo; vj+1], [vj+1; vj+2] and [vj+2; xd]. This is true
because of the triangle inequality. So, the shortest
path, which consists of segments of [xo; x

0

1], [x
0

1; x
00

1 ],
[x00

1 ; x
0

2], [x
0

2; x
00

2 ] and [x00

2 ; xd], cannot be a feasible one
and must be deleted. The earlier path, with x0

1 located
on the segment [xo; vj+1] and x00

1 on [vj+1; vj+2], is

Figure 4. Shortest path and barrier b for the proof of the
theorem.
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entirely positioned on one half de�ned by the line
[xo; vj+1] and the vertices of the barrier, b, are also
located on that half.

So, one can say that the line segment [xo; vj+1]
is a globally supporting line of barrier b at point
Vj+1. With the same principle, [xd; vj+2] is a globally
supporting line of the barrier b at point vj+2. One can
also say that the only feasible shortest path connecting
x0 to xd is a path which consists of the straight line
segments [xo; vj+1], [vj+1; vj+2] and [vj+2; xd].

GENERAL SOLUTION

Initialization

Select the total of Nb control points and let (Xib; Yib)
be the coordinate of the ith control point where;

ib = 1; 2; 3; � � � ; Nb:

By convention, ob is assigned as the origin and
db as the destination. Points ob and db are said to
be visible if a straight line joining them does not
intersect the boundary of the control lines (visibility
test theorem).

If ob and db are visible, then, one can de�ne
the path which is composed of a straight line, [ob; db],
and the problem is solved. Otherwise, compute the
distance, rib, from ob and db to every point (Pib) of Xb,
where Xb is associated with the set of vertices of the
barrier:

Xb = fP1; P2; P3; � � � ; Pnbg;

Rob = fr1b; r2b; r3b; � � � ; rmbg;

Rdb = fr1b; r2b; r3b; � � � ; rmbg:

The set, Rob, is associated with the set of distances
which are related to ob and vertices in Xb and the set,
Rdb, is related to db and vertices in Xb. Let ro be the
minimum distance associated with ob and rd with db.
Now, �nd the corresponding vertices of these minimum
members from setXb and let them be de�ned as P0 and
Pd.

Scanning Phase

Now, precede scanning in clockwise and anti-clockwise
directions for ob and db, respectively, starting from the
barrier vertex corresponding to the minimum distances
(ro; rd) and their respective points (Po and Pd). Com-
pute the globally supporting points (see sets Gob and
Gdb). In either direction, for both ob and db. Let:

Gob = fPig;

and:

Gdb = fPig:

If sets Gob and Gdb shared a common member (let Pi be
the common member) in their sets, then compute that
point. Connect ob to Pi and db, where ob and db must
be inter-visible via Pi. The set should be computed as:

Sb = fob; Pi; dbg:

If the condition mentioned for the sets was not satis�ed,
proceed with scanning.

The scanning should start in both directions
(clockwise and anticlockwise), from the �rst globally
de�ned point and ending at the destination point, db.

Any segment (Pj ; Pk), where Pj and Pk represent
the start and end points of a globally de�ned line, may
be handled by the following procedures (now the tests
are being carried out on the segments of the barrier
itself, Pj and Pk are the vertices of the barrier):

1. Start, for example, with Pj in an anticlockwise
direction. Take the segment (Pj ; Pj+1) and carry
out the globally supporting lines test. If Pj+1 passes
the test, insert it in the list of live vertices (set S1b);

2. Go to the next vertex (say in the anticlockwise
direction, Pj+1) and carry out Step 1. Continue
the procedure until one of the segment's end points
is also a member of the set, Gdb. Now, complete
S1b by computing the last point. The set, S1b,
represents the �rst feasible path;

3. Continue the steps above in a clockwise direction,
starting with Pj . Complete S2b by computing all
the barrier's vertices which pass the test;

4. S1b and S2b hold two di�erent sets of paths which
connect ob to db. Using a Euclidean distance calcu-
lation, select the set which produces the optimum
path.

The path with the minimum value is the shortest
feasible path which connects ob to db and satis�es the
conditions for an optimum path.

EXAMPLE OF HOW THE ALGORITHM
WORKS

Consider now a small example, using Euclidean dis-
tance, in Figure 5. Select the the control points
as starting with barrier vertices (0-7), destination db
and origin ob. Register the Cartesian coordinates of
these points, as presented in Table 1. To check the
visibility of ob and db an algorithm is executed for
visibility presented earlier. If these points are inter-
visible, terminate the process, or else, resume with the
following procedures:
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Figure 5. Control geometry for the example.

Table 1. Coordinate for the points of the example.

Point No. X Y

Barrier vertices P0 4 6

P1 9 6

P2 9 7

P3 11 7

P4 11 9

P5 9 9

P6 9 10

P7 4 10

Origin - 6 5

Destination - 6 11

1. Compute the Euclidean distance of ob and db from
all the vertices of barrier b (Table 2);

2. Select the vertex corresponding to the smallest
element in both lists (P0 and P7, respectively);

3. Scan for ob in an anticlockwise (�) direction, start-
ing with the smallest element in Table 2, as found
in the above step (P0). Note that the condition for
globally de�nable lines for a (�) direction is not
the same as for a (+) direction, (see the de�nition
of globally de�ned lines in the previous section);

4. Segment [ob�P0] does not satisfy the conditions for
a globally supporting line and, therefore, is deleted.
[ob � P0] satis�es the conditions and, therefore, the
segment [ob � P1] should be registered. Proceed
scanning in the opposite direction (+). The line,
[ob � P1], satis�es the condition and, so, should be
computed. The completed set should be computed
as:

Gob = fP1; P0g:

5. Resume the scanning operation, starting with point

d and carry out Steps 2 to 4. The completed set
should be computed as:

Gdb = fP7; P6g:

6. Sets Gob and Gdb do not have a common element
and scanning should be resumed. Move to point P1,
(P1"Gob) and scan in the (�) direction, starting
with the segment [P1; P2]. [P1; P2] is a segment
connecting two vertices of the barrier and is subject
to globally supporting lines de�nition tests:

a) At [P1; P2]; 7:[P1; P2] does not satisfy the con-
dition for a globally supporting line;

b) At [P2; P3]; 8:[P2; P3] supports the conditions
for a globally supporting line and should be
computed;

c) At [P3; P4]; 9:[P3; P4] satis�es the condition for
a globally supporting line at P4;

d) At [P4; P5]; 10:[P4; P5] does not satisfy the
conditions for a globally supporting line;

e) At [P5; P6]; 11:[P5; P6] satis�es the conditions
for a globally supporting line at P6;

f) At [P6]; 12:P6 is a supporting vertex, which is
also a member of Gdb. So, P4 and db are visible
via the vertex P6. So, compute the set S1 =
fob; P1; P3; P4; P6; dbg, which comprises the line
segments [ob; P1], [P1; P3], [P3; P4], [P4; P6] and
[P6; db].

The sweep is terminated and the segments which
complete the path are registered. The sweep from
ob towards db could be achieved on either side of
the barrier, b (clockwise (�) or anticlockwise (+)
directions). Now, proceed in the opposite direction,
which, in this case, is the clockwise (+) direction and
repeat procedures 2-13. The result of this sweep can be
shown as the set S2 = fob; Po; dbg and the line segments
[ob; Po][Po; P7] and [P7; db].

Set S1 and S2 represent the two di�erent patterns
which de�ne the shortest path to connect ob to db

Table 2. The distances for the example.

Points No.
Distance

(Origin)

Distance

(Destination)

P0 2.23 5.38

P1 3.16 5.38

P2 3.60 5.00

P3 5.38 6.40

P4 6.40 5.38

P5 5.00 3.60

P6 5.83 3.16

P7 5.38 2.23
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without crossing the barrier in either direction. One
of these sets (S1 and S2) contains the optimum route.
By comparing the two, S2 with the segments [ob; Po],
[Po; P7] and [P7; db], can be seen to be the optimum.

IMPLEMENTATION IN
MANUFACTURING

Computer Numerical Control (CNC) machine tools
are amongst the most important and most complex
machines in the manufacturing world. The increasing
complexity of engineering components requires an in-
crease in safety, productivity, system reliability, greater
operator satisfaction and a signi�cant reduction in
machine down-time in the implementation of these
machines. The introduction of the algorithms (shortest
path and visibility) in this paper is aimed at producing
a method which could be implemented in manufactur-
ing to reduce the machining cycle time by increasing
the speed and accuracy of the operations.

Although these algorithms have many implemen-
tations, three stages have been introduced, where they
can signi�cantly improve speed and accuracy in CNC
machine tool operations.

It must be emphasized that such techniques have
not been used in any of the modern CAD/CAM
systems, due to complexity in the C.N.C. operating
environment. The method introduced makes the
implementation of such an approach computationally
possible, as shown in this paper.

These algorithms could be used in �nding a
suitable path between any two spatial points in a
continuously changing environment. This changing en-
vironment could be due to alteration in a component's
geometry or in the positions of any moveable part of
the machine tool. This concept is best described in
Figure 6.

Figure 6. Non-optimized and optimized tool path
between points A and B.

The algorithms could also be used in optimising
the indexing position during the cutting operations.
The position control for indexing operations would be
based on safety and speed. Figures 7a and 7b describe
the concept.

The position control of the tool tip could also
be achieved by implementing the algorithms for this
purpose. The position of the tool tip is continuously
monitored in reference to the next position and is com-
puted according to the safety margin created around
the work-piece. This concept is also described in
Figures 8a and 8b.

Figure 9 shows how the complete system can be
implemented and used as an extension of the existing
CAD/CAM systems.

Figure 9 represents an optimization system which
has been created using the technique introduced in this
paper. It is aimed to be used in conjunction with a

Figure 7a. Non-optimized indexing position for upper
turret before moving to point A.

Figure 7b. Optimized indexing position for upper turret
before moving to point A.



A Minimum Route for Machine Tool Travel 89

Figure 8a. Non-optimized position of tool tip prior to a
cutting operation.

Figure 8b. Optimized position of tool tip prior to a
cutting operation.

modern CAD/CAM system and as a separate module.
This system o�ers functions such as:

1. Simulation of N.C. operations using an N.C. pro-
gram received from a CAM system;

2. Automated work piece contour generation and up-
date using the technique introduced in this paper;

3. Automated collision detection and avoidance;

4. Cycle time reduction, using the tool tip travel
optimization techniques introduced.

CONCLUSION

The algorithms described have been successfully pro-
grammed in `C++'. The method is based on �nding
vertices corresponding to the control barrier, which
would be the only feasible vertices able to form the
segments of the optimum path. The algorithm is par-
ticularly designed to suit a CNC dynamic environment,

Figure 9. Data 
ow in the dynamic veri�cation system
implementing the algorithm.

but, at the same time, its generality has been preserved
by presentation as an independent algorithm.

The advantage of this algorithm is that it can be
easily developed, computerized and implemented for
practical purposes. Also, the system supports the case
of one barrier and one set of origins and destinations
in the plane, R2, as is the case in any machining
operation.

It must be noted that the current and modern
CAD/CAM systems have never implemented similar
techniques, due to the complex dynamic environment
presented by C.N.C. operations.
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