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Designing an In�nite Channel Server

A.R. Haji�, R. Haji1 and S.T. Akhavan Niaki1

In this paper, the designing of a parallel channel queuing system is considered in which it is

desirable to serve the customers immediately upon their arrival. To design such a service facility,

the �rst and the second moments of the number of customers are obtained in an in�nite channel

server under the assumption that the arrival process has a general probability structure and the

service times of customers are independent and identically distributed random variables. With the

knowledge about the above two moments, one can obtain the approximate number of channels

such that the queue length becomes zero.

INTRODUCTION AND LITERATURE

REVIEW

There are many situations in the production of goods
and services in industries in which the cost of waiting
time for customers is very large or where it is desirable
to serve the customers immediately upon their arrival
at the service facility. Freeway toll crossings, hospitals
services, telephone switch boards, etc. are some
examples of such situations. A proper design of such
systems leads to a considerable saving of time and
money.

One way of ful�lling this desire is to provide a
large number of identical channels in parallel. However,
to design such service facilities, it is important to
determine the number of parallel channels such that
there is a negligible probability for there to be a queue
of customers waiting to enter the service. Knowing
the �rst and the second moments of the number of
customers in an in�nite channel queue, one might set
the number of parallel channels equal to the mean plus
a few standard deviations.

In the literature of the queuing theory and
stochastic processes, the approximate value of the
�rst moment of the queue length in a multi-channel
queuing system, with a Poisson arrival process and a
general service time distribution, has been determined.
When the service time distribution is gamma, this
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approximation is very close to the true mean and, in
the case of exponential distribution, it is actually equal
to the true mean [1].

Determining the distribution of the number of
customers in a service facility with an in�nite number of
servers, for the case where the arrival process is Poisson
and the service times are independent and identically
distributed (i.i.d.) random variables with a general
distribution function G, has been investigated [2-5]. In
the case of transient behavior, it has been shown that
the number of customers in the system at time t and,
also, the number of departures from the system up to
time t, have a Poisson distribution [4,5]. Also, it is well
known that for the steady-state case, the variance of
the number of customers, N , for the M=G=1 queue is
equal to the tra�c intensity, � (the ratio of the arrival
rate to the service rate). This follows from the fact that
the distribution of N for an M=G=1 queue is Poisson
with parameter � [5,6].

In this paper, no assumptions are made about the
arrival process, i.e., the arrival process can posses any
structure. Formulas are derived for the �rst and second
moment of the number of customers in the system for
this arrival process and for the case where the service
times are i.i.d. random variables.

In the following sections, �rst, the notations and
the assumptions needed to obtain the �rst and the
second moments of the number of customers in the
system are de�ned. Then, the formula for the �rst
moment in the steady-state situation is obtained, and
a formula for the second moment of the number of
customers in the system is derived. After that, the
formula derived for the �rst and the second moments
of N is specialized into two cases. In case one, the
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arrival process is Poisson and in the second case it
is a stationary process with an orderliness property.
Finally, the conclusions are presented.

NOTATIONS AND ASSUMPTIONS

In order to evaluate the �rst and the second moment
of the number of customers in the system at time t,
the time axis is divided into small intervals of width
�. For any �xed t, the intervals will be measured and
numbered backward from t with the jth interval from
t � j� to t� (j � 1)�. The notations and assumptions
are de�ned as follows:

� N(t): the number of customers in the system at time
t,

� E[N(t)]: the expected value of N(t),

� Var[N(t)]: the variance of N(t),

� �(t): the standard deviation of N(t),

� Nj(t): the number of customers who arrive in the
jth interval and are still in the system at time t,
j = 1; 2; � � � ,

� Aj(t): the number of customers who arrive during
the jth interval, j = 1; 2; � � � ,

� m(v; u): the expected value of the number of
customers who arrive in the interval (u; v), assuming
a customer has arrived at time u.

To simplify the notations, Aj(t) is indicated with Aj

and Nj(t) with Nj , keeping in mind that Aj and Nj

depend on t.
Given the above notations, the number of cus-

tomers in the system at time t is:

N(t) =
1X
j=1

Nj : (1)

It is assumed that the service times, (S)'s, are i.i.d.
random variables with a distribution function denoted
by:

G(x) = P (S � x); (2)

G(x) = 1�G(x): (3)

FIRST MOMENT DERIVATION

To evaluate E[N(t)], it is �rst noted that from Equa-
tion 1, one can write:

E[N(t)] = E

2
4 1X
j=1

Nj

3
5 =

1X
j=1

E[Nj ]:

E[Nj ] is obtained by conditioning on Aj , thus;

E[N(t)] =

1X
j=1

E [E[Nj=Aj ]] : (4)

If � is su�ciently small, then the random variable,
Nj=Aj , has approximately a binomial distribution with
the number of trials equal to Aj , the number of
customers arrived in the interval t� j� to t� (j � 1)�,
and the probability of success equal to G(j�). Thus;

E[Nj=Aj ] = AjG(j�); (5)

Var[Nj=Aj ] = AjG(j�)G(j�): (6)

If one substitutes Equation 5 into Equation 4, one has:

E[N(t)] = E

2
4 1X
j=1

G(j�)Aj

3
5 =

1X
j=1

E[G(j�)Aj ];

or:

E[N(t)] =

1X
j=1

G(j�)E[Aj ]: (7)

Now, in the limit, when � ! 0, one can write
Equation 7 as:

E[N(t)] =

tZ

�1

G(t� u)dE[A(u)]: (8)

Equation 8 gives the �rst moment of the number of the
customers in an in�nite channel queuing system in a
steady-state situation, in which the arrival process has
a general probability structure and the service times
are i.i.d. random variables.

SECOND MOMENT DERIVATION

To evaluate E[N2(t)], using Equation 1, one can write:

E[N2(t)] = E

2
64
0
@ 1X

j=1

Nj

1
A
2
3
75

= E

2
4 1X
j=1

N2

j + 2
X
k>j

X
NjNk

3
5

=

1X
j=1

E[N2

j ] + 2
X
k>j

X
E[NjNk]: (9)
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E[N2

j ] and E[NjNk] are obtained by conditioning on
Aj and AjAk, respectively. That is, Equation 9 can be
written as:

E[N2(t)] =

1X
j=1

E
�
E[N2

j =Aj ]
�

+ 2
X
k>j

X
E [E[NjNk=Aj ; Ak]] : (10)

Using the fact that for any random variable, X , the
equation E(X2) = Var(X) + [E(X)]2 holds, from
Equations 5 and 6, one has:

E[N2

j =Aj ] = G(j�)G(j�)Aj +G
2

(j�)A2

j : (11)

Furthermore, because of the independence of service
times, one has:

E[NjNk=Aj ; Ak] = E[Nj=Aj ; Ak]E[Nk=Aj ; Ak]

= E[Nj=Aj ]E[Nk=Ak]: (12)

Thus, from Equation 5, one can write Equation 12 as:

E[NjNk=Aj ; Ak] = G(j�)G(k�)AjAk: (13)

Now, from Equations 11 and 13, Equation 10 can be
rewritten as:

E[N2(t)] =
1X
j=1

G(j�)G(j�)E[Aj ]

+

1X
j=1

G
2

(j�)
�
Var(Aj) + [E(Aj)]

2
	

+ 2
X
k>j

X
G(j�)G(k�)

h
Cov(Aj ; Ak)

+E(Aj)E(Ak)
i
: (14)

From Equation 7, one can write:

E2[N(t)] =

0
@ 1X

j=1

G(j�)E[Aj ]

1
A
2

=

1X
j=1

G
2

(j�)E2[Aj ]

+ 2
XX

k>j

G(j�)G(k�)E[Aj ]E[Ak ]:

Using Equations 3, 7, 14 and the above relation, the
standard deviation of the number of customers in the
system, �(t), can be obtained by:

�2(t) = E[N2(t)]� fE[N(t)]g
2

= E[N(t)] +

1X
j=1

G
2

(j�) [Var(Aj)�E(Aj)]

+ 2
X
k>j

X
G(j�)G(k�)Cov(Aj ; Ak):

(15)

In the limit as � ! 0, Equation 15 can be written as:

�2(t)=E[N(t)]+

tZ
�1

G
2

(t�u)[Var(dA(u))�E(dA(u))]

+

tZ
�1

tZ
u

G(t� u)G(t� v)Cov[dA(u); dA(v)]:
(16)

Hence, Equations 8 and 16 give the mean and the
standard deviation of the number of customers in an
in�nite channel server with independent and identically
distributed service times without any assumptions on
the arrival processes. Knowing the mean and the
standard deviation of N(t), one can easily �nd the
approximate number of servers such that the queue
length is negligible.

In what follows, Equations 8 and 16 are employed
in two scenarios of arrival processes, the Poisson and
the stationary arrival processes.

Poisson Arrival Process

Equations 8 and 16 give the steady-state mean and
standard deviation of the number of customers in an
in�nite channel queuing system for a general case where
the service times are i.i.d. random variables and no
assumption is made on the probability structure of
the arrival process. However, if the arrival process is
Poisson with rate � and the service times are i.i.d. with
a general distribution with mean 1

�
, then;

Var(Aj) = E(Aj); Cov(Aj ; Ah) = 0;

for j 6= k and E[Aj ] = ��:

Thus, from Equation 10 one has:

E[N(t)] = �E[S] =
�

�
= �: (17)

Also, from Equations 8 and 15 or 16, one can write:

�2(t) = E[N(t)] = �: (18)
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That is, in the long run, the standard deviation of the
number of the customers in the system is equal to tra�c
intensity. This result is the same as that obtained
in [2,3,6].

Stationary Arrival Process

Consider an in�nite channel queue in which the service
times of the customers are i.i.d. random variables.
The arrival process is stationary and has an orderliness
property. For an orderliness property, the probability
of occurrence of two or more arrivals in a su�ciently
small interval of time is negligible when compared with
the probability of one (or no) arrival. In mathematical
notation, if Pi(h) denotes the probability of precisely
i arrivals in the interval with length h, the latter as-
sumption may be de�ned by the following equation [3]:

1X
i=2

Pi(h) = 1� P0(h)� P1(h) = o(h) as h! 0:
(19)

Note that a function, f , is said to be o(h), if [3]:

lim
h!0

f(h)

h
= 0;

For the stationary arrival process, one has [3,6]:

lim
�!0

1� P0(�)

�
= !;

in which, ! is a constant number. In other words, as
� ! 0, one has:

1� P0(�) = !� + o(�): (20)

It is also noted that for a stationary process with rate
�, except for the case P0(x) = 1, the expected number
of arrivals in the interval (0; x) is [3,6]:

E[A(x)] = �x: (21)

In addition, if the arrival process has the orderliness
property, then [3]:

! = �: (22)

Thus, when the arrival process is stationary with rate
�, then, the expected number of customers who arrive
in an interval with length � from Equation 21 is
E[Aj ] = �� and Equation 7 can be written as:

E[N(t)] = �

1X
j=1

G(j�)�: (23)

When � ! 0, from Equation 8, one has:

E[N(t)] =

tZ
�1

G(t� u)�du = �

1Z

0

G(u)du; (24)

or:

E[N(t)] = �E[S] = �:

As seen, this result is a special case of Little's formula
\L = �W" [7-10].

To obtain the standard deviation of the number of
customers in the system for a stationary arrival process
with an orderliness property, the general Equation 16
is used. To do this, it is �rst noted that both the �rst
and the second moment of an indicator random variable
are equal to the probability of its being equal to one.
In addition, according to the orderliness property, i.e.
Equation 19, dA(t) is either zero or one. Hence:

E
�
[dA(t)]2

	
= E[dA(t)]

= PfOne arrival in (t; t+ dt)g: (25)

Furthermore, from Equations 19, 20 and 22, one
obtains:

E[dA(t)] = �dt: (26)

Also, note that from Equation 26, one has:

E2[dA(t)] = (�dt)2 = o(dt): (27)

From Equations 25 and 26, one can write:

Ef[dA(t)]2g = �dt: (28)

Hence, Equations 27 and 28 give the variance of dA(t)
as:

Var[dA(t)] = �dt+ o(dt): (29)

Note that for stationary arrival processes m(v; u) =
m(v � u). Then, by conditioning on dA(u) and using
Equations 25 and 26, one can write:

E[dA(u)dA(v)] = d[m(v � u)]�du: (30)

Hence, using Equations 26, 29 and 30 in Equation 16,
one will have:

�2(t)=�+2�

tZ

1

tZ

u

G(t�u)G(t�v)d[m(v�u)��v]du:
(31)

Let y = t� u and x = v� u, then, Equation 31 can be
written as:

�2(t) = �+ 2�

1Z

0

yZ

0

G(y)G(y � x)d[m(x) � �x]dy:
(32)

When the interarrival times of customers are i.i.d
random variables, m(x) is the renewal function.
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Thus, knowing that the arrival process is station-
ary and has an orderliness property, the standard devi-
ation of the number of the customers in the system can
be obtained by Equation 32. Clearly, for the Poisson
arrival process m(x) = �x and from Equation 32, once
again, Equation 18 is obtained for M=G=1.

Having information on the �rst moment (�) and
the second moment (Equation 32) of the number of
customers in an in�nite channel queue, one might
choose the number of parallel channels equal to the
mean plus a few standard deviations.

CONCLUSIONS

In this paper, an in�nite channel queuing system is
considered in which the arrival process has a general
probability structure and the service times are i.i.d.
random variables. Two general formulae were derived,
one for the �rst moment and the other for the second
moment on the number of the customers in the system
in a steady-state situation. Then, the formulae were
employed in two special cases of the arrival processes;
the �rst arrival process being Poisson and the second
one a stationary process and the mean and the standard
deviation of the number of the customers in the system
were obtained. Given the mean and the standard de-
viation of the number of the customers, one can easily
obtain the approximate number of parallel servers in
an in�nite channel queuing system such that there is

a negligible probability for formation of a queue of
customers waiting to enter the service.
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