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Uni�ed Multiple-Access Performance

Analysis of Several Multirate

Multicarrier Spread-Spectrum Systems

R. Nikjah1 and M. Nasiri-Kenari�

A uni�ed multiple-access performance analysis and comparison of three multicarrier spread-
spectrum multiple-access schemes, namely, MC-CDMA (Multicarrier Code-Division Multiple-
Access), MC-FH (Multicarrier Frequency Hopping) and a hybrid of the above systems, called
DS-MC-FH (Direct-Sequence MC-FH), in a multirate environment, where each user can have
several multirate services, is provided. In MC-CDMA and MC-FH systems, users and their diverse
services are di�erentiated by means of only one kind of signature code. However, in a DS-MC-
FH scheme, di�erent users and di�erent services of the same user are distinguished through
the �rst and second signature codes, respectively. The performance of the above systems are
evaluated and compared, using a uni�ed structure in synchronous and asynchronous nonfading
and synchronous correlated Rayleigh fading channels, with a Maximum-Ratio Combining (MRC)
receiver. The near-far e�ect on the systems' performance is also investigated. The (second)
signature in the MC-CDMA (DS-MC-FH) scheme is considered to be either a Pseudo-Noise
(PN) sequence or a Walsh code. The authors analyses indicate that MC-CDMA systems with
Walsh codes outperform the other schemes in di�erent synchronous and asynchronous channels.
DS-MC-FH systems with Walsh codes always surpass MC-FH systems. Furthermore, all of the
schemes, except synchronous MC-CDMA systems with Walsh codes, are susceptible to a near-far
e�ect with an MRC receiver

INTRODUCTION

In combination with Code-Division Multiple-Access
(CDMA) techniques, multicarrier modulation has at-
tracted a lot of attention in the past decade for future-
generation wireless communications, on account of
countering channel frequency selectivity and remov-
ing Inter-Symbol Interference (ISI), while supporting
high-rate applications, providing frequency diversity,
collecting the entire energy spread in the frequency do-
main and simple implementation through Fast-Fourier-
Transformation (FFT) techniques [1].

On the one hand, di�erent con�gurations of
Multi-Carrier CDMA (MC-CDMA) schemes, as com-
binations of Direct-Sequence CDMA (DS-CDMA) and
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Orthogonal Frequency-Division Multiplexing (OFDM),
were developed after 1993 [1,2]. The performance
and design of such systems have been investigated
extensively in di�erent nonfading and fading channels
since then [2-8]. However, limited research exists in
the area of asynchronous MC-CDMA (for some results,
see [6-8]). In this paper, MC-CDMA systems are
considered as introduced in [2].

On the other hand, Frequency-Hopping Spread-
Spectrum (FH-SS) techniques, in combination with
OFDM or MC-CDMA, recently received consider-
able attention and, as a result, various Multi-
Carrier Frequency-Hopping (MC-FH) systems were
proposed [9-11,12]. MC-FH schemes, on account of
fewer subcarriers transmitted in each symbol interval,
have smaller Peak-to-Average-Power Ratio (PAPR)
than MC-CDMA systems, making the implementation
of MC-FH systems less complex than MC-CDMA
schemes, especially in the uplink, where linear ampli-
�cation with a large dynamic range at the transmitter
side is not viable. The MC-FH system studied in this
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paper is the one described in [12,13], wherein the fre-
quency spacing between diversity hopping subcarriers
in distinct frequency subbands is implemented in such
a way as to diminish the correlation of fading gains
on di�erent subcarriers, while keeping the region of
hopping for a single subcarrier so small that Phase-
Shift Keying (PSK) modulation and coherent detec-
tion are practically feasible [12]. This scheme was
developed from a frequency-diversity spread-spectrum
system, called FD-SS [14], for countering band-limited
jamming interference [12]. It has been examined in a
single-user fading channel [13], as well as in multiuser
nonfading and fading channels with and without cod-
ing [15].

In this paper, a multirate environment, depicted
in Figure 1, is introduced, in which each user has two
signature codes, the �rst of which serves to distinguish
the user from the other Nu � 1 users and the second
of which discriminates � services of the same user.
The results of exploring such environments are also
directly applicable to any system supporting indepen-
dent groups of users, in which di�erent groups can be
viewed as virtual users and the users of each group can
be interpreted as di�erent services of the same virtual
user.

In MC-CDMA and MC-FH systems, there is only
one kind of signature code serving as both the �rst
and second signatures. This explains the rationale for
proposing a third multicarrier system as a hybrid of the
previous two, called DS-MC-FH (Direct-Sequence MC-
FH), possessing, as its �rst and second signature codes,
the kinds of signature in MC-FH and MC-CDMA
schemes, respectively. The �rst signature, as in a MC-
FH system, determines the set of subcarriers allotted
to a user, each belonging to one frequency subband.
The second signature, the length of which is equal to
the number of subcarriers in each transmission interval,
modulates the subcarriers selected by the �rst signa-
ture, as in a MC-CDMA system, providing di�erentia-
tion between services of the same user. Figure 2 shows
the transmission frequency pattern in a DS-MC-FH
system. The whole frequency band is partitioned into
Ns subbands, each of which has exactlyNh subcarriers.

d
(k;q)
i is the ith data bit of the qth service of user k;
T is the symbol duration excluding any guard interval;n
h
(k;q)
m;i

oNs�1

m=0
and

n
c
(k;q)
m

oNs�1

m=0
are the �rst and second

signatures of the qth service of user k at transmission

interval i, respectively. Contrary to h
(k;q)
m;i 's, c

(k;q)
m 's

are identical for di�erent data bit intervals. Figure 2

Figure 1. Distinguishing between di�erent users and services by the �rst and second signature codes.

Figure 2. Transmission frequency pattern for service q of user k at the ith symbol interval.
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is simply particularized to thoroughly describe MC-

CDMA systems, if one sets all h
(k;q)
m;i 's to 0 and Nh

to 1, and MC-FH schemes, if one sets all c
(k;q)
m 's to 1.

Note that in contrast to a DS-MC-FH scheme, h
(k;q)
m;i 's

are independent for di�erent q's in a MC-FH system.
In fact, in a MC-FH system, there is only one kind
of signature code utilized for di�erentiating users and
their di�erent services alike, resulting in independent

h
(k;q)
m;i 's for di�erent k's and q's. However, in a DS-

MC-FH scheme, the �rst signature is identical for all
services of the same user and the services of each
user are distinguished by the second signature code,

fc
(k;q)
m g.

Figure 3 illustrates the di�erences between three
systems having the same bandwidth, with two services
for each user (� = 2). In MC-CDMA (Figure 3a),
all services of all users share the entire frequency
band, with the frequency spacing between adjacent
subcarriers the same as that in OFDM. Di�erent
services are discriminated through distinct c

(k;q)
m 's. In

Figure 3. Transmission of two coded services over 12=T
bandwidth.

MC-FH (Figure 3b), all the services carried in the
system are di�erentiated by means of assigning to

each an independent set fh
(k;q)
m;i g, called a hopping

pattern that selects from di�erent frequency subbands

the subcarriers on which d
(k;q)
i is transmitted. In the

DS-MC-FH (Figure 3c) scheme, however, the hopping

pattern, fh
(k;q)
m;i g, is common to all services of the same

user.
It is worth noting that in all three schemes, the

whole modulated subcarriers of the ith data bit of all
the same user's services are added together, in order to
be transmitted simultaneously in a one-bit interval. It
is also assumed that each symbol, like OFDM symbols,
has head and tail guard intervals with a cyclic extension
in the intervals so as to avoid ISI problems.

In this paper, the multiple-access performance of
the above three multicarrier schemes are evaluated in
synchronous and asynchronous nonfading and in syn-
chronous correlated Rayleigh fading channels, consider-
ing near-far e�ects and the results are compared. Even
though only the use of Pseudo-Noise (PN) and Walsh

codes for the signature, fc
(k;q)
m g, in MC-CDMA and

DS-MC-FH systems is addressed, the authors analysis
can be utilized to easily include any other code. The
uni�ed approach adopted for the performance analysis
in this paper is based on the characteristic function
method, applied previously to the performance evalu-
ation of MC-FH, DS-CDMA, ultra-wideband impulse
radio and MC-CDMA by [8,15-17], respectively. To
the best of the authors knowledge, this paper is
the �rst one considering and comparing the multiple-
access performance of the two well-known schemes,
namely MC-CDMA and MC-FH, and a generalization
of these two schemes, called DS-MC-FH, in various
multirate channels. The results indicate that MC-
CDMA schemes with Walsh codes outperform other
systems in all cases under consideration. Also, DS-
MC-FH systems with Walsh codes always surpass MC-
FH systems. Note that, although frequency hopping
schemes do not show any performance superiority over
MC-CDMA systems, in some applications, such as
military and jamming environments, they are much
more plausible.

The paper is organized as follows. In the following
sections, �rst, the uni�ed structure and expressions of
the above schemes are described and then, performance
analyses of the systems in nonfading and fading chan-
nels, respectively, are provided. After that, numerical
results are presented and, �nally, the conclusions are
presented.

SYSTEM DESCRIPTION

MC-CDMA, MC-FH and DS-MC-FH systems can be
described in a uni�ed way, provided that, referring to
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Figure 2, the following equalities are taken into account
for each system:

MC-CDMA: h
(k;q)
m;i = 0; for all k; q;m and i;

and Nh = 1; (1a)

MC-FH: c(k;q)m = 1; for all k; q and m; (1b)

DS-MC-FH: h
(k;q)
m;i = h

(k)
m;i; for all k; q;m and i:

(1c)

Note that h
(k;q)
m;i = 0 and c

(k;q)
m = 1 mean the lack of a

frequency hopping signature and MC-CDMA signature
codes, respectively. Also, it is noticeable that in a
MC-CDMA scheme, each frequency subband is reduced

to a single frequency subcarrier. h
(k;q)
m;i 's, for di�erent

k's, q's, m's and i's in MC-FH, and for di�erent
k's, m's and i's in DS-MC-FH, are assumed to be
independent identically distributed (iid) random vari-
ables with uniform distribution over the integer interval

[0; Nh � 1]. fc
(k;q)
m gNs�1

m=0 's in MC-CDMA and DS-MC-
FH are supposed to be either PN or Walsh codes.

In the former case, c
(k;q)
m 's are iid random variables

taking on values �1 and +1 with equal probability.

In the latter case, fc
(k;q)
m gNs�1

m=0 's, for di�erent k's and
q's, are di�erent Walsh codes. Let f0 through fNs�1
be the base frequencies of non-overlapping frequency
subbands (see Figure 2). For the authors' analysis, it is
assumed that the whole frequency band is contiguous,
i.e:

fm2 � fm1 = (m2 �m1)Nh=T;

where:

0 � m1 < m2 � Ns � 1: (2)

The whole occupied bandwidth, by the system, is,
thus, obtained as B = BW=T , where BW = NsNh

is the normalized bandwidth. Hence, considering
Equation 1a, for a constant bandwidth, as can be seen
in Figure 3, MC-CDMA systems have Nh times as
many transmitted subcarriers in a symbol interval as
the other two systems do, where it is supposed that
both the hopping schemes have Nh subcarriers in each
frequency subband.

In all of the following analyses, without any loss of
generality, it is assumed that each service of each user
has a bit rate of 1=T . Multirate services, with bit rates
higher than 1=T , are assigned more than one signature
code.

Transmitted Signal

The baseband Binary-Phase-Shift-Keying (BPSK)
transmitted signal for the qth service of user k can be

expressed as follows:

s
(k;q)
l (t) =

X
i

Ns�1X
m=0

q
2S

(k)
i d

(k;q)
i c(k;q)m exp

�
j[2�

(t� t
(k)
t � iT )(fm + h

(k;q)
m;i =T ) + �

(k)
i ]
	

p(t� t
(k)
t � iT ); (3)

where d
(k;q)
i is the data bit of the qth service of user k at

the ith symbol interval; d
(k;q)
i 's, for di�erent k's, q's and

i's, are iid random variables and take on values �1 and

+1 with the same probability; S
(k)
i is the transmission

power for each subcarrier of user k at symbol interval

i; t
(k)
t and �

(k)
i are the kth user's transmitter time

origin and the kth user's transmission phase at the ith
interval, respectively; and p(t) is the unit pulse in the
time interval (0; T ).

Model of Channel

An Additive-White-Gaussian-Noise (AWGN) nonfad-
ing or a slowly correlated Rayleigh fading channel is
considered. The former case can be achieved from
the latter by setting all fading coe�cients to one.
Therefore, fading channels are concentrated upon. The
length of each symbol is conventionally considered to
be so much greater than the maximum delay spread
of the channel that the presumption of 
at fading
over each subcarrier is satis�ed. As a result, the
mth subcarrier of the qth service of user k at the
ith symbol interval experiences a 
at fading gain,

g
(k;q)
m;i = H(k)(fm + h

(k;q)
m;i =T ), which is assumed to be

constant over at least one symbol interval. H(k)(f)
is the baseband frequency response of the transmission

channel for the kth user. If g
(k;q)
i is de�ned as a column

vector with components
h
g
(k;q)
m;i

iNs�1

m=0
, then, g

(k;q)
i is

a Proper Complex Gaussian (PCG) random vector
characterized by its probability-density function (pdf)

f
g
(k;q)
i

(g) =
exp(�gHC�1g)

�Ns det(C) (\H" denotes Hermitian

operation and \det" stands for determinant) [18],

where C, de�ned as E
n
g
(k;q)
i g

(k;q)H
i

o
(Ef:g denotes

expectation), is the frequency covariance matrix of the
channel. Assuming that the channel is Wide-Sense
Stationary Uncorrelated Scattering (WSSUS) and the
frequency band of the system is contiguous, the entries
of C are obtained as follows:

Cm1;m2 = �H(�fm1;m2)

=

Z +1

�1
�h(�) exp(�j2��fm1;m2�)d�;

with �fm1;m2 = Nh(m1 �m2)=T; (4)
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where �h(�) and �H(f) are the power delay pro�le
(pdp) and the frequency autocorrelation function of
the channel, respectively. �fm1;m2 is the (averaged)
frequency spacing between the m1th and m2th subcar-
riers. The following exponential model is adopted for
the pdp [13]:

�h(�) =
�=Tm

1�(1+�) exp(��)
[exp(���=Tm)�exp(��)]

for 0 < � < Tm; (5)

where � is a decaying factor and Tm is the maximum
delay spread of the channel.

Received Signal, Receiver Structure and

Decision Variable

The baseband received signal can be written as follows:

rl(t) =
X
i

Nu�1X
k=0

��1X
q=0

Ns�1X
m=0

q
2R

(k)
i g

(k;q)
m;i d

(k;q)
i c(k;q)m

exp
�
j[2�(t�t(k)r � iT )(fm + h

(k;q)
m;i =T )+�

(k)
i ]
	

p(t� t(k)r � iT ) + z(t); (6)

where Nu is the number of active users and R
(k)
i

denotes the received power at each subcarrier of user k

at the ith symbol interval. t
(k)
r is the receiver time

origin and is equal to t
(k)
t + t

(k)
d , where t

(k)
d is the

reception delay for the kth user. g
(k;q)
m;i 's are assumed

to be so normalized that E

����g(k;q)m;i

���2� = 1 and z(t)

is the complex zero-mean AWGN with double-sided
power spectral density N0.

A single-user Maximum-Ratio-Combining (MRC)
receiver is considered, as shown in Figure 4, with

w
(k;q)
m;i = g

(k;q)�
m;i c

(k;q)
m , where \*" stands for conjugation.

Let the signal of the 0th service of user 0 at the 0th
symbol interval be the signal of interest. Without any

loss of generality, it is assumed that �
(0)
0 = 0 and

t
(0)
r = 0. Also, it is supposed that t

(k)
r belongs to the

interval (0; T ). With these assumptions, the following
expression for the decision variable normalized byq
2R

(0)
0 is attained:

D =d
(0;0)
0

Ns�1X
m=0

���g(0;0)m;0

���2

+Re

(
��1X
q=1

Ns�1X
m=0

g
(0;0)�
m;0 g

(0;q)
m;0 d

(0;q)
0 c(0;0)m c(0;q)m

Figure 4. Baseband equivalent MRC receiver for the qth
service of user k at the ith symbol interval.

:
1

T

Z T

0

exp

"
j2�

 
h
(0;q)
m;0

T
�
h
(0;0)
m;0

T

!#
dt

)

+Re

(
Nu�1X
k=1

��1X
q=0

Ns�1X
m=0

Ns�1X
�=0

q
R
(k)
�1=R

(0)
0 g

(0;0)�
�;0 g

(k;q)
m;�1d

(k;q)
�1 c(k;q)m c(0;0)�

:
1

T

Z t(k)r

0

exp

(
j2�

" 
fm +

h
(k;q)
m;�1
T

!
(t� t(k)r )

�

 
f� +

h
(0;0)
�;0

T

!
t

#
+ j�

(k)
�1

)
dt

+

q
R
(k)
0 =R

(0)
0 g

(0;0)�
�;0 g

(k;q)
m;0 d

(k;q)
0 c(k;q)m c(0;0)�

�
1

T

Z T

t
(k)
r

exp

(
j2�

" 
fm +

h
(k;q)
m;0

T

!
(t� t(k)r )

�

 
f� +

h
(0;0)
�;0

T

!
t

#
+ j�

(k)
0

)
dt

)
+ n;

(7)

where Ref:g stands for the real part. Also, n represents
the noise term, which, conditioned on the fading

coe�cients g
(0;0)
m;0 's, is a zero-mean Gaussian random

variable with variance equal to the following:

�2
njg(0;0)m;0

=

 
Ns

Ns�1X
m=0

���g(0;0)m;0

���2
!
=2
b;

where : 
b = Ns
bs with 
bs =
R
(0)
0 T

N0
; (8)


bs is the received Signal-to-Noise Ratio (SNR) per bit
per diversity branch and 
b is the total received SNR
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per bit. In deriving Equation 7, it is assumed that
fm:T , for any m, is an integer.

Detection and Probability of Bit Error

Detection at the receiver is accomplished by comparing
the decision variable, D, with the threshold, zero.
Consequently, the Bit-Error Rate (BER) of the system
is obtained as follows:

Pbe = Pr
n
D < 0jd

(0;0)
0 = +1

o
= FU (0);

where : U , Dj+ 1; (9)

FU (u) stands for the cumulative-distribution function
(cdf) of U and Dj+1 denotes the decision variable, D,
conditioned on transmitting +1.

PERFORMANCE EVALUATION IN

NONFADING CHANNELS

Synchronous Systems

For a synchronous nonfading system, there is g
(k;q)
m;i = 1,

t
(k)
r = 0 and �

(k)
i = 0, for any k, q, m and i. Now,

from Equations 7 and 8, with the de�nition of U in
Equation 9, one obtains the following:

U = Ns +MAI + n with MAI =

Nu�1X
k=0

MAI(k);
(10a)

where:

MAI(0) =

��1X
q=1

MAI(0;q);

MAI(k) =

��1X
q=0

MAI(k;q) for k � 1;

and:

MAI(k;q) =

Ns�1X
m=0

q
R
(k)
0 =R

(0)
0 d

(k;q)
0 c(0;0)m c(k;q)m �

(k;q)
m;0

for any k and q; (10b)

in which:

�
(k;q)
m;i = �

h
h
(k;q)
m;i � h

(0;0)
m;0

i
; (10c)

also,

�2n = N2
s =(2
b): (10d)

MAI(k) is the interference, due to user k, and MAI(k;q)

is the interference term caused by the qth service of

user k. n in Equation 10a is the Gaussian noise term
with zero mean and variance that can be obtained
from Equation 10d. � in Equation 10c indicates

the Kronecker delta. As the h
(k;q)
m;i 's are iid random

variables, with uniform distribution over the integer

interval [0; Nh � 1], from Equation 10c, the �
(k;q)
m;i 's are

iid random variables with the following distribution:

�
(k;q)
m;i =

(
0; with probability � , 1� 1=Nh

1; with probability � , 1=Nh

: (11)

From Equations 10, assuming that R
(k)
0 = R for any k,

MAI is a discrete random variable with the pdf given
by the following:

fMAI(x) =

PX
a=�P

pMAI[a]�(x� a);

with P = Ns(Nu� � 1); (12)

where pMAI[a] is the probability function of MAI. From
Equations 9 and 10, one can write the following:

Pbe = PrfMAI + n < �Nsg: (13)

The pdf of the \interference plus noise" is obtained as
follows:

f(MAI+n)(x) = fMAI(x)
�fn(x)

=

PX
a=�P

pMAI[a]fn(x � a); (14)

where fn(x) is the pdf of n. Now, the BER from
Equations 13 and 14 can be acquired as follows:

Pbe =

Z �Ns

�1
f(MAI+n)(x)dx

=

PX
a=�P

pMAI[a]Q

�
Ns + a

�n

�
; (15)

in which Q(x) =
R +1
x

1p
2�

exp(�w2=2)dw is the

Gaussian-tail function. In the Appendix, using the
theorem proposed in [19], it is proven that:

pMAI[a] =
1

L

2L�1X
k=1
k odd

MMAI(e
jk�=L)e�jak�=L;

with L = 2P + 1; (16)

where MMAI(z) is the moment-generating function
(mgf) of MAI. The exact BER is then obtained using
Equations 15 and 16.
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Now, for studying the near-far e�ect, it is assumed

that R
(k)
0 = R for k � 1 and that R

(0)
0 < R.

In other words, all the interfering users' signals are
received with the same power which is greater than the
desired signal power. From Equations 10, supposing

that A ,

q
R=R

(0)
0 is an integer (note that this

assumption, not a�ecting the �nal result, is made only
for computational simplicity and does not impose any
restriction on the subsequent analyses), one can follow
the same above steps to reach Equations 15 and 16,
except that P = Ns[� � 1 + A(Nu � 1)�]. Also, note

that, in this case, MAI(0) is the same as the MAI(0)with

R
(0)
0 = R, but, MAI(k) for k � 1 is A times the MAI(k)

with R
(0)
0 = R.

For performance evaluation, one needs only to
calculate MMAI(k) (z). As the MAI(k)'s are indepen-
dent, MMAI(z) is easily acquired from the product of
all MMAI(k) (z)'s. In the succeeding sections, assuming

that R
(0)
0 = R, MMAI(k)(z) is evaluated for MC-FH

and DS-MC-FH systems. MMAI(k)(z) for MC-CDMA
schemes is derived from that of DS-MC-FH systems, if
Nh = 1 is set.

MC-FH System

For this scheme, combining Equations 1b and 10 results
in:

MAI(0) =

��1X
q=1

MAI(0;q);

and:

MAI(k) =

��1X
q=0

MAI(k;q) for k � 1; (17)

with:

MAI(k;q) = d
(k;q)
0

Ns�1X
m=0

�
(k;q)
m;0 :

MAI(k;q), conditioned on d
(k;q)
0 , is the sum of Ns iid

random variables, i.e., the d
(k;q)
0 �

(k;q)
m;0 's. Therefore,

from Equations 10 and 11 and the fact that the
MAI(k;q)'s are independent, one has following:

MMAI(0)(z) =

��1Y
q=1

MMAI(0;q) (z)

=

��1Y
q=1

n
Prfd

(0;q)
0 =�1gM

MAI(0;q)jd(0;q)0 =�1(z)

+ Pr
n
d
(0;q)
0 = +1

o
M

MAI(0;q)jd(0;q)0 =+1
(z)
o

=

��1Y
q=1

n1
2
M

MAI(0;q)jd(0;q)0 =�1(z)

+
1

2
M

MAI(0;q) jd(0;q)0 +1
(z)
o

=

�
1

2
(�+ �z�1)Ns +

1

2
(�+ �z)Ns

���1
;

and, in the same way,

MMAI(k) (z) =

�
1

2
(�+ �z�1)Ns +

1

2
(�+ �z)Ns

��

for k � 1; (18)

where � = 1� � is equal to 1� 1=Nh.

DS-MC-FH System

In this system, from Equation 1c, h
(k;q)
m;i and, thus,

�
(k;q)
m;i de�ned in Equation 10c, do not depend on

q and are, thereby, represented by h
(k)
m;i and �

(k)
m;i,

respectively. From Equation 10c, it can easily be

concluded that �
(0)
m;i's are all equal to 1. Consequently,

from Equations 10 one can write the following:

MAI(0) =

��1X
q=1

d
(0;q)
0

Ns�1X
m=0

c(0;0)m c(0;q)m ; (19a)

and:

MAI(k) =

Ns�1X
m=0

MAI(k)m

=

Ns�1X
m=0

�
(k)
m;0

��1X
q=0

d
(k;q)
0 c(0;0)m c(k;q)m ;

for k � 1; (19b)

PN Second-Signature Codes

In this case, MAI(0), given in Equation 19a, consists of
(��1)Ns iid random variables taking on values �1 and
+1 with the same probability. Therefore, one has the
following:

MMAI(0) (z) =

�
z�1

2
+
z

2

�(��1)Ns

: (20)

From Equations 11 and 19b, it is apparent that MAI(k)m

is zero, with probability � = 1 � � = 1 � 1=Nh;
otherwise, it is equal to the sum of � independent uni-
formly distributed binary-valued (with values �1 and

+1) random variables. Also, �
(k)
m;0's are independent
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for di�erent m's. Therefore, one easily obtains the
following:

MMAI(k)(z) =

(
�+ �

�
z�1

2
+
z

2

��)Ns

;

for k � 1: (21)

Walsh Second-Signature Codes

For this case, as any two di�erent Walsh codes are
orthogonal, MAI(0) (see Equation 19a) completely van-
ishes. Now, from Equation 19b, one has the following:

MAI(k) =

��1X
q=0

MAI(k;q);

with:

MAI(k;q) =

Ns�1X
m=0

d
(k;q)
0 c(0;0)m c(k;q)m �

(k)
m;0;

for k � 1: (22)

Three cases are considered. First, if Nu = 1, then, no
multiple-access interference exists and, therefore,

Pbe = PrfU < 0g = Prfn < �Nsg = Q

�
Ns

�n

�
: (23)

Second, if Nu > 1 and � = 1, one only needs to
calculate the mgf of MAI(k) for k � 1, which is equal
to MAI(k;0), de�ned in Equation 22. Let E1 be the

set of k's (k � 1), for which [c
(k;0)
m ]Ns�1

m=0 = [c
(0;0)
m ]Ns�1

m=0 ,
with the cardinality of u and let E2 be the complement
of E1 with respect to the set f1; 2; � � � ; Nu � 1g. On

the one hand, MAI(k2E1) has a form just similar to
MAI(k;q) for MC-FH schemes (see Equation 17), so,
from Equation 18, one has the following:

MMAI(k2E1)(z) =
1

2
(� + �z�1)Ns +

1

2
(�+ �z)Ns :

(24)

On the other hand, for k 2 E2, fd
(k;0)
0 c

(0;0)
m c

(k;0)
m gNs�1

m=0

has an equal number of �1's and +1's. As �
(k)
m;0's

for di�erent m's are independent, with the statistics
given in Equation 11, from Equation 22, the following
is obtained:

MMAI(k2E2)(z) = (�+ �z�1)Ns=2(�+ �z)Ns=2: (25)

Therefore, from Equations 24 and 25, one obtains the
following:

MMAI(z) =
n1
2
(�+ �z�1)Ns +

1

2
(�+ �z)Ns

ou
n
(�+ �z�1)(�+ �z)

oNs
2 (Nu�1�u)

: (26)

Now, substituting Equation 26 in Equation 15 and
applying the result to Equation 16 leads to Pbeju
(the BER conditioned on u). Before investigating
how to determine the unconditional bit-error rate, Pbe,
from the conditional bit-error rate, Pbeju, �rst, the
remaining case, i.e., Nu > 1 and � > 1 is considered.
For this case, as the exact analysis is very complicated
and cumbersome, a Gaussian distribution approxi-
mation is utilized for the multiple-access-interference
term, according to the Central-Limit Theorem (CLT).
Under this assumption, using Equation 13 one has the
following:

Pbe=Q

�
Ns

�(MAI+n)

�
with �2(MAI+n)=�2MAI+�

2
n;

(27)

�2MAI is the variance of MAI and �2n is obtained from
Equation 10d. In order to evaluate �2MAI, it is assumed
that there are u distinct pairs (k; q), for any of which,
the qth service of user k has the same Walsh code as the
desired service. For such pairs, the mgf of MAI(k;q) has
a form just the same as the one given in Equation 24.
The variance of MAI(k;q) is then obtained, via the
second derivative of the mgf evaluated at z = 1 as
Ns�(Ns�+�). For the other services (with a di�erent
Walsh code from that of the desired service), the mgf

of MAI(k;q) has a form exactly similar to the mgf in
Equation 25. Then, the variance of such MAI(k;q)'s is
acquired as Ns��. Consequently, one can write:

�2MAIju=ufNs�(Ns�+�)g+f(Nu�1)��ug(Ns��):
(28)

Note that MAI(0) is equal to zero and that one has
a total of (Nu � 1)� interfering services. u services
have the same code as the desired service and (Nu �
1)� � u services have di�erent codes from the desired
service. Equations 27 and 28 lead to Pbeju, i.e., the
BER conditioned on u. Note that when taking the
near-far e�ect into account, the variance in Equation 28

is easily multiplied by A2, where A =

q
R
(k)
0 =R

(0)
0 .

For extracting Pbe from Pbeju, it is assumed that
the Walsh codes are assigned to di�erent services in
the system in a cyclic fashion. In other words, noting
that there are totally Ns distinct Walsh codes used
in the system, if e, de�ned as k� + q, is a counting
index for the services in the system, the services with
indices e0 and e0+Ns have the same Walsh codes and
any Ns services with sequential indices have distinct
Walsh codes. With this assignment and de�ning r
as mod(Nu�;Ns), where \mod" denotes the remainder
operation, three cases can be considered: 1) Nu� � Ns

implies that u = 0 and Pbe = Pbej(u = 0); 2)
Nu� > Ns and r = 0 implies that Pbe = Pbej(u =
Nu�=Ns � 1); 3) Nu� > Ns and r 6= 0 implies that
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u = u1 = [Nu�=Ns] � 1, with probability 1 � r=Ns

and u = u2 = [Nu�=Ns], with probability r=Ns, where
[x] denotes the largest integer not greater than x;
therefore, Pbe = (1� r=Ns)Pbeju1 + (r=Ns)Pbeju2.

Asynchronous Systems

For an asynchronous nonfading system, using Equa-
tions 2 and 7, and the de�nition of U in Equation 9,
one obtains the following:

U = Ns +MAI + n;

where:

MAI =

Nu�1X
k=0

MAI(k); (29a)

which:

MAI(0) =

��1X
q=1

MAI(0;q);

with:

MAI(0;q) =

Ns�1X
m=0

d
(0;q)
0 c(0;0)m c(0;q)m �

(0;q)
(m;0):

Also,

MAI(k) = MAI
(k)
�1 +MAI

(k)
0 for k � 1;

where:

MAI
(k)
�1 =

��1X
q=0

MAI
(k;q)
�1 ;

with:

MAI
(k;q)
�1 =

Ns�1X
m=0

Ns�1X
v=0

MAI
(k;q)
�1;m;� ;

which:

MAI
(k;q)
�1;m;� =

q
R
(k)
�1=R

(0)
0 d

(k;q)
�1 c(k;q)m c(0;0)�

:

8>>>>>>>><
>>>>>>>>:

� (k) cos
n
�
(k)
�1 � 2�� (k)(Tfm + h

(k;q)
m;�1)

o
for

(
m = �; and

h
(k;q)
m;�1 = h

(0;0)
�;0

sinf�(k)�1
�2��(k)(Tf�+h

(0;0)
�;0

)g�sinf�(k)�1
�2��(k)(Tfm+h

(k;q)
m;�1

)g
2�f(m��)Nh+h(k;q)m;�1

�h
(0;0)
�;0 g

otherwise (29b)

Also, one has MAI
(k)
0 =

P��1
q=0MAI

(k;q)
0 with

MAI
(k;q)
0 =

PNs�1
m=0

Ns�1P
�=0

MAI
(k;q)
0;m;� , which:

MAI
(k;q)
0;m;� =

q
R
(k)
0 =R

(0)
0 d

(k;q)
0 c(k;q)m c(0;0)�

:

8>>>>>>>><
>>>>>>>>:

(1� � (k)) cos
n
�
(k)
0 � 2�� (k)(Tfm + h

(k;q)
m;0 )

o
for

(
m = �; and

h
(k;q)
m;0 = h

(0;0)
�;0

sinf�(k)0
�2��(k)(Tfm+h

(k;q)
m;0

)g�sinf�(k)0
�2��(k)(Tf�+h

(0;0)
�;0

)g
2�f(m��)Nh+h(k;q)m;0 �h

(0;0)
�;0 g

otherwise (29c)

:

� (k) in Equation 29 is equal to t
(k)
r =T and is assumed to

be uniformly distributed in the interval (0; 1). Also, the

� (k)'s are independent. The �
(k)
i 's for di�erent k's are

independent uniformly distributed random variables in

the interval (��; �). MAI
(k)
�1 and MAI

(k)
0 are parts of

MAI(k) related to �1th and 0th transmission intervals
of user k, each consisting of MAI

(k;q)
�1 's and MAI

(k;q)
0 's

(interference terms due to di�erent services of user k),

respectively. MAI
(k;q)
�1;m;� is the interference caused

by the mth subcarrier of the qth service of user k
at the �1th symbol interval in the �th subcarrier

of the desired service. MAI
(k;q)
0;m;� denotes the same

interference caused by the 0th symbol interval of user k.
Note that the variance of the noise term in this case
is the same as in the case of synchronous channels
(see Equation 10d). As the exact BER calculation for
the asynchronous case is very complicated, the BER is
derived based on the Gaussian distribution for the MAI
using Equation 27. Thus, one only needs to compute
the variance of the MAI, which is obtained as follows:

�2MAI = �2MAI(0) +

Nu�1X
k=1

��1X
q=0

(�2
MAI

(k;q)
�1

+ �2
MAI

(k;q)
0

):
(30)

Now, by variable changes, � 0(k) = 1� � (k) and �
0(k)
0 =

��
(k)
0 in Equation 29c and noting that � 0(k) and �

0(k)
0

have the same statistics as � (k) and �
(k)
0 , respectively

and, assuming that R
(k)
�1 = R

(k)
0 and Tfm is an integer

for any m, it can be easily realized that �2
MAI

(k;q)
�1

and

�2
MAI

(k;q)
0

are equal. Hence, from Equation 30, in order

to derive the BER of each system using Equation 27,
one only needs to calculate �2

MAI(0)
and �2

MAI
(k;q)
�1

for

R
(k)
�1 = R

(0)
0 , which are computed in the succeeding

sections. For considering the near-far e�ect, it is

su�cient to multiply �2
MAI

(k;q)
�1

(computed for R
(k)
�1 =

R
(0)
0 ) by R

(k)
�1=R

(0)
0 .
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MC-CDMA System

For this scheme, applying Equations 1a and 29b sim-
pli�es to:

MAI
(k;q)
�1;m;� = d

(k;q)
�1 c(k;q)m c(0;0)�

:

8<
:
� (k) cos(�

(k)
�1 � 2�� (k)Tfm); for m=�

sin(�
(k)
�1�2�� (k)Tf�)�sin(�(k)�1�2�� (k)Tfm)

2�(m��) otherwise
:
(31)

PN Signature Codes

Just as in the synchronous case, MAI(0), in this case,
is equal to the sum of (��1)Ns independent uniformly
distributed binary-valued random variables and, there-
fore, one has �2

MAI(0)
= (� � 1)Ns. From Equation 31,

it can simply be realized that MAI
(k;q)
�1;m;� 's, for dif-

ferent m's and �'s, are uncorrelated and, therefore,
from Equation 29, �2

MAI
(k;q)
�1

is easily obtained as

Ns�1P
m=0

Ns�1P
�=0

�2
MAI

(k;q)
�1;m;�

. From Equation 31, after some

simple statistical calculations, �2
MAI

(k;q)
�1;m;�

is acquired

as follows:

�2
MAI

(k;q)
�1;m;�

=

(
1=6 for m = �
1

4�2
1

(m��)2 ; otherwise
: (32)

Walsh Signature Codes

In this case, just as in the synchronous case, MAI(0)

vanishes and �2
MAI(0)

= 0. In contrast to the PN-

signature case, MAI
(k;q)
�1;m;� 's in Equation 31, for dif-

ferent m's and �'s, are correlated. After some lengthy
calculations, which are dropped here for briefness, the
following result is easily attained:

�2
MAI

(k;q)
�1

=
Ns

6
+

1

4�2

Ns�1X
m=0

Ns�1X
v=0
v 6=m

:
c
(k;q)
m c

(k;q)
� (2c

(0;0)
m c

(0;0)
� � 1)� c

(0;0)
m c

(0;0)
� + 1

(m� �)2

+
1

8�2

Ns�1X
m=0

Ns�1X
�1=0
�1 6=m

Ns�1X
�2=0
�2 6=m
�2 6=�1

:
c
(0;0)
�1 c

(0;0)
�2 +c

(k;q)
�1 c

(k;q)
�2 +4c

(k;q)
m c

(0;0)
m c

(k;q)
�1 c

(0;0)
�2

(m� �1)(m� �2)
: (33)

Hopping Systems (MC-FH and DS-MC-FH)

In hopping systems, contrary to MC-CDMA schemes,
the frequency spacing between neighboring subcarriers
is so large (this spacing in hopping systems on average
is Nh times greater than that of MC-CDMA schemes)

that the subcarrier spectra can well be assumed to

be disjoint. In other words, MAI
(k;q)
�1;m;� can well

be assumed to be zero for m 6= �. For shortness,

hereafter, MAI
(k;q)
�1;m;m is denoted by MAI

(k;q)
�1;m. Now,

from Equation 29b, one has the following:

MAI
(k;q)
�1

Ns�1X
m=0

MAI
(k;q)
�1;m; (34a)

with:

MAI
(k;q)
�1;m = d

(k;q)
�1 c(k;q)m c(0;0)m

:

8>>>>><
>>>>>:

� (k) cos
n
�
(k)
�1 � 2�� (k)(Tfm + h

(k;q)
m;�1)

o
for h

(k;q)
m;�1 = h

(0;0)
m;0

sinf�(k)�1
�2��(k)(Tfm+h

(0;0)
m;0 )g�sinf�(k)�1

�2��(k)(Tfm+h
(k;q)
m;�1)g

2�(h(k;q)m;�1
�h

(0;0)
m;0 )

otherwise (34b)

DS-MC-FH with PN Second-Signature Codes

For this scheme, MAI(0) is just the same as in MC-
CDMA systems with PN codes and, therefore, �2

MAI(0)

is obtained as (� � 1)Ns. As the MAI
(k;q)
�1;m's are

uncorrelated, �2
MAI

(k;q)
�1

is equal to the sum of the

�2
MAI

(k;q)
�1;m

's over all m's. Knowing the statistics of the

d
(k;q)
i 's, h

(k;q)
m;i 's, c

(k;q)
m 's, � (k)'s and �

(k)
i 's and noting

that h
(k;q)
m;�1 is equal to h

(0;0)
m;0 with probability 1=Nh, it

can easily be shown that the following is true:

�2
MAI

(k;q)
�1;m

= �

�
1

6

�

+ �

8><
>:

1

4�2N2
h

Nh�1X
a=0

Nh�1X
b=0
b6=a

1

(a� b)2

9>=
>; : (35)

From Equation 35, �2
MAI

(k;q)
�1;m

does not depend on m,

so, �2
MAI

(k;q)
�1

is obtained as Ns:�
2

MAI
(k;q)
�1;m

.

DS-MC-FH with Walsh Second-Signature Codes

In this case, MAI(0) vanishes like the synchronous case
and one only needs to compute �2

MAI
(k;q)
�1

, which, from

Equation 34a, is acquired as follows:

�2
MAI

(k;q)
�1

=

Ns�1X
m=0

�2
MAI

(k;q)
�1;m

+

Ns�1X
m1=0

Ns�1X
m2=0
m2 6=m1

E
n
MAI

(k;q)
�1;m1

:MAI
(k;q)
�1;m2

o
;
(36)
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�2
MAI

(k;q)
�1;m

is obtained just the same as in Equa-

tion 35. However, in contrast to the PN-signature

case, MAI
(k;q)
�1;m's for di�erent m's are correlated and,

from Equation 34b, after some simple statistical calcu-
lations, one obtains the following:

E
n
MAI

(k;q)
�1;m1

:MAI
(k;q)
�1;m2

o
=

�c
(k;q)
m1 c

(0;0)
m1 c

(k;q)
m2 c

(0;0)
m2

4�2N3
h

:
nNh�1X

a=0

Nh�1X
b=0

�Nh

f(m1 �m2)Nh + a� bg2

+

Nh�1X
a=0

Nh�1X
b1=0

Nh�1X
b2=0
b2 6=b1

:
�

f(m1�m2)Nh+��b1gf(m1�m2)Nh+a�b2g

o
:
(37)

MC-FH

In this case, MAI(0) is the same as the corresponding
term in synchronous MC-FH and, thus, �2

MAI(0)
is

obtained as (� � 1)Ns�(Ns� + �) from Equation 18.
Applying Equation 1b in Equation 34b, �2

MAI
(k;q)
�1

is

attained, via Equation 35 to 37, with c
(k;q)
m 's all set

to one.

PERFORMANCE EVALUATION IN

FADING CHANNELS

For the performance evaluation in fading channels, syn-
chronous single-service (� = 1) systems are considered.

From Equations 7 and 8, with R
(k)
0 = R

(0)
0 for any k,

one can write the following:

U = S +MAI + n; where S = g(0)Hg(0);

MAI = Re[I ]; I = g(0)H
Nu�1X
k=1

d(k)V(k)g(k);

and:

�2njg(0) =
Ns

2
b
g(0)Hg(0); (38a)

with:

g(k) ,
h
g
(k)
0 g

(k)
1 � � � g

(k)
Ns�1

iT
;

V(k) , diag
n
�
(k)
0 ; �

(k)
1 ; � � � ; �

(k)
Ns�1

o
;

�(k)m , c(0)m c(k)m �(k)m : (38b)

�2
njg(0) is the variance of n conditioned on g(0). In

Equation 38 and throughout this section, as � is equal
to 1 and all the parameters are related to 0th symbol
intervals, the indices, q and i, have been dropped. Note

that �
(k)
m has the same de�nition and statistics as given

in Equations 10c and 11, with q = 0 and i = 0. From

Equation 38, U conditioned on g(0) and �
(k)
m 's is a

Gaussian random variable with the following mgf:

M
U jg(0);�(k)m

(s)=MSjg(0)(s)MMAIjg(0);�(k)m
(s)Mn(s):

(39)

Using the mgf of a Gaussian variable, from Equa-
tions 38 and 39 and having that MAI is a zero-mean
variable, one has the following:

M
U jg(0);�(k)m

(s) = exp

(
g(0)H

�
sINs

+
s2

4

Ns


b
INs

�
g(0)

+
s2

2
�2
MAIjg(0);�(k)m

)
; (40)

wherein INs
is the identity matrix of order Ns.

�2
MAIjg(0);�(k)m

is, obviously, half of the variance of

I jg(0); �
(k)
m , de�ned in Equation 38a. Now, using the

fact that g(k)'s are independent, one can write as
follows:

�2
MAIjg(0);�(k)m

=
1

2
E
n
IIH jg(0);V(k)

o

=
1

2
g(0)

"
Nu�1X
k=1

d(k)V(k)Efg(k)g(k)HgV(k)d(k)

#
g(0)H

=
1

2
g(0)

 
Nu�1X
k=1

V(k)CV(k)

!
g(0)H

=
1

2
g(0)(X �C)g(0)H ;

where:

X =

Nu�1X
k=1

X(k) and :

X(k) ,

h
�
(k)
0 �

(k)
1 � � � �

(k)
Ns�1

iT h
�
(k)
0 �

(k)
1 � � � �

(k)
Ns�1

i
:
(41)

C and V(k) are de�ned in Equations 4 and 38b,
respectively. \�" is the matrix-matrix dot product
operator and the superscript, \T", stands for trans-
position. Note that X(k) �C is, in fact, the covariance
matrix of V(k)g(k), conditioned on V(k). As for any
given V(k), V(k)g(k) is a Gaussian random vector and
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the unconditional distribution of V(k)g(k) as Gaussian
distribution is well approximated. Hence, removing

conditionality on �
(k)
m from Equation 40, for calculating

MUjg(0)(s), one needs only to compute �2
MAIjg(0) . From,

Equation 41 one easily obtains the following:

�2MAIjg(0) =
1

2
g(0)(EfXg �C)g(0)H : (42)

From the de�nition of V(k) and X in Equations 38b
and 41, respectively, it is easy to show that:

EfXg = (Nu � 1)��INs
+ �2EfLLT g; (43)

where � = 1 � � = 1=Nh and L is an Ns � (Nu � 1)

matrix with its entry, (m; k), equal to c
(0)
m c

(k)
m . From

Equations 40 (after removing conditionality on v
(k)
m ),

42 and 43, one obtains the following:

MUjg(0)(s) = exp
n
g(0)HQ(s)g(0)

o
;

with:

Q(s) = sINs
+
s2

4

(
�2EfLLT g �C

+

�
(Nu � 1)�� +

Ns


b

�
INS

)
: (44)

As g(0) is a PCG random vector, taking the expectation
of Equation 44 results in the following [20]:

MU (s) = det fINs
�Q(s)Cg�1 : (45)

In cases where Equation 45 leads to an explicit expres-
sion for the pdf of U , the BER can be computed by
evaluating the cdf of U at zero. Otherwise, one can
make use of the Beaulieu series [21] in the following
manner, in order to obtain the BER directly from the
mgf of U :

Pbe = PrfU < 0g = lim
L!1
N!1

FU (0;L;N);

where:

FU (0;L;N) =
1

2
�

NX
n=1
n odd

2

n�
Im

�
MU

�
j
2n�

L

��
:
(46)

Imf:g denotes the imaginary part. From the error
bounds given in [21], FU (0;L; 100), with L = j�uj +
20�U , where �U and �U are the mean and standard
deviation of U , respectively, is a very good approxima-
tion of Pbe.

In the subsequent sections, the mgf of U is
evaluated for the hopping schemes. The pertinent
expressions for MC-CDMA are derived from those of
DS-MC-FH systems by substituting Nh = 1.

DS-MC-FH

PN Signature Code

In this case, from the statistics of c
(k)
m , it can simply be

shown that EfLLT g = (Nu � 1)INs
. Therefore, from

Equations 44 and 45 one has the following:

MU (s)=det

�
INs

�

�
s+

1

4
[�(Nu�1)+Ns=
b] s

2

�
C

�
�1:
(47)

Assuming that the eigenvalues of C are distinct, after
some simpli�cations, one obtains the following:

MU (s) =M�
U (s) +M+

U (s);

where:

M�
U (s) =

Ns�1Y
m=0

 
4��1m

�(Nu � 1) + Ns


b

!
Ns�1X
m=0

am;�1
s� pm;�1

;

and:

M+
U (s) =

Ns�1Y
m=0

 
4��1m

�(Nu � 1) + Ns


b

!
Ns�1X
m=0

am;+1

pm;+1 � s
:

�m's are eigenvalues of C. pm;�1, pm;+1, am;�1 and
am;+1 are given by:

pm;�1 = 2

 
1�

s
1 +

�
�(Nu � 1) +

Ns


b

�
=�m

!�1
;

and:

am;�1 =
1

pm;+1 � pm;�1

Ns�1Y
n=0
n6=m

1

(pm;�1 � pn;�1)(pn;+1 � pm;�1)
: (48)

As C is positive de�nite, �m's are all positive. There-
fore, pm;�1's are all negative and pm;+1's are all
positive. Since the region of convergence of MU (s)
includes the axis s = j!, M�

U (s) and M+
U (s) are the

right-sided and left-sided parts of MU (s), respectively
and, therefore, the BER is equal to M�

U (0). After
some algebraic manipulations, the BER is obtained as
follows:

Pbe =
1

2

(
1�

Ns�1X
m=0

�
1+

�
�(Nu � 1)+

Ns


b

�
=�m

�� 1
2

Ns�1Y
n=0
n6=m

(1� �n=�m)
�1
)
:

(49)

For Nh = 1 and Nu = 1, the result in Equation 49 is
in compliance with the one obtained in [3].
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Walsh Signature Code

In this case, L is deterministic and EfLLT g = LLT .
An explicit expression for the BER cannot be derived,
so, the Beaulieu series is exploited (see Equation 46)
for extracting the probability of error.

MC-FH

For this system, all the elements of L are equal to 1, so,
from Equations 44 and 45, one obtains the following:

MU (s)=det

(
INs

�
h
s+

1

4

�
��(Nu�1)

+
Ns


b

�
S2
i
C�

�2

4
(Nu � 1)s2C2

)�1
;
(50)

which, following similar steps from Equations 47 to 49,
gives the BER as:

Pbe=

Ns�1Y
m=0

4

�m [��(Nu�1)+Ns=
b+�m�2(Nu�1)]

Ns�1X
m=0

�
�
am;�1
pm;�1

�
;

where am;�1 is as given in Equation 48, with the
parameters pm;�1 and pm;+1 de�ned as:

pm;�1 =

2

�m

(
1�

s
1+�2(Nu�1)+��1m

�
��(Nu�1)+

Ns


b

�)�1
:

(51)

For studying the near-far e�ect, one needs only to mul-
tiply the variance of the multiple-access interference by
R=R(0) (like the analyses in nonfading channels) and
modify Equations 38 to 51, accordingly.

NUMERICAL RESULTS

In this Section, some numerical results are provided
to compare the three multicarrier schemes, namely,
MC-CDMA, MC-FH and DS-MC-FH, in nonfading
and fading channels. Comparisons are made within
a constant bandwidth. In all the graphs presented
(Figures 5 to 13), Ns, Nh, Nu, �, BW and SNR
signify the number of frequency subbands, the number
of subcarriers in each frequency subband, the number
of users, the number of services of each user, the
normalized bandwidth (product of Ns and Nh) and

b (as de�ned in Equation 8), respectively. Also, Tr,
de�ned as Tm=T (Tm is the maximum delay spread
used in Equation 5), denotes the relative delay spread

of the channel. � is the decaying factor in Equation 5.
(P ) and (W ) stand for the PN and Walsh schemes,
respectively. The pair, (x; y), after the name of a
hopping system, indicates Ns and Nh for that system
(Ns = x and Nh = y). In the cases where Walsh codes
are utilized, the cyclic assignment of Walsh codes have
been used, as described in the section of `MS-MC-FH
System'.

Figures 5 to 7 present plots of the BER versus the
number of active users in di�erent systems, separately.
For comparison, in synchronous cases, the plots of the
BER have also been included, based on the Gaussian
distribution assumption for the multiple-access inter-
ference using Equation 27. The exact and Gaussian
plots for MC-CDMA and DS-MC-FH systems with
PN codes almost coincide. This uniformity is justi�ed
when noting that the multiple-access interference term
generally contains sums of iid random variables and
the CLT is, thus, applicable. The same is true for
asynchronous environments and, therefore, the validity
of the Gaussian approximation is retained. From

Figure 5. Performance of synchronous and asynchronous
MC-CDMA systems in nonfading channels versus Nu with
constant BW, SNR and �.

Figure 6. Performance of synchronous and asynchronous
MC-FH systems in nonfading channels versus Nu with
constant Ns, Nh, SNR and �.
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Figure 7. Performance of synchronous and asynchronous
DS-MC-FH systems in nonfading channels versus Nu with
constant Ns, Nh, SNR and �.

these �gures, except in the case of MC-CDMA with
Walsh codes (where the synchronous system, as a result
of a complete orthogonality between signatures, out-
performs the asynchronous system), an asynchronous
scheme (because of the lower variance of the multiple-
access interference term) has a better performance of
up to two orders of magnitude than the synchronous
scheme. Also, from Figure 7, both the synchronous
and asynchronous DS-MC-FH systems with PN codes,
perform much worse than the DS-MC-FH systems with
Walsh codes, verifying the inappropriateness of PN
codes as the second signature in DS-MC-FH schemes.

In Figure 8, the performance of MC-FH schemes
versusNs is evaluated when the bandwidth is constant.
The phenomenon of having an optimum value for Ns

is observed for synchronous and asynchronous cases
alike. In fact, an increase in Ns, on the one hand,
would enhance the frequency diversity of the system
and, on the other hand, would augment the variance
of the multiple-access interference dramatically as a
result of modulating all the transmitted subcarriers

Figure 8. Performance of synchronous and asynchronous
MC-FH systems in nonfading channels versus Ns with
constant BW, SNR, Nu and �.

with an identical uncoded bit, as shown in Figure 2,
thus, causing a great correlation among the signals
carried by the transmitted subcarriers. For example,
in the synchronous case, according to Equation 18, the
variance induced, due to a single interfering service,
is equal to Ns�(Ns� + �), which is a fourth-degree
function of Ns, when taking the bandwidth constant.
As a result of the above trade-o�, the existence of an
optimum Ns is foreseeable. Similar results in fading
environments, dropped here due to space limitation,
retain this phenomenon. An optimum Ns, however,
will not be obtained for the other schemes and the
performance is constantly improved by increasing Ns.
In the other schemes, in contrast to MC-FH systems,
the data stream is coded by a signature before being
sent over transmitted subcarriers.

In Figures 9 and 10, the three schemes have been
compared in asynchronous nonfading and synchronous
fading channels, respectively. From these �gures, it
can be realized that the systems with Walsh codes
perform much better than the systems with PN codes.

Figure 9. Performance of di�erent asynchronous systems
in nonfading channels versus Nu with constant BW, Ns,
Nh, SNR and �.

Figure 10. Performance of di�erent synchronous systems
in fading channels versus Nu with constant BW, Ns, Nh,
SNR, Tr and �.
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Also, MC-CDMA schemes with PN codes outperform
MC-FH schemes. MC-CDMA systems with PN codes
always perform better than DS-MC-FH schemes with
PN codes. However, the performance of the latter ob-
viously approaches that of the former, as Ns increases
for a given bandwidth. This can be seen in Figure 10,
where the DS-MC-FH system with PN codes almost
has the same performance as the MC-CDMA system
with PN codes.

For studying the near-far e�ect, Figure 11

presents the plots of the BER versus R
(k)
0 =R

(0)
0 in dB

for di�erent systems in a synchronous fading environ-
ment. From this �gure, it is apparent that, for the
single-user MRC detector under consideration, except
for MC-CDMA schemes with Walsh codes, where the
orthogonality among the codes is retained under the
near-far e�ect but not in fading environments, the
other systems are not near-far resistant. Note that
in DS-MC-FH schemes with Walsh codes, the hopping
itself rather distorts the orthogonality among the codes.

In Figures 12 and 13, the performances of di�erent

Figure 11. Performance of di�erent synchronous systems
in fading channels considering the near-far e�ect with
constant BW, Ns, Nh, SNR, Nu, Tr and �.

Figure 12. Performance of di�erent asynchronous
systems in nonfading channels versus SNR with constant
BW, Ns, Nh, Nu and �.

Figure 13. Performance of di�erent systems in fading
channels versus Tr with constant BW, �, SNR, Nu and �.

systems are compared versus SNR and Tr in nonfading
and fading channels, respectively. The performance
priority order of di�erent schemes is much clearer in
these �gures. These �gures show a noticeable im-
provement in performance by augmenting SNR or Tr.
In DS-MC-FH schemes with PN codes, the multiple-
access interference term is dominant in relation to the
noise term. The variance of the MAI term that is
obtained from Equation 30 as Ns(� � 1) + 2(Nu �
1)Ns��

2

MAI
(k;q)
�1;m

with �2
MAI

(k;q)
�1;m

given in Equation 35,

is quite large, with respect to the variance of the noise
term, which is equal to N2

s =(2
b) (see Equation 10d).
Therefore, as can be seen in Figure 12, the performance
improvement with SNR in the DS-MC-FH system is
not as evident as that of the other schemes. In
Figure 13, an increase in Tr is simply translated into
narrowing the spectrum of the pdp of the channel
described in Equation 5, thereby, diminishing the corre-
lation between the fading gains at adjacent transmitted
subcarriers.

CONCLUSION

A uni�ed multiple-access performance analysis of sev-
eral multimedia multicarrier CDMA systems in syn-
chronous and asynchronous nonfading and synchronous
correlated Rayleigh fading channels, considering the
near-far e�ect, was provided. The authors analysis
has �rst indicated that MC-CDMA systems have the
best performance. Furthermore, it has been found
that the schemes with Walsh codes outperform the
other systems in both nonfading and fading channels.
Also, it has been realized that for the single-user
MRC detector considered in this paper, MC-CDMA
schemes with Walsh codes have considerable robustness
against the near-far e�ect in synchronous channels.
However, the other systems are vulnerable to the near-
far e�ect.
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APPENDIX

In this Appendix, the result given in Equation 16 is
derived. According to [19], if X is an integer-valued
random variable with cdf FX [n] = EfX � ng and mgf
MX(z) = EfzXg, then:

FX [n] = lim
L!1

FX [n;L];

with:

FX [n;L] =
1

2L

2L�1X
k=0

�L[k]MX

�
ejk�=L

�
e�jnk�=L;

(A1)

where:

�L[k] =

8><
>:
L k = 0

1 + j cos[k�=(2L)] k odd

0 otherwise

; (A2)

and, furthermore, one has the following error bounds
[19]:

�PrfX > L+ ng � FX [n]� FX [n;L]

� PrfX � �L+ ng: (A3)
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Now, if pX [n] is the probability function of X(pX [n] =
PrfX = ng), from pX [n] = FX [n] � FX [n � 1] and
Equations A1 to A3, one may easily conclude that:

pX [n] = lim
L!1

pX [n;L];

where:

pX [n;L] =
1

L

2L�1X
k=1
k odd

MX

�
ejk�=L

�
e�jnk�=L; (A4)

with the following error bounds:

�PrfjX � nj > Lg � pX [n]� pX [n;L]

� Pr fjX � nj � Lg : (A5)

Therefore, if pX [n] is nonzero for a �nite set of
integers, then, choosing a su�ciently large L re-
sults in pX [n;L] = pX [n]. Now, as pMAI[a] is
zero for jaj greater than P = Ns(Nu� � 1) (see
Equation 12), one has pMAI[a] = pMAI[a; 2P + 1]
for any a with jaj � P ; thus, Equation 16 is de-
rived.


