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Hesearch Note

Extended Energy Approach to Propagation
Problems in General Anisotropic Media

S. Khorasani' and B. Rashidian*

In this article, a new general approach has been presented for exact and efficient extraction
of eigenpolarizations in anisotropic electromagnetic media with arbitrary constitutive relations.
It is shown that the plane wave propagation eigenpolarizations in a linear homogeneous time-
independent anisotropic media without free sources, can be obtained through extremizing the
difference between stored electric and magnetic energies as a variational functional. It is
demonstrated that at these stationary points the wave equation Is satisfied by showing that each
of the Maxwell curl equations may be obtained by using the other equation as a constraint.
Furthermore, it is proven that the theorem holds for extrema of the stored electric energy
independently, when the medium is magnetically isotropic. It is concluded that when at least
one of the permittivity and permeability tensors are scalar, both the total of and the difference
between electric and magnetic energies are extremized simultaneously. As an example, the
eigenpolarizations in a non-magnetic anisotropic medium with optical activity are obtained.

INTRODUCTION

With the advent of new optical materials, the theo-
ries dealing with the corresponding optical properties
Recent devel-
oprients in composite technology have brought forth

have become extremely complicated.

possibilities to fabricate artificial anisotropic media
with desirable dielectric and magnetic characteristics
and much research has been conducted over the past
decade on the electromagnetic theory of such complex
media [1-12]. Anisotropic photonic crystals have found
applications in the switching of light [13] and new
antennae [14].  Chiral and bianisotropic materials
are now extensively studied for their important role
in metamaterials and in the future generations of
optical devices [13]. Metamaterials, as another type
of complex media, have found numerous extraordinary
potential applications [16]. Since all of these mate-
rials are anisotropic, the knowledge of eigenmodes or
eigenpolarizations is essential for study of the effects
associated with light propagation, including refraction,
transmission, waveguiding and coupling phenomena.
The propagation of plane waves in an anisotropic
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medium usually leads to an eigenvalue problem, the
solution of which determines the propagation eigen-
modes or eigenpolarizations. Propagation eigenmodes
are those modes which preserve their polarization dur-
ing propagation across the anisotropic medium. The
problem of light propagation in electrically anisotropic
miedia has been considered previously in a number of
reported works [17,18].  'T'he dispersion relation for
general anisotropic medium has been obtained for non-
diagonal permittivity and permeability tensors [19,20].
The eigenmodes of uniaxial bianisotropic media have
been found [21-24] and biorthogonal relations for elec-
tromagnetic eigenwaves in bianisotropic media have
been studied [25].  ln [26] the dispersion equation
of a lossless anisotropic dielectric-magnetic medium
in the principal system of coordinates, in which the
permittivity and permeability tensors become diagonal,
has been considered and some of its basic properties
have been discussed. Lo another paper [27], a lossy
bianisotropic medium has been investigated and con-
ditions for occurrence of an optical axis have been
derived. A variational approach has been reported to
demonstrate the uniqueness of the solutions of Maxwell
equations by using the difference between total-space
stored energies [28-30].  The application of energy
methods in electromagnetics is also investigated in
another report [31].

Here, it is shown that the eigenpolarizations
extremive an energy functional, given by the difference
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between stored electric and magnetic electromagetic
energies.  Therefore, the eigenpolarizations could be
more efficiently found by extremizing a variational
expression rather than solving an eigenvalue problemn.
Consequently, the eigenpolarizations characterize those
directions along which a first order change in the
direction vector makes a second order change in the
difference between the stored electric and magnetic
energies.

Furthermore, it is proven that this theorem holds
for the extrema of the stored electric energy, as well as
the stored magnetic energy, independently, when the
mediun is magnetically or electrically isotropic. Lo this
case, not only the difference between stored electric and
magnetic energies but, also, their sum, are extremized
by propagation eigenpolarizations. Therefore, when
at least one of the permittivity and permeability
tensors are scalar, both the total of and difference
between electric and magnetic energies are extremized
simultaneously. Otherwise, energy would be the only
funetional extremized by the eigenpolarizations.

It should be pointed out that this theorem can be
regarded as a reduced form of the Lagrangian formu-
lation of the macroscopic electromagnetic theory [21]
for a source free and space-time harmonic excitation.
A simiilar form obtained by integration of the energy
difference functional over the total space has been used
in the complex Poynting theorem for time-harmonic
electromagnetic fields [28,32,33] to show that the total-
space time-average stored energy divides equally in the
electric and magnetic parts. Thus, the extremum value
of the energy difference functionals is expected to be
vero, as discussed.

ENERGY FUNCTIONAL

The plane wave time-harmonic Maxwell equations,
in a source-free tiune-independent linear homogeneous
anisotropic media, are:

L’ \

s x E=—B, (1)
i ’

L’ \

sx H=—--D, (2)
i ’

in which s is a unit vector in the direction of propa-
gation, ¢ is the speed of light in a vacuum and n is
the refraction index. Also, D, E, B and H are complex
phasors related through constitutive relations [34].
The constitutive relations for the case of plane
waves can be simplified as D = zE and B = pH,
in which £ and p, being constants of medium, are
permittivity and permeability tensors, respectively.
These tensors become Hermitian in the absence of loss.
If the medium is supposed to be lossless, the direction
vector, 8, would be pure real. As a matter of fact,
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effects such as optical activity and chirality may be
incorporated into these tensors as antisymmetric purley
imaginary terms, which do not affect its Hermitian
property. If the medium is lossy and optically non-
active, however, the corresponding tensors are synumnet-
ric and imaginary. Some of the fundamental properties
of these tensors are discussed in detail in [33].

The eigenpolarizations can be obtained by corn-
bining Maxwell equations as:

2

sx s x B) + —cE = 0, (3)
=

sx e s x H) + L:,,MH =0, (4)
=

which result in algebraic eigenvalue problems. ln gen-
eral, the above equations have non-trivial solutions for
somie values of the refraction index, n, and directions
of field vectors E and H, which are referred to as
the eigenmodes or eigenpolarizations. The eigenpolar-
izations may be obtained by straightforward algebraic
calculations, which take the form of simple expression
when the medium is magnetically isotropic [17,18].

Here, it will be shown that the eigenpolarizations
extremive an energy functional, given by the difference
between stored electric and magnetic electromagetic
energies Uy and Uy, respectively. That would mean
that the eigenpolarizations characterize those direc-
tions, along which a first order change in the direction
vector, s, makes a second order change in the difference
hetween U, and U,,.

When the permittivity and permeability tensors
£ and p are symmetrice, this functional is expressed by:

1 1

t/ =-ED - -B.H. (
2 2

[T}
—

If there are effects, such as optical activity, so that the
permittivity and permeability tensors are Hermitian,
tine-average stored energies must be used. Lo this case,
the functional takes the following form:

1 1 .
V=m{-ED*"—-—-BH",. 6
(B0 - B (5

Furthermors, it is proven that this theorem holds for
the extrema of the stored electric energy, U, as well as
stored magnetic energy, U,,, independently, when the
mediun is magnetically or electrically isotropic. Lo this
case, not only the difference between stored electric and
magnetic energies but, also, their sum, are extremized
by propagation eigenpolarizations. Therefore, when
at least one of the permittivity and permeability
tensors are scalar, both the total of and difference
between electric and magnetic energies are extremized
simultaneously. Otherwise, only the energy difference,
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as suggested by either Equation 5 or 6, is extremized
by the eigenpolarizations.

As an application of this method, propagation
eigenpolarizations, corresponding to an optically ac-
tive, magnetically isotropic medium, are obtained in
agreement with previously reported results [1R].

EXTREMA OF ENERGY FUNCTIONAL

The process of extremizing the stored energy fune-
tional, /) is supposed to be subject to one of the
Maxwell curl equations as a constraint. Here, Equa-
tion 1 is chosen. This special choice obviously does
not destroy the generality of the problem, if someone
considers the inherent duality of electric and magnetic
fields in Maxwell equations.  Firstly, it is supposed
that the permittivity and permeability tensors are
symmetric (they may have imaginary parts). Next,
the situation is extended to the case of a Hermitian
permittivity tensor,

Using the method of Lagrangian multipliers [36],
the final functional would be:

o1 1 e .
U=_ED--BH+A. (s. <E--B), (7)
2 2 "
in which A is a vector Lagrangian multiplier, to
bhe determined. Also, the last terms in parentheses
represent the constraint, which should be squal to zero
at the extrema of the functional.

It is seen that the orthogonality of s and B, as
required by Maxwell divergence law, v.B(r,t) = 0,
is maintained by Maxwell equation as the constraint.
Theretore, since the vectors E and H can be, respec-
tively, expressed in terms of D and B the above energy
functional, £/, is mainly a function of two independent
variables. Moreover, this functional is second-order in
its variables D and B.

Setting the partial derivatives of the energy fune-
tional, £/, with respect to D and B, to zero results ins

ot 1. A .
B_D_E_C’ b.’(_-"—U, (8}
at e .
—=—-H--A=0. 2
7B H n v =0 )

Here, the symmetric property of the permittivity and
permeability tensors has been taken into account.
From Equation 9, one has:

A=-"H. (10)

¢
luserting the above value for the Lagrangian multiplier,

A, in Equation 8 gives:

E+ Lels w H =0, (11)
[ :
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which can be further simplified to:
D=—-"4xH. (12)
e :

However, this is the second Maxwell curl equation
(Equation 2), as expected to be satisfied by plane wave
propagation eigenpolarizations. 1t should be pointed
out that Equation 12 also maintains s.D = 0, which is
equivalent to Maxwell divergence law, v.D(r,f) = 0,
for a source-free medium. This completes our assertion,
as stated above.

The above statement may be easily extended to
the case of lossless media with Hermitian permittivity
and permeability tensors, by choosing the complex
funetional:

| . 1 . _ e "
U =-ED" - -B.H" +A. (s. <E--B). (13)
4 4 "

Here, the real part operator is omitted as introduced
in Equation 6, since its extrema also characterize the
eigenpolarizations as discussed below and, thus, this is
so for its real part. Taking derivatives, with respect to

D and B, similarly results im

ou- 1o, L .
d—D—gE — £ b.’(_-"—U, (14}
au 1., ¢ N

Again, by noting s = s*, the second Maxwell equation
results through extremizing the complex functional.
Therefore, the time-average energy difference fune-
tional Equation 6 lies at its stationary point when both
Maxwell curl equations are applicable,

As an important final remark, it may be noticed
that upon multiplying Equation 1 by H and Equation 2
by K, the identity E.D = B.H follows, which holds
for any linear medium. 1t is pointed out that this
is a direct result of the complex Poyoting theorem
for plane waves [28,32,33].  'This means that the
instantaneous electromagnetic energy of a traveling
plane wave and, hence, also its time-average value
is divided equally between the electric and magnetic
parts. Therefore, at the stationary point of the energy
funectionals Equations 5 and 6, one has {7 = 0.

Finally, as may be observed in the functionals
Equations 5 and 6, the symmetry between the electric
and magnetic fields is preserved. This symunetry is
responsible for this equal division of total stored energy.
Of course, this symmetry breaks down in cases such
as in the presence of free electrical charges. 1o such
situations, one expects, therefore, that the extrema
of the above mentioned functionals could not further
characterize the eigenpolarizations, since no plane wave
solutions could further exist.
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NON-MAGNETIC MEDIA

Here, it is shown that a closely related theorem [37]
still holds for a non-magnetic anisotropic medium with
i = php, if one takes the extremizing energy functional
as either:

1 . . .

or1
1 . . .
U= 7ED" +Xi(s D) + As(D.D* —1), (17)

instead of Equation 5 or 6, respectively. Similarly, A,
and Ay are Lagrangian multipliers. The first constraint
is inposed by the assumption of a source-free medium
and the second is imposed to prevent the solution
relaxing into a trivial case.

By following similar steps to the functional Equa-
tion 3, the extrema of Equation 16 are found through
the following equation:

D = gyn?[E — (s.E)s]. (18)

Here, the index of refraction, rn, is obtained through
either:

s, DD .

gpn’ = E—, (19}
orl

, D.D* n

gpn” = ED (20)

Using the identity s x (s xE) = (s.E)s—E, it is deduced
that Equation 18 is the same as the wave equation
for the electric field (Equation 3). 'This equivalency
holds only if the permeability tensor is scalar, otherwise
the above functionals would lead to incorrect results.
Therefore, the eigenpolarizations lie at the extrema
of Equation 16 or 17. Moreover, it can be noticed
that by Equation 19 or 20, the extremum values of
the functionals (Equation 16 or 17) coincide with the
extrema of saln_z. Therefore, since there exists,
generally, two distinet real eigenvalues for refraction
index, n, one of the extrema should be a maximum
while the other is a minimum.

Here, it should be remarked that the above
theorem, with a real symmetric permittivity tensor,
is mathematically equivalent to the method of index
ellipsoid [17]. Lo this method, the eigenpolarizations
are found by extremizing the functional

=0

This equivalency may be easily investigated by using
Equation 19 and the functional Equation 16.
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It is worth pointing out that the addition of
constraints in Equation 16 or 17 to the functionals
(Equation 7 or 13) has no effect, since the orthogonality
of direction vector, s, and field vector, D, as the first
constraint, is maintained by the extrema of Equation 7
or 13, Furthermore, the magnitude of D has no effect
on their extremum values, which are equal to vero.

Hence, when the medium is non-magnetic, both
the stored electric and magnetic energies are extrem-
ized at once and, therefore, this is so for their sum or
difference. The equal of this theorem for electrically
isotropic media with anisotropic magnetic properties is
also true. Finally, if the medium is, at least, either
magnetically or electricaly isotropic, the sum of the
electric and magnetic energies is extremized, together
with each of the independent energy functions and their
difference.

EXAMPLE: OPTICAL ACTIVITY

Lu this section, the eigenpolarizations of a gyro-electric
miediun, that is, an optically active medium without
magnetic anisotropy p = py, are obtained. In such
media, the constitutive relations are given by [17,18]

—:E+i5,G x E, (22)
B = uyH, (23)

in which G = G's is referred to as the Gyration vector.
The parameter ¢ is a direction dependent parameter
obtainable from the relation G = g;; 5;5;, where gy; are
the elements of the Gyration tensor, g being a constant
of medium. The above relation may be rewritten as

= £'E where £" is a Hermitian tensor with elements
gl = giptenl € S5 with €454 being the permutation
pseudo-tensor [36]. Therefore, the above theorem for
the functional (Equation 17) applies.

To study eigenpolarization, the system of coordi-
nates is rotated such that the propagation direction
vector lies on the z-axis, that s, s = z. Both
constraints in Equation 17 may be satisfied by choosing
vector D = cos 8 exp(iy)sin 8y, Here, 8 and v are two
independent variables expressing the inclination and
phase shift between components of vector D, There-
fore, by insertion of this value for D in Equation 17,
hoth constraints may be dropped and the functional
takes the following forms

Ui(t,y) = Zil vos> f + Zij sin” ¢
£y £y

(2 +mp)eos ¥ — e —rpay)siny
450

cos @ sin
(24)
where 1; are components of the dimensionless inverse

permittivity or impermeability tensor, 5 = g2 1.
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Upon differentiating with respect to v and #, set-
ting the derivatives to zero and noting the Hermiticity
of 1, one has:

v = Zima, (25)

_Imef (26)

i — e

tan 26 = 2

The above equation has two distinet solutions for
¢, differing by the amount of /2. 'Therefore, the
corresponding  eigenpolarization are orthogonal, i.e.
D,.Dj = 0.

Now, the ellipticity of the eigenpolarizations,
defined by & = b/a, is considered, where a and b are
the radii of the ellipse traced by field vector D in time
domain across the normal plane to direction vector s,
These radii are given by [18]:

u? = cos? B cos® ¢ + sin? #sin® o

+ 2cosfsinf cos v cos dsin g, (27)
b = cos” #sin” & + sin” # cos” &

— 2cos#sinf cos y cos Gsin g, (28)

Here, ¢ is the inclination angle of the ellipse, which
miay be obtained from

Ry .

tan 26 = tan 26 cosy = Zﬁ. (29)

i — e

After some algebraic manipulations, one obtains the
fairly simple equation:

e = tan(f + o) tan (8 — o). (30)

Now, the triad (DY, DY, 8) is chosen as a systen of coor-
dinates, in which DY and DY are the eigenpolarizations,
in absence of optical activity, with the eigenvalues n,

2, respectively. Then, in the limit of a small
one has [18] 1y = ny? e = ny 2y = iG] ing?
and s = _qul—zngz_ lnserting these values results
in e = £tand. Using the identity tan# = (cot 26 +
V1 + cot? 20)7 1, the ellipticity, &, is obtained as:

and ey

+
%(nﬁ —ni)+ \/%(n:ﬁ —ni)? + G

& =

(31)

But this result is in perfect agreement with the known
expression obtained by direct solution of the eigenvalue
problem [18].

Finally, the exact closed form of the electric
field, E, eigenpolarizations for gyro-electric media with
anisotropic permeability tensor, p, can be shown either
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via this approach or via a direct algebraic method, to
be [38,39]:
5,

"

- ¥3|M|i—"s.[g].s + 10 |p| 2R 6 S,

N

o

S — Plules s +iCIp RS, | (32)

85— Gl s Ll s 4 iG] g8, 5,
where:
|12 = propy i

s.[1] s = pe S + py Sy + 257,

A=ALA A,

A,y = ngs..[,u].s. — Epliyfhz,

Ay = n?s.[puls — eyp e,

A, =n’s.[u]s — 2 fhis Hhy ¢ (33)

CONCLUSIONS

A new variational method has been proposed for
efficient extraction of eigenpolarizations in anisotropic
miedia with arbitrary constitutive relations. 1t has
been shown that the direction of eigenpolarizations
for plane wave solutions of Maxwell equations in an
anisotropic medium is determined by the extrema in
an energy functional. The medium has been supposed
to be linear, homogeneous and time-independent, with
electric and magnetic anisotropy. This functional is
equal to the difference between instantansous or time-
average energies of the electric and magnetic fields
when the permittivity and permeability tensors are
symmetric and pure real or Hermitian, respectively.
It is also shown that its stationary value is zero, at
which the total energy divides equally between the
electric and magnetic parts. This equal partitioning
of energy has been pointed out to be a result of a
special case of a complex Poynting theorem, due to
symietry between the electric and magnetic fields in
the source-free plane wave Maxwell equations. It is
also proven that the theorem holds for extrema of the
stored electric energy independently, when the medium
is magnetically isotropic. lo this case, not only the
difference of stored electric and magnetic energies, but
also their sum is extremized by propagation eigenpolar-
izations. It is concluded, therefore, that when at least
one of the permittivity and permeability tensors are
scalar, both the total of and difference between electric
and magnetic energies are extremized simultaneously.
Finally, the proposed variational approach is justified
through application to a non-magnetic optically active
mediumn.
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