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Power System Frequency Estimation

Based on Simulated Annealing:
A Variable Frequency Model

S.A. Soliman®, R.A. Alammari', A.H. Mantaway’ and M.E. El-Hawary*

This paper presents a new technique for measuring power system frequency, rate of change
of frequency and the voltage amplitude and phase angle using the Simulated Annealing (SA)
based optimization algorithm. The algorithm uses the digitized samples of the voltage signal
at the relay location and minimizes a cost function of the sum of the absolute error between
the actual estimated signal samples. The proposed algorithm does not need any filter or model
for the system frequency before and during the estimation process. The effects of the number
of samples, sampling frequency and harmonics contamination on the estimated parameters are

tested and discussed in the paper.

INTRODUCTION

In power system protection, power system voltage
amplitude and local frequency are very important for
frequency relaying purposes, for the Automatic Voltage
Regulator (AVR) function and the operating of Un-
interruptible Power Supplies (UPS). The widespread
use of power electronics devices in power generation,
transmssion, distribution and utilization is responsible
for corrupting voltage signal waveforms with noise
and/or harmonies. Harmonies cause operational prob-
lems in power systems, such as signal interference and
malfunction of relays, particularly in solid-state and
miicroprocessor controlled apparatus used to estimate
frequency and its rate of change. As a result, there is
a need to find a fast and accurate algorithm for mea-
suring systent frequency and voltage signal amplitude
in such an environment and for such applications [1,2].

Mauny digital techniques have been developed over
the past two decades to measure frequency and voltage
amplitude.  The required data window size varies
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between algorithms, but a feature common to most
techniques is the assumption that the voltage signal
is free of noise andfor harmounics. If the voltage signal
were corrupted by harmonics, a few periods would be
required for this measurement [3-7].

The rate of change of frequency is an important
factor in power system control, especially during sys-
tem disturbance. 1t gives an indication to the decision
maker whether to increase the generated power or shed
some of the system load [8-10].

"The orthogonal FIR. digital filter is applied in [11-
13] with a least error square algorithiu for measuring
the operating frequency of a power system. This algo-
rithm has beneficial features, including fixed sampling
rate, fixed data window size and easy implementation.,
Diserete Fourier transform with Poney’s estimation are
applied in [14] for measuring system frequency with
a variable data window to filter out the noise and
harmonics associated with the signal.

Stabic estimation algorithms have been applied for
the last three decades to estimate system frequency and
voltage phasor amplitude. The Least Error Squares
(LES) algorithm and the Least Absolute Value algo-
rithim (LAV) technique are used to estimate system
frequency and voltage phasor amplitude from digitized
samples of the voltage signal of one of the phases. Each
one of these algorithius has its own figure of merit and
is only suitable for the system it works with. Also, all
the available algorithms are either tested off-line or on-
line and they produce, in most cases, good estimates
for the purposes for which they were designed [14,15].
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The complex Kalman filter and o 8-transtor-
mation for measuring system frequency are presented
in [16]. A nonlinear state-space formulation is ob-
tained and the nonlinear equations are solved using
the extended Kalman filter. The solution is obtained
under the assumption that the three-phase voltage has
a constant frequency during the data window size.

An algorithm for frequency estimation, based
on  demodulation of two signals and  the oG-
transformation, is presented in [17]. The algorithm
in this reference demodulates the complex phasor re-
sulting from the transformation using a complex signal
with a known frequency. The resulting demodulated
signal does not contain the double frequency signal, as
does the old demodulation, deseribed in the literature,

This paper deals with measuring power system
frequency, rate of change of frequency, voltage ampli-
tude and phase angle using the simulated annealing
based optimization algorithm. The algorithm uses
samples of the voltage signal at the relay location
and minimizes a nonlinear cost function of the sum
of the absolute error between the actual and estimated
signal samples. The proposed algorithm does not need
any filter or model for the system frequency before
and during the estimation process. Effects of the
nuniber of samples, sampling frequency and harmonies
contamination on the estimated parameters are tested
and discussed in the paper.

A VARIABLE FREQUENCY MODEL,
LINEAR FREQUENCY VARIATION

Lu the following, it is assumed that the frequency of the
voltage signals has a linear variation as:

= fu+ bt (1)
where fi; is the nominal frequency 50 or 60 He and b

is the rate of change of frequency, measured by He/s.
Then:

w(ty =2af =2 fy + 2nbt. (2)
The angle of the voltage signal, in this case, is given
by

Bty = /w(t:}dt = (2nfy + mbt)t + o. (3)
The voltage signal can be written as:

v(t) = V2V sin oty = V2V sin[(2x fiy + wbt)t + o).

(4)

Equation 4 can be written at any sampls kk =
1,2...m, where m is the total number of samples in
the data window size, as

o(t)= V2V sin|(27 fuk AT + bk (A1) )+ 6] +E(k),
(2)
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where:

V the rims. of the signal amplitude,

AT the sampling time = 1/F,y F, is the sampling
frequency,

k the sampling stepy k= 1,--- e,

o the voltage phase angle,

£k)  the noise terms, which may contain
harmonics.

Equation 5 describes the voltage signal for a time-
varient frequency. I b = 0, Equation 4 becomes a
voltage signal with a constant frequency [18].

Problem Formulation

Given m samples of the voltage signal at the relay
location, these samples may, or may not, be contari-
nated with harmonics and/or noise. It is required to
estimate signal parameters, voltage amplitude, nominal
frequency f, rate of change of frequency b and phase
angle ¢, so that the sum of the absolute value of the er-
ror is minimumn, This can be expressed mathematically
as!

T

J =Y Jo(kAL)y — V2V
k=1

sin [ (27 fob AT + mbE*(AT)?) + | | (6)

The techniques used earlier tried to employ some sorts
of approximation for this cost function, like the Taylor’s
series expansion, to make this cost function linear in the
parameters and the linear programming based simplex
method is used to solve the resulting problem [1,2].
This may produce accurate estimates if the power
system frequency variation is small and close to the
noninal value, But, if the frequency variation is too
large, the estimates will be poor.

PROPOSED SA ALGORITHM

SA is a Monte Carlo techunigue for finding solutions for
optimization problems [18-24]. lu applying the SAA to
solve optimization problems, the basic idea is to choose
a feasible solution at random and, then, get a neighbor
to this solution. A move to this neighbor is performed
it it has either a better (lower) objective value or a
higher objective function value, if exp (=AE/Cp) >
R(0,1), where AE is the increase in objective value if
one moves to the neighbor, C'p is a control parameter
representing the temperature and R(0,1) is a random
number between 0 and 1. The algorithim starts with a
high value of C'p, accepting solutions of higher objective
function, which makes a diversion of the search. The
effect of decreasing C'p during the algorithin is that the
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probability of accepting an increase in the objective
function value is decreased during the search, which
intensifies the search around the local minima to find
the best solution.

The proposed algorithm is aimed to find the best
(optimal) estimate for signal amplitude, frequency and
phase angle of the power systenn, having a constant
frequency during data windows. 'lb estimmate optimal
parameters, problem is formulated as a nonlinear
optimization problem in continuous variables.

The objective criterion (function) (Egquation 3),
4, 1s chosen to minimize the sum of the absolute
value of the error between the sampling signal and
the estimated signal at all sampling time periods.
lplementation details of the SAA are given in the
following section.

The major steps of the algorithm are summarized
as follows:

Step 01 Set iteration counter I'I'R = 0. Set the ini-
tial temperature of the cooling schedule that
results in a high probability of accepting new
solutions. Initialize step sive vector, Gueps(f)
for all values of variables G(7), 1 = 1,2, 3;

Step 11 Find, randomly, initial values for the esti-
miated parameters and set it as the current
and best solution;

Step 21 Determine the error for the current estimated
paramnieters)

Step 31 Generate randomly a new estimate (new trial
solution); as a neighbor to the current solu-
tion;

Step 41 Calculate the performance index at the new
estimate;

Step 51 Perform the SAA acceptance test; to accept
or reject the trial solution (see SAA 'Test);

Step 61 Check for equilibrium at this temperature (see
Equilibrium Test). If equilibrium is reached,

go to Step 7, else, go to Step 3

Step 71 I the pre-specified maximum number of itera-
tions is reached, then stop, else, go to Step 8;

Step 81 I the step size vector values, for all variables
(Gytep) are less than a prespecified value, then
stop, else; go to Step Yy

Step 91 Update the step size vector values (see Step
Size Vector Adjustment). Decrease the tem-
perature according to the polynomial time
cooling schedule (see Cooling Schedule). Go
to Step 3.

DETAILS OF THE SAA
SAA Test

The implementation steps of the SAA test, as applied
to each iteration in the algorithm, are described as
follows [19,24]:

Step 11 At the same caleulated temperature, L‘S, apply
the following acceptance test for the new trial
solution]

Step 21 Acceptance test: If By < £, or, if exp[(E; —
E;/C)] = R(0,1), then, accept the trial solu-
tion, set X; = X; and £; = E;. Otherwise,
reject the trial solution, where X;, Xj, B;, B;
are the SAA current solution, the trial solution
and their corresponding cost, respectively;

Step 31 Go to the next step in the algorithi,

Equilibrium Test

The sequence of trial solutions generated in the SAA
at a fixed temperature is stopped as soon as ther-
modynamic equilibrium, detected by some adequate
condition, is reached. Then, the temperature and step
vectors are suitably adjusted [18,24].

The test of equilibrium is done as follows: 1f
the NIRACP (1) < N1'n and NTR (1) < N2,
then, continue at the same temperature, otherwise,
end the temperature stage, where NTRACP (1), NTR
(1) are the number of trials accepted and attempted
at temperature 1) respectively, n is the number of
variables in the problem and N1 and N2 are end
teniperature stage parameters.

Step Size Vector Adjustment

In this work, the step vector is updated jointly with
the cooling schedule temperature, according to the
acceptance rate of the attempted moves at the previous
temperature stage [18,24].  All the components are
updated simultaneously. The following steps explain
how the step vector is adjusted mathematically:

Step 11 Caleulate P(7) = NTRACP({)/N'TR(7),i =
1.~ where NTRACP (7) is the number of
trials accepted, then, variable 7 is changed.
N'TR (7) is the number of trials attempted by
changing variable 7

Step 21 If P(#) >PMAX, then, STEP(7) = STEP(#)*
STEPMAX; it P(i) <PMIN, then STEP(7) =
STEP(#)*STEPMIN, where PMAX, PMIN,
STEPMAX and STEPMIN are parameters
taken in this implementation as 0.05, 0.5, 0.8
and 1.2, respectively [19,24].
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Cooling Schedule

A finite-time implementation of the SAA can be real-
ized by generating homogenous Markov chains of finite
length for a finite sequence of descending values of the
control parameter. To achieve this, one must specify a
set of parameters that governs the convergence of the
algorithim. These parameters form a cooling schedule.
The parameters of the cooling schedules arer An initial
value of the control parameter decrement function for
decreasing the control parameter; a final value of the
control parameter specified by the stopping criterion;
and a finite length of each homogenous Markov chain.
In this work, a polynomial-time cooling schedules is
used, in which the temperature is decreased based
on the statistics of the trial solutions acceptance or
rejection during the search.

TESTING THE ALGORITHM WITH
SIMULATED DATA

Lu this section, the proposed algorithm is tested using
simulated examples, T'wo tests are performed. In the
first test, the signal is assumed to be a noise free signal
and the effects of number of samples and sampling
frequency on the estimated parameters are studied.
The voltage signal wavetormn is given as:

v(t) = \/gb‘iu(Zﬂ'jUt + 027t 4 30°).

This signal is sampled using a sampling frequency of
1000 He and 200 samples are used to estimate the
signal parameters. It has been found that the proposed
algorithim estimates the signal parameters accurately.
These estimates ares

V=10pu, fi=500, b=010, ¢=30.0°

Effects of Number of Samples

The effects of a number of samples on the estimated
parameters are studied in this section, where the
sampling frequency is kept constant at 1000 He and
the number of samples changes from 50 to 250, Table 1
provides the results obtained for the test.

Examining Table 1 reveals the following remarks:
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o lFor a number of samples greater than 30, the
SAA produces an accurate estimate for the signal
parameters)

o At a number of samples equal to 30, an inaccurate
estitmate for the rate of frequency change and phase
angle is obtained, while an accurate estimate for
the voltage amplitude and nominal frequency is
produced;

e lor an integer number of cyeles, an accurate esti-
miate for the parameters is obtained.

Effects of Sampling Frequency

The effects of sampling frequency on the estimated
parameters are studied in this section, where the
number of samples is kept constant at 200 and the
sampling frequency changes from 250 Hez and 1500
Hz. 'lable 2 shows the results obtained for this test.
Examining this table, it is noted that:

e T'he proposed algorithm, at the specified number
of samples and sampling frequency, produces very
accurate estimates for the signal parameters;

e For this test, a number of samples equalling 200 and
a sampling frequency of 730 Hez are recomunended to
produce accurate estimates,

Effects of Harmonices

Today, due to the widespread use of power electronics
devices in power system operation and control, the
voltage wavetorms are polluted with all kind of har-
monics. Lo this test, it is assumed that the signal is
contaminated with the third and fifth harmonics. Also,
200 samples with a sampling frequency equal to 2000
Hyz are used for the following results:

V =100 (p.u), fi =500 He,

b=0.10108, & = 30.0°

Here, it is assumed that the harmonics frequencies are
an integral number of the nominal frequency, which is
assutned to be 30 Hz. Examining these results, one

Table 1. Effects of number of samples, sampling frequency = 1000 He.

m | # of Cycles | V (p.u) | fo = a (Hz) | b (Hz/sec) b

30 2.3 1.0 30.0 0.06818 20.996
100 3 1.0 30.0 0.009771 30.0
130 7.5 1.0 30.0 0.10132 30.0
200 10 1.0 30.0 0.10037 30.0
250 12.5 1.0 30.0 0.009781 20.999
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Table 2. Effects of number of sampling frequency, m = 200 samples.
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Sampling # of Cycles | V (p.u) | fo=a (Hz) | b (Hz/sec) | o

Frequency
250 40 1.0 50.0 0.09996 30.0
500 20 1.0 50.0 0.09996 30.0
750 40/3 1.0 50.0 0.100 30.0
1000 10 1.0 50.0 0.10037 30.0
1250 8 1.0 50.0 0.10016 30.0
1500 20/3 1.0 50.0 0.10019 30.0

notices that the SAA produces very accurate estimates
for the signal parameters from a harmonics polluted
signal. Figure 1 shows the simulated and estimated
waveforms, together with the error.

It can be noticed, from the figure, that the SAA
produces the same signal exactly, since the error in all
samiples is almost zero.

EXPONENTIAL DECAYING FREQUENCY

Another test is conducted in this section, where it is
assumed that the frequency of the voltage signal has
the form of

f - fU + bﬁ_uri

where fi, b and ¢ are the parameters to be estimated.
The voltage signal equation, in this case, becomes:

. 2ab . .
oty = V2V sin(2wx fut — %s_“ + ou). (7)

This type of variable frequency could be obtained
at transient operation in power systems.  The cost
function to be minimized, based on least absolute error

[==Simulated -#Estimated -+ Krror]

(
S VR VA VL Y
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Sampling steps

Figure 1. Simulated and estimated signal with the error.

i this case, is given by:
- . — 2ab . .

J :Z 'L‘(ff_}—\/g'r" sin( 2w fut; — ;s_tr‘ + oo)|.
i=1 ‘ (8)
Ln this test, it is assumed that f, = 50.0,6 = 0.1,¢ =
—10 and ¢ = 30°. The signal is sampled at 1000 He
and 200 samples are used. The results obtained for this
simulation ares

V=10, fy=>50.0, b=0.0008,

e =10.18, ¢ = 2992

The error in the estimated value of b equals 0.4 percent
while the estimated value of ¢ equals 1.8 percent. These
are acceptable for a highly non-linear estimation.

Actual Recorded Data

The proposed algorithm is tested on actual recorded
data generated from EMTP, due to a fault in a power
systent, The frequency is, first, assumed to be a linear
time-variant and, second, with exponential decaying.
The results for the linear time-variant is: V= 0.976
(p.u), fu = 498 He, b = 0.370 Hz/s and ¢ = 90.04°,
Figure 2 compares the actual and the estimated signal
waveformis,
Examining this curve carefully reveals that:

o A large error in the estimated wave is produced in
the first quarter of the cyele, sinee the frequency
is constant to the nominal value of 30 Hz and the
miodel assumes a linear variation in this part of the
data window size;

e During the fault, the error reaches a small value until
the end of the data window size. It means that the
miodel for the frequency is adequate for this part of
the data window size.

In the second test, an exponential decay model is
assummed for the frequency, which leads to the following
resulbs:

V = 0.976 (p.u),

fo = 40.93 Hz, b= 0.03,

c= 1426, &= 00.73.
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Figure 2. Actual and estimated waveform with the error
for the actual recorded data.

By examining Figure 3, the same conclusions as
of Figure 2 are reached, except in the decaying model.
The decaying term goes to zero very quickly, since the
coefficient, ¢, is relatively large. However, for the two
frequency models used, the frequency is a time-varient,
thus, it needs a dynamic estimation algorithm to track
the frequency variation at each instant.

CONCLUSIONS

In this paper, the simulated annealing algorithm (SAA)
is used to estimate the frequency of a power systend,
where a time-variant frequency model is assumed for
the voltage signal. The proposed algorithm uses a
digitized sample of the voltage waveform at the relay
location and is tested using simulated and actual data.
The algorithm is able to predict frequency and rate of
frequency change from a highly nonlinear function and
does not need any approximations. 1t has been shown
that the proposed algorithm is a little sensitive to the

1.25

&L -

T 0.25

=

=

=

i
-0.25

= 0.25

-+ Actual wave
+- BEstimated wave
4 Error

Sampling steps

Figure 3. Actual and estimated waveform with the error
for the second test where ¢ = 14.26.
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numiber of samples used in the estimation, but the
sampling frequency should satisty the sampling theory
and the data window size must be an integer number
of cyeles.
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