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Optimal Planning of Equipment Maintenance
and Replacement on a Variable Horizon

F. Kianfar!

In maintenance and replacement planning of an industry, the purchasing of new equipment on
the market with some kind of technological improvement over existing equipment should be
taken into account. Because of operating cost, ordinary and preventive maintenance expenses
may be lower, production rate may be higher and the quality of output may be better, etc. The
industry to be considered in this paper is the mining industry and the replaced equipment is the
mine shovel. It Is assumed that, at most, one new shovel can be purchased before the mine is
exhausted. It Is possible that the mine is given up before exhausted, because of the disadvantage
of the expense and loss of the salvage value of the shovel compared with the value of the
remaining mine. There are four decision variables in this problem, as follows: the maintenance
policy in each period, the purchase time of the new shovel, the end of the planning horizon or
the time to stop the mining and the value of production during each period. The objective is to
determine the values of the decision variables so as to maximize the overall discounted profit of

the mine over the planning horizon.

INTRODUCTION

With the increasing demand for products of businesses
and other organizations, it is necessary to increase
production capacity over time, 'To increase this ca-
pacity, decisions should frequently be made about
replacement of existing equipment. The significance
of this decision becomes apparent when one notes
that businesses spend hundreds of billions of dollars
on new plants and equipment and this expenditure is
almost 10 percent of the GDP in the United States [1].
Existing equipment is usually replaced by equipment
on the market which has some kind of technological
improvernent, lovestment for this replacement may be
quickly returned by lower maintenance and operating
costs, greater throughput and better quality of output
using the new advanced equipment.

The business to be considered in this research is
the mining industry and the replaced equipment is the
mine shovel, Suppose an existing shovel is working on a
miing., If an expensive preventive maintenance policy is
applied, the shovel will last longer, operating expenses
will be lower due to lower breakdowns, salvage value
will be higher and production capacity will reduce more
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slowly. 1t is assumed that, at most, one new shovel is
required before the mine is exhausted. 1t is possible
that the mine is given up before exhausted because of
the disadvantage of expenses and loss of the salvage
value of the shovel compared with the value of the
remaining mine, There are four decision variables in
this problem as follows: The maintenance policy in
each period, the purchase time of the new shovel, the
end of the planning horizon or the time to stop mining
and the value of production during each period. The
objective is to determine the values of the decision
variables so as to maximize the overall discounted
profit. of the mine. The mathematical method used to
solve this problem is deterministic optimal control [2].
The problem is formulated as a discrete-time dynamic
system and, then, the discrete-time maximum principle
is used to find the optimal solution [3].

The next sections of this paper are as follows:
First, a literature review of papers is presented. Then,
problem formulation and solution of the problem by the
diserete-time maximum principle are introduced and
discussed, respectively, After that, a case study of the
paper is presented and, finally, the paper is coneluded.
All the materials in the third through sixth section
of the paper, consisting of the mathematical model,
miethod of solution, applications and conclusions of the
problent, are the original contributions of the author.
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LITERATURE REVIEW

Many mathematical models for finding a capital equip-
mient, optimal replacement policy have been introduced
in recent years.  The complication of these models
ranges through a wide spectrum from the simple and
straightforward to the very sophisticated. U'wo simple
models of this type, taking into account technological
iprovement with finite and infinite planning horizons,
can be found in Jardine [4].  More sophisticated
research on this subject has been collected in a recent
book by Ben-Daya et al. [3]. Ln the almost thirty
year time interval between the publication of these
two references, a lot of papers and books have been
published on this subject, some of which are reviewed
in this section.

The optimization technigque that is used for solv-
ing production, maintenance and replacement planning
is optimal control. o particular, stochastic opti-
mal control has lately been given much attention by
researchers. 1o [6], Akella and Kumar formulated
a one-maching one-part-type production problem as
a stochastic optimal control problem, in which part
demand is assumed to be a two-state continuous-time
Markov chain and the objective function is a discounted
inventory /shortage cost over an infinite-time horizon.
They showed that optimal control is given by a single
threshold inventory level called a hedging point. Then,
Bielecki and Kumar treated a long-run average cost
in [7], where an optimal hedging point policy was also
obtained.

According to this policy, at any point in time,
the control guides the production surplus towards a
nonnegative level, depending on the capacity state in
place. This capacity state specific level is known as
the corresponding hedging point.  The idea behind
this policy is that some nonnegative production surplus
should be maintained, at times of excess capacity, to
hedge against future capacity shortage [8].

Boukas and Yang [9] extended Akella and Ku-
mar’s model to allow the simultaneous planning of pro-
duction and maintenance in a flexible manufacturing
system. Their system is composed of a single machine
that produces a given commodity. The machine is
subject to some random failures and the probability of
machine failure is supposed to be an inereasing function
of its age. The commodity demand rate is assumed to
be a constant and the objective is meeting the demand
while ninimizing the discounted inventory and mainte-
nance costs. Under some appropriate conditions, they
established simiilar results to the ones given in Akella
and Kumar.

Ln most of the manufacturing How-control models
considered, it has been assumed that the machine
failure rates are independent of production rates and
are constant, as long as the system is in one of its
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discrete capacity states. Lo reality, however, this
assuniption is often violated and the failure rate of
a machine usually depends on many factors, such as
the age of the machine and the instantaneous rate
of production. In most cases, it is reasonable to
assumie that if a machine works at a faster rate, it is
more likely to fail. Very few studies have been done
for systems with operation dependent failure rates.
Boukas and Haurie [10] considered a system that has
two machines with age-dependent failure rates and
where preventive maintenance is a decision option,
They used a numerical method to evaluate the optimal
control policy and showed that in their context the
optimal hedging surfaces can be defined to represent
the optimal production policies,

When the age of the machine is considered,
solving, optimal control is needed to augment it to
the state of the systemn, which greatly increases the
computation burden of the problem. Boukas and Liu
avoided using the age of the machine as a state variable
in a recent work [11]. They divided the aging of
the machine into four segments, associated with the
four modes of the machine. The machine is assumed
to have three working modes: good, average, bad
and a failure mode. In the three working states, the
miachine can produce parts and some of these parts
are rejected at a rate depending on the machine state.
In the failure state, no part is produced. The state
transition of the machine is governed by a continuous-
time Markov process. The junip rates from average and
bad states to good state are preventive maintenance
rates and the one from failure state to good state is
the corrective maintenance rate. By using stochastic
dynamic programming, production and maintenance
rates are optimized. Some properbies of the value
function are shown and the optimal control law is
characterized.

Rajagopalan [12] attempts to present a unified ap-
proach for capacity expansion and equipment replace-
mient.  Equipment replacement literature has focused
on the replacement issue, usually ignoring aspects such
as future demand changes and economies of scale.
Oun the other hand, capacity expansion literature has
focused on the expansion of equipment capacity to
meet demand growth, considering economies of scale
but ignoring the replacement aspect. Rajagopalan for-
mulates and solves a general deterministic model that
allows replacement of capacity, as well as expansion and
disposal, to adapt to arbitrary demand changes and
permits economies of scale in capacity purchases. The
miodel partially captures deterioration and obsolescence
effects by permitting operating maintenance costs and
salvage values to vary as a function of age and usage.
A key contribution of the paper is that it brings to-
gether equipment replacement literature and capacity
expansion literature. Rajagopalan presents models and



Optimal Planning of Equipment Maintenance and Replacement IR7

solution procedures for the general problem, even in
very special cases, which have, so far, been considersd
difficult.

The application of mathematical models in main-
tenance, which can be used by maintenance engineers
and managers on real problems, is discussed in a paper
by Scarf [13]. Llu this context, developing areas of
maintenance modeling are discussed, namely: lnspee-
tion maintenance, condition-based maintenance, main-
tenance for multi-component systems and maintenance
management information systems. Some new models
relating to capital replacement are also considered.
Discussion of maintenance management information
systems is included because of their importance in
providing data for mathematical modeling and in
iiplementing model-based maintenance policies.

Finally, maintenance optimization models are re-
viewed in a good survey by Dekker [14], especially from
the applications and future prospects point of view,

PROBLEM FORMULATION

Consider buying a new shovel at the beginning of
period s and salvaging it at the beginning of period
t > s Let J, denote the present value of total
profits associated with the new shovel(s > 0) or present
shovel (s = 0). 'To caleulate Jyp, one needs the
following notation for k € (s,t — 1} where (s, — 1} =
{ils<i<t—1h

r the resale value of the shovel of vintage s at
the beginning of period k. 1t is assumed that
the initial f 18 known,

P¥5  the production capacity during period k. One
assumes that £ is known. If the shovel is
brand new and purchased at the beginning of
period s, £ is known from the
manufacturer’s specifications for the shovel.
For an existing shovel at s = 0, P} could
be determined from the knowledge of when it
was purchased, its history of preventive
maintenance and its production history;

E%  the necessary expense of the ordinary
maintenance during period k. This
maintenance is for the current period. One
assumes that £7 s known. Similar remarks,
as for P, apply in connection with how £}
and £ might be determined;

iy the value of the remaining material in the

mine at the beginning of period k& that

could be mined using the shovel purchased
in period 5. One lets gl = M, to denote
the total material existing in the mine at
time zero. The value of yi can, then, be
determined as M less the total amount of

production in periods < 0,8 — 1 >. In most
cases, y¥ does not depend on s, so y¥ can be
replaced simply by y*;

v the value of production during period k.
This and the past production amounts affect
the future values P!, B and & 0 >k + 1

u the preventive maintenance expenditure
during period k. This and the past
preventive maintenance expenditures affect
the future values P!, B and & 0 >k + 1

'y the cost of purchasing a shovel at the
beginning of period s. For the existing
shovel at time zero, Cy is the sunk cost
and so it may be assumed that Cy = 0,
without loss of generality;

o the periodic discount rate, p > 0.

There is a given budget, /5, for preventive mainte-
nance in period k for the shovel purchased in period s.
Henee, it is required that

uf >0, (1)
UE—uf >0, (2)

Since production cannot exceed the capacity and
arount of remaining mine material, it must be required
that:

vt >0, (3)
PE vk >0, (4)
¥y — Uk 2 U (5)

Note that in Equations 1 to 3, UF

g
and PF and y* are state variables.

Jyp can be expressed in terms of the variables and
functions defined aboves

are given constants

t—1
Joo =3 (oF = EF —uF) (14 )"
k=¥
—C (L p) "+l (L+p)7" (6)

k 4

In Equation 6, production, v*, and salvage value, &},
represent revenue terms and expenses £¥ uf) and the
purchase cost, (', represents expenditure terms,
There must also be functions that will provide the
ways in which state variables (PF EF 2% y) evolve
over time, given the production amount, v* | and the
amount of preventive maintenance expenditure, u®.
One assumes that the effects of production amount
and preventive maintenance are independent. Also, it
is assumed that at time s, the only shovels available
for purchase are those that are up-to-date with respect
to the technology prevailing at s.  These functions
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can, therefore, be subscripted by s to reflect the effect
of the shovel’s technology. Let 11(u® k), Wl{u® k),
and  ®(uf k} be functions of w* and k, and let
UZ(v® k), W (e* k) and ®2(v* k) be functions of v*
and k. W 1th these, one can write the following state
equations:

APF = pirl _ pk

= Ul (u k) 4+ W% k), P! is given, (7)

ARS = ph+l _ pk

= Wl{u® k) + Wi(eF k), KT is given, (8)

Ak kL K
Ay =™ — &y

= dHu k) 4+ ®I(eF k), e = (1=, (D)

s—1

Ayf =yt gl = oyt = =) (10)

i=l

where § is the fractional depreciation immediately after
the purchase of the shovel at time s.

THE OPTIMAL CONTROL SOLUTION OF
THE PROBLEM

The problem is to maximize Equation 6 subject to the
state Equations 7 to 10 and Constraints 1 to 3.

The optimal control theory shall be utilized to
analyze this problemy (see Chapter 8 in [3]). The
Lagrangian function for the problem is:

i—1
L= (o8 —Ef —u) (14 p)7 = Ci(14p)7°
k=x
i—1
el (L o)t YDA 1 — PR pF)
k=

F ATl o R g

+AGTH®) + @7 — a7 4 )

+ AT (ot — g )
t—1

+ ) et pS U - ub) 4 bt
k=x

b (PF = o) 4 pf(yE — o).
(11)

ln Equation 11, A% A5 A5 A% are known as adjoint
variables and pf, pf, ph pk pf are known as Lagrange
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multipliers. The Hamiltonian function is defined as:
HE (Pk EE e yf ut e k,k:)
= (0f =k —uf) (14 )7
(I 1) 4 AT () 2)
AT (@) + @)+ AT (o),
kelst—1). (12)
Using Equation 12 in Equation 11, the Lagrangian

function can be written in terms of the Hamiltonian
as1

L=el(l+p)~" = C(1+p

AP (PEFL ) AR (£ 1)

— AT (et =) = AT (T = )]

i—1
D Iafu s (UF = uf) + bt
k=s
o (P = o) 4k (g — o). (13)

Necessary conditions for an optimal solution are given
by the Kuhn-Tucker conditions for the problem. These
conditions yvield the adjoint equations and their termi-
nal conditions when the derivatives of the Lagrangian
function, with respect to the state variables, are set
equal to zero, That is:

OHE .

’\f+1_’\§ df"’k - Mi - _Mij ’\rl - U! (14)
OHFE ..

M -M=—ae = (L) ™5 A =0, (15)
OHE - .
e S R L.
E41_ gk OH k k t -
A _’\4:_531" — s = —p5, Ay =0 (17)

Furthermore, if one assumes 112,112, ®! and ®2 to be
strictly concave and Wl and W2 to be strictly convex,
then, one can set the derivatives of the Lagrangian
function, with respect to w* and ©f, equal to zero.
These relations, along with the usual complimentary
slackness conditions, provide the following conditions
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on the Lagrange multipliers pf, pf, u5, pf, pf

“(14 p)* +A’f+1?715+ ,\gﬂ% §+13‘t1:;1
+pi = ps =0,
(18)
pp >0, piut =0, (19)
ps 20, ps (U —uf) =0, (20)
(1+p)7" + A’f“% + f\"“% Ai“%
+ph — pg — pg =0, (21)
py >0, piet >0, (22)
W20, g (PE— b =, (23)
ps 20, g (g — o) =0 (24)

Of course, if the Il and ¥ functions are linear, then,
the coutrol u® will be bang-bang. Likewise, if the &
functions are linear, ¥ will be bang-bang.

The Kuhn-Tucker conditions (Equations 14 to
24), which are the same as the maximum principle
conditions of optimal control, are necessary for opti-
miality. Because appropriate concavity and convexity
conditions have been assumed, these conditions are
also sufficient for optimality in this problem.  In
the next section, these conditions are analyzed fur-
ther.

A CASE STUDY

It is reasonable to assume the following properties of
the technology functions: 1!, and 117 are negative, 11!
is increasing and concave in wf, and 12 is decreasing
and concave in v¥. This recognizes that the production
capacity decreases over time and its decrease is smaller
at higher preventive maintenance levels.  Moreover,
the value of the preventive maintenance is marginally
diminishing. On the other hand, decrease in production
capacity is larger at larger production levels, with the
gffect of production level on production capacity to
be marginally diminishing. The influences of preven-
tive maintenance and production level on the salvage
value are similar.  Finally, the necessary expense
rate increases over time and its increase is smaller at
higher preventive maintenance levels, with this effect
marginally diminishing. With respect to production
level, the inerease in the necessary expense rate is
larger at larger production levels and with marginally
diminishing effects. These properties are sketched in

wi{u, k)

RiA
Figure 1. Graph of typical a(u, k) and é(u, &) with
respect to w.

alv, k)

ks
Figure 2. Graph of typical mz(v, k) and d2(v, k) with
respect to e,

Figures 1 to 4 and are expressed mathematically as

follows:
. . Sl k FCTEE I
i) Ll(uf k) <0, SRl > 0, SRLE <,
k
Bk EITNURRS) 8 v k)
11) ll;(b‘ k) <0, b\:k - <0, 33:: =20,
) ) JERTS T EIEIS P
i) Wl(ut k) >0, Tt <0, TR S,
. . 2
. . . g2k g PN
iv) WI(ek k) 2 0, S > 0, s <0,
k
. . Sl kb L4l K op
V) by(uf k) <0, TR > 0, Tt <,
. . 2
S 2 : CENUNRD) 8202 (u* k)
vi) ®3(ef k) <0, =5 <0, == 2 0.

Equations 14 to 17 can be solved, as follows:

t—1
Af = Zni ke (s,t), (25)
i=k
t—1
A== "(1+p)7" ke (s, (26)
i=k
M= (L4p)7" ke (s, (27)
t—1
A=) pg, ke (s (28)
i=k

To simplify the analysis, let one assume that the
changes in production capacity, necessary expense and
salvage value of the shovel are not affected by the rate of
production, ie., W (vp, k) = Wi{ve k) = ®F (v, k) = 0.
In this case, Equation 21 is replaced by:

v* =bang {miu (Pf, yf) (L) ph -t — u’;} .
(29)
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Uy (u, k)

w

Figure 3. Graph of typical ¥y (u, k) with respect to u.

‘I’g(?},kﬁ)

U

Fizgure 4. Graph of typical Wolv, k) with respect to v.

This means that as long as there is a shovel, one should
produce at the maximum possible production level in
period k, which is min (P, y%), if (14 p)~F 4+ pf —
15 — pf > 0, and one should not produce if otherwise.
It is easy to show that the case of singular control, i.e.,
(1+ o)™ % + pf — pf — pf = 0, does not arise in this
problent. It should also be obvious that if £} > gy in a
period {, then the entire remaining material would be
mined in period ! and the shovel would be sold at the
beginning of period {+ 1, ittt = {4+ 1. It t > {41, then
clearly v; = 0, for i € {{ + 1,# — 1}. Note that, in this
case, Jo < Jyp1 and, sinee one will be obtaining J,,
successively for £ = 5 4+ 1,5 + 2, ..., one does not need
to compute Jg for £ > L+ 1. Note, further, that this
does not affect cases when the shovel is optimally sold
before the mine is exhausted.
With the above observations, one can set:

ph =0, Yke(st—1. (30)
As for obtaining pf, one proceeds as follows.

Sinee PF and y* both decline over time from their
respective nitial values 27 and g, one can define the
first period € {5, — 1}, it it exists, in which P > g7,
It should be obvious that pf = 0 for all & < 7. In
period 7, one should produce »* = yi. This means
that pg > 0. Moreover, the shovel will be sold in period
7+ 1, as argued earlier, sinee the last of the remaining
mine will be extracted in period 7. Therefore, in this
case, one has { = 7+ 1 and, from Equations 25 and 28,
one hasi

0, k=t e
A :{ " (31)
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t—2
=S ke (o 32)
i=k

If 7, as defined above, does not exist, then, pf = 0 for
all & € (s, — 1} and M =0 forall k € {s,t}. lu this
case, since vf = PFAF is as given in Equation 25.
Now, suppose the conditions leading to Equa-
tion 29 are satisfied and this equation, together with
its following analysis, is valid. Let a numerical example
be mentioned, to justify the validity of the model.
Despite performing activities to collect real world
data from appropriate mines, this kind of data has
not been accessible.  So, simulated type data were
constructed according to the reasonable range of the
model’s variables and parameter changes. The data
on state variables £ Pf and yf are summarized in
Tables 1 to 3, respectively. All the numbers in these
three tables and any succeeding table are in million of
dollars. The time period of the problem is considered
to be a month. The data on the ordinary maintenance
expense, ¥, for k = 1, starts from 1 and 0.5 million
dollars for s = ) and s = 1, respectively and, then, it is
increased by 0.1 million dollars for each increment in k
and in s, separately. The data on parameter UF starts
from 1 million dollars for £ = 1 and s = 1, then, it is

Table 1. The resale value of the mine shovel of vintage s
at the beginning of period k[:;t.'f:].

N\

2|3 a5 |6 ] 7 |89 W
1[10

2 (0|11

3 (8 [0.9] 12

4|7 [8.8]10.8] 13

506(7.7)0.6|11.7] 14

6 (5 [6.6]8.4 [10.412.6] 15

714 [55]72]0.1[11.2]13.5] 16.5

B[3 (4460|7808 12 [14.85] 18
02334865 84105132 [16.2[19.5

10 1{2.2] 3.6 5.2 7.0 0.0 [11.55]14.4{17.53| 21
110 [1.1) 2.4 3.9 5.6 7.5 | 0.9 |12.6]15.6 [18.0
12 | 0]1.2)2642]6.0|8.25|10.8/13.65/16.8
13 0 |13[28[45] 66| 9 [11.7[147
14 0 [14[3.0]495(72[9.75 126
15 0 |15] 3.3 54|78 105
16 0 [1.65|3.6|5.85 |84
17 0 |18] 39 |63
18 0 [1.95]4.2
19 0 |21
20 0
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Table 2. The production capacity of the mine shovel of
vintage s at the beginning of period k{ PF).

N0 12 3 4567 8]0
1] 20 |25
211952428
3019 23|27 |31
4 | 18.5 (2226|3034
I8 | 21|25 (29|33 |37
20124 |28 | 32| 36 | 40
71192327 |31 35|39 |43
182226 |30 |34 |38 |42 |46
O 16 |17 212529 |33 |37 |41 45|49
10155 |16 |20 |24 |28 |32 |36 |40 | 44 | 48 | 52
11 15 |15 19|23 |27 |31 |35 |39 |43 |47 |51
12145 | 14 | 18 |22 |26 |30 | 34 | 38 |42 | 46 | 50
13 14 | 13|17 (21 (25 |29 |33 |37 |41 |45 |49
1411351216 24 |28 | 32|36 |40 |44 | 48

[=ra
[
=1
i

=1

v
—
o | -
\I.'-Tl

Ir| 13 | 11|15 27 (31|35 |39 (43|47
16 (12,5 |10 30 (34|38 |42 |46
17 12 | B 33 (37|41 |45
I8 {115 | B 36 (40| 44
911 |7 39 (43
2011051 6 42

increased by 0.2 million dollars for each increment in k
and in s, separately. The values of Oy for 0 < s < 10
are as follows: Oy = ) and considering § = 0, one will
have Oy = &}, for 1 < s < 10, where the values of &
can be extracted from Table 1. Finally, the monthly
discount rate, p, is assumed to be 1%.

As mentioned above, the values of the decision
variables, i.e., production value ©*, preventive mainte-
nance expenditure u®, the end of the planning horizon
t, and the present value of profit /., are computed
according to the analysis following Equation 29, for
different values of s and all are summarized in Table 4.
As seen in this table, the maximum value of J,, is
207.22 million dollars and belongs to the case s = 2,
i.t., the optimal plan of the problem is to replace the
present shovel by a new one at the beginning of period
two and continue mining the remaining material in the
miinge up to the end of period fourtesn.

CONCLUSIONS

It was shown in this paper that any company can
increase its profits by equipment maintenance and
replacement planning.  Existing equipment is usually
replaced with equipment on the market with some

Table 3. T'he value of the remaining material in the mine
at the beginning of period £ that could be mined using the
shovel purchased in period s(y%).

S o 123 4|56 7|8 9w
L] 300 [300

2| 280 2751280

3 [260.5[251[2521260.5

4 [241.5[228225[220 524 1.5

5| 223 [206]199[100.5[207 5223

6| 205 [185174[170.5[174.5[186[205

7 [187.5[165[150[142.5[142.5]150[165|187.5

8 [170.5[146[127|115.5[111.5/115[126[144.5/170.5

9| 154 [128]105[89.5 [81.5 | 81|88 [102.5]124.5[154
10] 138 [L11[84 |64.5 |52.5 |48 |51 |61.5 | 79.5 [L03[138
11{122.5]95 | 64 [40.5 | 24.5 [ 16 | 15| 21.5 [35.5 | 57 | 86

12107580 145|175 0 |0 (O | O 0 110135

13] 93 (66(27] O 010
14 79 53|10

15/65.5(41] 0

16]52.5 | 30

17] 40 |20

I8 28 (11

19116.5 | 3

20055 |0

kind of technological improvement. lovestient for this
replacement may be quickly returned by lower mainte-
nance and operating costs, greater output and better
quality output using the new advanced equipment. The
question is how to determine when to take advantage
of the techunologically improved equipment?

This question and thres other related questions,
regarding the equipment maintenance and replacement
planning problem, were answered in this paper. The
other three questions arer The maintenance policy in
each period, the end of the planning horizon or the time
to stop the mining and the value of production during
each period. Lo this paper, the mining industry is the
business considersd and the replaced equipment is the
mine shovel.

A powerful technique for the mathematical mod-
eling of the equipment maintenance and replacement
planning problem is optimal control. 'The problem in
this paper is formulated as a discrete-time dynamic
systent, on which the discrete-time maximum principle
is used to find the optimal control solution. The type
of optimal control solution is presented in the fourth
and fifth sections of the paper.
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Table 4. T'he production value [:vk:], the preventive
maintenance expenditure [:uk:], the end of the planning
horizon () and the profit present value (/) of the
example.

s=0|s=1|s=2|8s=3|s=4|85=5H
E | ok lak ok |wk ok lwk | o lak| o* lwk lo® |k

e |u”|e® |u® o |u” | et (u®| e® |u® et

120 |L5|25] 1

2 19.5(1.7|24|1.2|28 1.2

3 (19 |1.9)123]1.4\27|1.4| 31 |14

4 |18.5|2.1|22(1.6|26(1.6| 30 (1.6| 34 |1.6

5 | 1R [23|12111.8(25|1.8] 2D |1.8] 33 |1.B|37|L.8
6 |17.5|2.5|20 2 |24 2 | 28 | 2 | 32 | 2 (36 2

1
[a—
=1
S
=1
[
=)

912.2123|2.2| 27 |2.2| 31 |2.2|35|2.2
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