
Scientia Iranica, Vol. 11, No. 3, pp 159{164

c
 Sharif University of Technology, July 2004

On Routing Architecture for Hybrid FPGA

M. Nadjarbashi�, S.M. Fakhraie1 and A. Kaviani2

In this paper, the routing architecture for an FPGA with hybrid clusters built from a mixture of
LUT-based and PLA-like blocks is investigated. The implemented CAD 
ow that is used to place
and route a number of MCNC benchmark circuits in a comparative fashion is discussed. The
experimental results demonstrate that cluster sizes of two (2 LUT blocks and 2 PAL blocks) to
four (4 LUT blocks and 4 PAL blocks) are appropriate in terms of area and speed. A comparison
between hybrid and LUT-based FPGA architectures is also presented, showing that hybrid FPGA
has some considerable advantages over a uniform LUT-based architecture.

INTRODUCTION

Hybrid Field Programmable Architecture (HFPA) was
introduced in 1996 [1], combining the two common
technologies used in programmable logic devices: FP-
GAs based on Look-Up Tables (LUTs) and CPLDs
incorporating PLA-like logic cells. The main idea
is to determine what functions are suitable to be
implemented on which logic resources. Logic resources
include LUTs as well as product-term (PLA-like) logic
cells. For small combinational nodes with less than four
or �ve inputs, LUTs are more area e�cient than PLAs.
On the other hand, high-fanin nodes with more than
�ve inputs could be e�ciently implemented in PLA-like
blocks, unless they have a large number of Pterms. It
has been shown in [2] that a major number of nodes in
benchmark circuits are 4-bounded (where the number
of inputs is less than, or equal to four) and most of
the high-fanin nodes are suited for implementation in
PLAs. According to the results presented in [2], hybrid
architecture o�ers both area and depth advantages
compared to LUT-based FPGAs. In this paper, the
routing parameters of hybrid clusters are investigated
with the goal of optimizing the area and performance
of the designs in the FPGA.

The next section describes a tentative structure of
a hybrid cluster, as proposed in previous research [2].

*. Corresponding Author, Department of Electrical and
Computer Engineering, University of Tehran, P.O. Box
14399, Tehran, I.R. Iran.

1. Department of Electrical and Computer Engineering,
University of Tehran, P.O. Box 14399, Tehran, I.R.
Iran.

2. Xilinx Inc. 2100 Logic Drive San Jose, CA 95124, USA.

Then, the CAD 
ow is explained followed by assump-
tions about architectural parameters and the employed
VLSI technology. After that, the achieved results on
hybrid FPGA are presented and discussed. Hybrid
FPGA and LUT-based architecture are compared in
the �nal section.

HYBRID CLUSTER

Figure 1 shows a cluster of HFPA, named hybrid
cluster. PALB stands for Programmable Array Logic
Block, which is a product-term (PLA-like) logic cell.
Its structure and architectural speci�cations have been
chosen as investigated and discussed in [2]. It has 16
inputs, an AND-plane, three outputs (where two out of
three could be registered) and its structure is developed
to accommodate up to three combinational nodes on
average. A Look-Up Table Block (LUTB) contains four
4-LUTs (Figure 2), each with an arbitrarily latched
output. Block-level tracks in a LUTB are connected to
the logic through a fully-populated crossbar, in which

Figure 1. Hybrid cluster.



160 M. Nadjarbashi, S.M. Fakhraie and A. Kaviani

Figure 2. LUTB structure.

each block-level track can be arbitrarily connected to
each of 16 4-LUT inputs. Providing full connectivity
at lower levels of the hierarchy makes it possible to
reduce the number of switches at the higher levels,
where transistors drive larger loads and require more
chip area. As shown in Figure 1, the cluster-level to
block-level crossbar is partially populated.

The ratio between the number of LUTBs and
the number of PALBs, which is called Balance Factor
(BF), is selected to be one. This selection is based on
previous work in [2] showing that benchmark circuits,
on average, can get close to their maximum gain of
speed and area when implemented on an architecture
with BF = 1.

While the cluster is similar to that of [2], it is
assumed that hybrid clusters are interconnected in
an island-style position, like the Xilinx FPGAs [3].
This is di�erent from previous work in [2] that uses a
hierarchical routing structure to connect the clusters.
This decision was made because the public version of
VPR only supports island-style FPGAs.

CAD FLOW

Since there is no manageable analytical model of an
FPGA chip, most of the research in this �eld is accom-
plished using investigations performed on benchmark
circuits. An architectural parameter resides in its
optimum point if any other amount for that parameter
causes the proposed research criteria (average area and
delay of all benchmark circuits) to become worse, while
all other independent parameters are kept �xed. It is
not possible to simultaneously explore the entire N -
dimensional space of all possible routing architectures.
Therefore, one or two architectural parameters are
varied each time and optimized along a line in the N -
dimensional architecture space. One should begin with
parameters that do not have a strong interaction with
other parameters. These parameters can be �xed at
their best values and optimization will carry on along
other dimensions.

When the criterion is the delay and area of
the implemented benchmarks, the \Implementation
Routine" is similar to that which is performed in
commercial FPGAs to automatically implement cir-
cuits: i.e., technology-independent logic optimization,
technology mapping, packing into clusters, placement
and routing. However, some of the results were
obtained directly from the packing tool (Hpack) [4] and
the placement/routing phases were not required.

The technology-independent logic optimization
plus technology-mapping phases are conducted as de-
scribed in [2], leading to circuits mapped on 4-LUT and
PALB cells. The mapped circuits could be optimized
for area or depth (delay). After this stage, the packing
part of the Hpack tool receives the mapped circuits and
tries to build LUTBs. Hpack constructs clusters from
a network of PALBs and LUTBs by taking advantage
of shared signals among various blocks. Furthermore,
Hpack is able to do cluster-level to block-level inter-
connection (internal routing), determining how many
switches are required to perform successful routing.

For placement and routing, VPR has been cho-
sen [5], which is a tool for FPGA placement and
routing. Unfortunately, VPR accepts architectures
with only two routing levels, but the hybrid archi-
tecture has three routing levels: Block-level, cluster-
level, and chip-level. For this reason, Hpack and
front-end represent the circuit and FPGA architecture
speci�cation in the format that VPR desires. Since
the Hpack and front-end handle all the jobs related to
cluster-inside operations, no problem would occur by
this representation.

All of the mentioned stages are glued together
by the front-end code. The front-end entity carries
out another important task: Generating the FPGA
architecture �le for VPR. VPR requires architectural
speci�cations of FPGA, in addition to the circuit
description. VPR does the placement of hybrid clus-
ters, then tries to route them such that a minimum
number of chip-level routing tracks are required. Other
di�erent scripts are used to extract and prepare the
results from raw data at di�erent stages and parts.

ARCHITECTURAL ASSUMPTIONS AND
TECHNOLOGY

A wide variety of technological, as well as architec-
tural parameters should be speci�ed in the FPGA
architecture �le of VPR. The technology issues include
parameters such as RC values (time constants) of
di�erent wire segments used in routing channels, RC
values of di�erent switch types (tri-state bu�er, pass-
transistor), resistance of base NMOS and PMOS tran-
sistors (resistance of channel), delay through di�erent
parts of a cluster and so on. For this purpose, the
TSMC 0:35� process has been chosen and all the



Routing Architecture for Hybrid FPGA 161

required values and parameters [4] have been calculated
based on rules and speci�cations of this process as
discussed in [6]. The layouts of PALB and LUTB
were drawn and the timing information (such as delay
through di�erent combinational and sequential paths)
is extracted.

Architectural parameters involve both detailed
and global routing parameters, such as the switch
box type, the number of tracks to which each cluster
input/output pin connects, details of di�erent wire
segment types (length, internal population and fraction
of routing tracks composed of this type), the fraction of
switch types used, routing channel parameters, number
of pads and so on. Research on mentioned issues
and their e�ects on FPGA area and delay has been
accomplished in [6], and the relevant parameters have
been set accordingly with some changes. For example,
in [6], a segment length of 4 is considered to be
appropriate for a LUT-based cluster with four 4-LUTs
(if all segments have the same length). The authors'
experiments, however, showed that for larger clusters
(similar to the ones investigated), segments of size 2
lead to a lower area and delay. The reason is that
in FPGAs with large clusters, large segments result in
long metal tracks that require larger bu�ers to drive
and these bu�ers, in turn, cause delays in signal paths
(see also section of Optimum Number of Cluster Blocks
and Tracks).

Whether the goal would be area or depth reduc-
tion, many of the above parameters may di�er. For
example, if one were going to reduce the depth, it
would be important to use tri-state bu�ers as much as
pass-transistor switches (a roughly equal ratio would
be suitable), while reducing the usage of tri-state
bu�ers (as low as 20%-30%) would manage to get more
advantage in area gain.

In this research, the drive strength of routing
switches has been increased by resizing the transistors
as the size of a cluster increases. This allows of
reduction in the routing delay. Also, for performance
reasons, the cluster-level to block-level crossbar has
been implemented using pass-transistors instead of
fully encoded multiplexers that occupy less area but
have a higher propagation delay.

OPTIMIZATION PROCEDURE AND
RESULTS

LUTB inputs

The �rst cluster parameter that was investigated using
Hpack was the number of LUTB inputs. Due to input
sharing, the four 4-LUTs often require less than 16
input lines. Figure 3 shows the LUTB logic utilization
vs the number of LUTB inputs. This diagram indicates
that if one chooses this number to be 11 or more, there

Figure 3. LUTB logic utilization vs number of inputs
(obtained over 31 MCNC BMs).

is roughly no logic waste in LUTB. If the number of
LUTB inputs is selected less than nine, a noticeable
number of circuit nodes should be accommodated in
other LUTBs, causing an increment in the area and
delay of circuit while wasting logic in most of the
LUTBs. The number of LUTB inputs for the next
experiments has been chosen as 12.

Internal Routing Switches

Hpack can determine the best switch distribution for
cluster-to-block crossbar for each N , where N is the
number of PALBs (or LUTBs) in each cluster. After
packing LUTBs and PALBs of a circuit into di�erent
clusters, the input signals (nets) of each cluster are
known. Now, Hpack tries to connect these input
lines to appropriate block-level lines by a uniform
deployment of switches (see Figure 1). If Fcb is de�ned
as the number of switches by which each cluster-level
track can be connected to a block (PALB/LUTB), then
Hpack is capable of considering di�erent values of Fcb

for di�erent blocks within each cluster. Hpack starts
by using Fcb = 1 for all of the blocks in a cluster and
increases Fcb by one for each block until routing is
successful. Finally, Hpack stops when every block is
connected with the minimum Fcb. Thus, Hpack can
obtain the suitable Fcb value corresponding to each
block for a typical cluster, on average. This will be
the appropriate switch distribution for all clusters of
FPGA. Since manufacturing limitations prohibit the
use of various Fcb numbers in a cluster, the rounded
value of 2 is suggested for a uniform Fcb (such as
Figure 1: Fcb = 2), based on the last column of Table 1.

Utilization of Local Interconnections

Another experiment undertaken is calculating the aver-
age percentage of local interconnections when N varies.
Local interconnections (connections that start and end
within the same cluster) are faster than connections
that pass through cluster-outside routing switches and
tracks. Table 2 shows how this percentage varies as
hybrid cluster size increases.



162 M. Nadjarbashi, S.M. Fakhraie and A. Kaviani

Table 1. Non-uniform cluster-level switch distribution that implies manufacturable Fcb = 2 (obtained over 31 MCNC
BMs).

Cluster Size

Number of

Blocks with

Fcb = 1

Number of

Blocks with

Fcb = 2

Number of

Blocks with

Fcb = 3

Number of

Blocks with

Fcb = 4

E�ective

Fcb

N = 1 1 1 0 0 1.5

N = 2 2 1 1 0 1.75

N = 4 4 2 1 1 1.875

N = 8 6 3 5 2 2.1875

N = 16 12 7 8 5 2.1875

Table 2. Local interconnection percentage vs cluster size (obtained over 31 MCNC BMs).

Cluster Size N = 1 N = 2 N = 4 N = 8 N = 16 N = 32

Local

Interconnection
4.5% 7.0% 11.4% 16.5% 26.4% 41.4%

Optimum Number of Cluster Blocks and
Tracks

Now, placement and routing steps are added to mea-
sure the area and delay of implemented benchmarks
when a cluster parameter changes. The number of
blocks within each cluster is �xed in order to see
how the average area of implemented circuits varies
when the number of cluster-level tracks changes. If
this number is too small, then the number of clusters
required to implement the circuits will increase and
then the total area will increase. If this number is too
large, many of these tracks will remain unused and the
total area will increase due to wasted routing resources.
Therefore, a minimum point is expected, as depicted in
Figure 4. This diagram corresponds to N = 2 and the
area is minimum when the number of cluster inputs (I)
is about 46.

If the value of N is too small, then the number
of clusters required to implement a typical circuit will
increase because of small clusters. But, due to the
repetitive supporting circuits existing in each cluster

Figure 4. Implementation area vs number of cluster-level
tracks, N = 2 (obtained over 17 MCNC BMs).

(such as clock distribution and preparation circuits and
latch set/reset logic), the area that each cluster and its
dependent routing tracks occupy do not decrease in
the same ratio with which N decreases. Thus such
a small cluster would not be appropriate. In large
clusters, two factors make them inappropriate. First,
the signi�cant overhead of cluster-level to block-level
switch net and second, the huge transistors required to
drive long tracks and other large switches existing in a
chip-level routing area. Table 3 shows the optimum
amount of parameter \I" corresponding to di�erent
values of N (benchmarks are optimized for the area).
Despite the above, the best cluster in terms of area
is achieved when N = 1 and I = 28. It was found
that this is due to the signi�cant overhead of cluster-
level to block-level crossbar that, here, overcomes all
other factors. The experiments indicate that if one
could somehow omit this overhead, then the optimum
cluster in terms of area would be achieved with N = 2
or N = 4. Despite this overhead, when circuits are
optimized for delay, the case N = 2 has the lowest
area.

Figure 5 shows the e�ect of increasing \I" on
average critical path delay for case N = 2. Since
the router algorithm always tries to establish the
circuit path through the lowest delay path available,
then signi�cant changes in critical path delay is not
happening as it was for area. However, for clusters
with N = 1 to N = 4, the delay will decrease if
\I" increases. This is because the total number of
necessary clusters decreases and a typical connection
encompasses less series of logic clusters. Furthermore,
the router algorithm performs its job under more low-
stressed conditions [6]. As discussed before, the delay
criterion should decrease when N increases. This is



Routing Architecture for Hybrid FPGA 163

Table 3. Implementation area vs cluster size (obtained over 17 MCNC BMs).

Cluster Size N = 1 N = 2 N = 4 N = 8

Minimum Area 1.15 M 1.16 M 1.37 M 2.58 M

Corresponding \I" 28 46 70 120

Figure 5. Performance changes vs number of cluster-level
tracks (obtained over 17 MCNC BMs).

true for clusters with N = 1 to N = 4, but it was
observed that forN = 8 (and above) the delay criterion
started to increase. This is due to the enlargement of
switch transistors as the size of cluster increases. Too
much increase in the size of these transistors causes
the e�ect of self-loading to overcome the drive-strength
increment one expects to achieve. A solution to this
problem is that, instead of too much increment in
cluster size, the number of routing levels are increased
such that most of the connections are established
locally and through shorter wire segments.

COMPARING HFPA WITH LUT-BASED
ARCHITECTURE.

A previous work [2] has shown that HFPA has some
advantages over traditional LUT-based architectures in
terms of logic resources: Up to 25% in area and up
to 65% in depth. That work did not consider routing
delays, and the routing architecture of this paper is
somewhat di�erent from that of [2], as explained in
section of Hybrid Cluster. In this section the area and
delay of the benchmark circuits in a traditional LUT-
based FPGA are compared with the area and delay of
the hybrid FPGA.

For comparison, a reference FPGA with only
LUTBs has been considered and the formerly men-
tioned steps have been accomplished. Two benchmark
groups have been produced that are optimized and
technology mapped towards area and depth reduction.

The achieved results for LUT-based FPGA are
partly similar to those achieved in previous sections
(Table 4 and Figures 6 and 7). The best cluster,
in terms of area, is case N = 2 with 34 inputs. If
this area (1.58 M) were compared with the minimum
area number obtained for hybrid FPGA (1.15 M), it
would be discovered that LUT-based FPGA occupies

Table 4. Comparison of hybrid and LUT-based FPGAs
(obtained over 17 MCNC BMs).

Hybrid FPGA LUT-Based FPGA

Delay(ns) Area Delay(ns) Area

N = 1 42.2 1.15 M 45.1 1.61 M

N = 2 41.5 1.16 M 44.7 1.58 M

N = 4 39.0 1.37 M 44.2 2.32 M

N = 8 43.8 2.58 M 47.4 3.93 M

about 37.4% more area for the same logic capacity,
while the corresponding delay is about 6% more than
hybrid FPGA. If delay-optimized circuits are used and
the optimum points regarding the area are calculated,
the best cluster for LUT-based architecture will be
the case N = 4, in which delay criterion is 44.2 ns.
Compared to hybrid FPGA performance (39.0 ns in
N = 4 as the best case), the delay of LUT-based
architecture is 13.3% more than hybrid architecture
while the respective area is 82.1% more.

Figure 6. Implementation area vs number of cluster
blocks for hybrid FPGA and LUT-based FPGA (obtained
over 17 MCNC BMs).

Figure 7. Critical path delay vs number of cluster blocks
for hybrid FPGA and LUT-based FPGA (obtained over
17 MCNC BMs).



164 M. Nadjarbashi, S.M. Fakhraie and A. Kaviani

Table 5. Comparison of HFPA and LUT-based architecture for some selected benchmarks optimized for performance
(N = 4).

Hybrid FPGA LUT-Based FPGA Delay Area

Benchmark Delay (ns) Area (M) Delay (ns) Area (M) Gain Gain

alu4 31.7 1.89 46.4 3.56 47.0% 88.3%

ex1010 38.0 2.94 54.2 6.09 42.6% 105.7%

ex4p 24.0 0.37 27.0 0.65 12.5% 75.7%

misex3 37.6 2.01 43.1 3.27 14.6% 62.7%

S1488 20.4 0.41 29.9 0.87 46.6% 112.2%

seq 44.6 2.82 53.1 4.89 19.0% 73.4%

spla 60.1 7.94 67.0 15.12 11.5% 90.4%

Despite area, hybrid FPGA does not have a
signi�cant advantage over LUT-based architecture in
terms of performance. This is due to the fact that logic
resources have a minor role in the delay of the di�erent
paths of an implemented circuit. In the architecture
presented, the share of the 4-LUTs delay is about
8% of the average delay and the remaining is due to
the routing resources (a small share is due to I/O
pads). However, when one investigates the benchmark
circuits individually, it can be seen that for circuits like
\s1488", \seq", \ex4p", \ex1010", \misex3", \spla"
and \alu4", the HFPA has a considerable advantage
over LUT-based architecture (Table 5). By surveying
the type of these circuits, one discovers that most of
these benchmarks have a controller (state machine) ap-
pearance or are 2-level logic circuits with a high number
of inputs. Both of these circuit types are suitable for
implementation on product-term logic resources.

CONCLUSIONS

In this paper, some optimum values have been identi-
�ed for routing and the structural parameters of hybrid
�eld programmable devices. The results are obtained
using MCNC benchmark circuits. According to the
results, a cluster of size N = 2 to N = 4 would be
appropriate for both area and performance. ForN = 2,
the average delay is 6% higher compared to N = 4,
which is the best case. The average area for N = 2 is
1% higher than that ofN = 1, which is the best case for
area. For all values of N , the values for other cluster-

related parameters, such as internal switch population
and number of cluster-level tracks have been optimized.

The hybrid FPGA has also been compared with
a traditional LUT-based FPGA composed of only
LUTBs, which have been optimized with the same
methodology. It is shown discovered that average area
gain of hybrid FPGA over LUT-based architecture is
about 82%, while the performance gain is around 13%.
Higher gains for performance, however, are achievable
for circuits that have a controller (state machine)
nature or are mainly composed of two-level logic with
a high number of inputs.

REFERENCES

1. Kaviani, A. and Brown, S. \Hybrid FPGA architec-
ture", International Symposium on Field-Programmable
Gate Arrays (FPGA'96), Monterey, CA, USA (1996).

2. Kaviani, A. \Novel architectures and synthesis methods
for high capacity �eld programmable devices", Ph.D.
Dissertation, University of Toronto (1999).

3. The Programmable Logic Data Book, Xilinx Inc., San
Jose, CA, http://www.xilinx.com/partinfo/databook.
htm (1999).

4. Nadjarbashi, M. \Optimization on architecture and
routing of hybrid �eld programmable gate arrays",
M.Sc. Thesis, University of Tehran (2000).

5. Betz, V., Vpack and VPR User's Manual v4.22 (1999).

6. Betz, V., Architecture and CAD for Speed and Area
Optimization of FPGA, Ph.D. Dissertation, University
of Toronto (1998).


