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Investigation of Temperature Dependencies of

Thermophysical Properties of Solids and Liquids

H.G. Hassanov
1

Under strong laser radiation action on solids and liquids, all the thermophysical parameters
which characterize these media become dependent on the medium temperature. Assuming for
the coe�cients �(T ) and c�(T ) to be linearly changed by the temperature, the non-linear inverse
problem of heat conductivity is resolved. The problem is resolved for two cases: 1) For solids and
�xed liquids and 2) For heat conductivity with liquid laminar convection due to laser radiation
action. The parameter 
, describing the gradient of coe�cient of the heat conductivity, is
calculated and the in
uence of liquid convection on 
 is estimated. It is considered how the Bi
number a�ects the �nal result. A developed algorithm for solving inverse problem may be used
for �nding the exact analytical solution of some problems of di�usion and 
uid mechanics.

INTRODUCTION

As an e�ect on solids and liquids, laser radiation leads
to an essential heating of the media. As a result,
most of the thermophysical parameters characterizing
these media behaviors change, such as coe�cient of
heat conductivity, heat capacity, optical absorption
and so on. Currently, temperature dependencies of
the above mentioned properties of solids and liquids
are investigated using experimental methods. Existing
theoretical approaches do not allow the acquisition of
accurate information, because the approaches, princi-
pally speaking, are tentative (a detailed review of these
methods can be found in [1]). However, methods of
solving the inverse problems of the heat conductivity
theory, gives one an opportunity to study the above
dependencies theoretically as well. In this technique, it
is given that the laws �(T ) and c�(T ) are certain func-
tions of temperature and the coe�cients introducing
them should be found by means of solving the inverse
problem. The main di�culty of the approach is in
solving the nonlinear di�erential equation.

There are various methods for solving nonlinear
di�erential equations of heat conductivity, for instance,
linearization of nonlinear component, using approxi-
mation and/or numerical methods, simpli�cation of
conditions etc. [2,3]. A perfectly new variant of the
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asymptotic functions of non-linear equations has been
proposed in [4]. However, recently, the exact analytical
solution of a non-linear equation of heat conductivity
may be obtained for some limited cases only. In this
paper, the algorithm of an exact solution for one class of
non-linear equations of heat conductivity is developed
and, in using it, one may investigate the temperature
dependencies of the thermophysical properties of solids
and liquids.

MATHEMATICAL FORMULATION OF

PROBLEM

Let one have a sample of a solid in cylindrical form
(or liquid in a cylindrical pipe). The lateral side of the
cylinder is thermo-isolated. The laser radiation falls
into the beginning point of the cylinder, z = 0 and,
naturally, at a certain time later, the temperature wave
comes to the end point of the cylinder, z = l (l =
length of the cylinder). By means of thermocoupling,
the temperature alteration laws at both sections are
measured. It is assumed that the temperature changes
by law f(t) at the section z = 0 and the law '(t) at
section z = l.

One assumes that the radius of the cylinder, R,
is greatly less than its length, so that R << l. In
this case, the temperature �eld within the cylinder
may be taken as one-dimensional. The thermophysical
parameters of the solid and/or liquid change by the
temperature. The temperature coe�cients of heat
conductivity and volume heat capacity are considered
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to be the same :

�(T ) = �0(1 + 
T );

c�(T ) = c0�0(1 + 
T ): (1)

The di�erential equation of heat conductivity for an
involved case has the following form:

c(T )�(T )
@T

@t
=

@

@z

�
�(T )

@T

@z

�
: (2)

Such a statement of the problem has been described
in [1], where 
 is assumed to be a small constant.
However, obtained solutions are limited to some values
of variables z and t only. For Equations 1 and 2, the
initial and boundary conditions are given as:

T (z; 0) = T0 = const:;

T (0; t) = f(t);

T (l; t) = '(t): (3)

It is worthwhile to note that Equations 1 are empiri-
cally observed in a wide region of temperature changes,
therefore, it might be considered as the closest to ex-
perimental data. The author's task is to determine the
temperature coe�cient, 
, by solving Equation 2 under
the given conditions (Equations 3). For determining
the parameter 
, it is necessary to take additional
boundary conditions into consideration:

@T (l; t)

@z
= 0; (4)

in other words, section z = l is thermo-isolated and
heat 
ow through the section is absent.

METHOD OF SOLVING THE PROBLEM

For solving the non-linear Equations 2 and 3, one
introduces the non-linear auxiliary function:

�(T ) = T +
1

2

T 2: (5)

This substitution has been considered for the �rst
time in [5] for solving an inverse problem of electro-
thermodynamics. There are obvious relationships:

@�

@t
=

@�

@T

@T

@t
;

@�

@z
=

@�

@T

@T

@z
;

@�

@T
= 1 + 
T: (6)

Taking into account the last formulae, Equation 2 is
transformed into:

c0�0(1 + 
T )
@�
@t
@�
@T

=
@

@z

 
�0(1 + 
T )

@�
@z
@�
@T

!
;

or ultimately into:

@�

@t
= a0

@2�

@z2
; a0 =

�0
c0�0

= const: (7)

For function �(z; t), the initial and boundary conditions
will be represented as:

�(z; 0) = T0 +
1

2

T 2

0
= const;

�(0; t) = f(T ) +
1

2

f2(t);

�(0; t) = '(T ) +
1

2

'2(t): (8)

The additional boundary condition for function �(z; t)
will be the following:

@�(l; t)

@z
= 0: (9)

For the already linear problem in Equations 7 and 9,
the Laplace transform is used. In images, Equation 7
may be written as the following:

d2��

dz2
=

s

a0
�� �

1

a0

�
T0 +

1

2

T 2

0

�
;

�� = ��(z; s) =

1Z
0

�(z; t)e�stdt; (10)

with appropriate boundary conditions:

��(0; s) = f�(s) +
1

2

f�

1
(s);

��(l; s) = '�(s) +
1

2

'�

1
(s);

d��(l; s)

dz
= 0; (11)

where the following notations are used:

�
f�(z; s)
'�(z; s)

�
=

1Z
0

�
f(z; t)
'(z; t)

�
e�stdt;

�
f�
1
(z; s)

'�
1
(z; s)

�
=

1Z
0

�
f2(z; t)
'2(z; t)

�
e�stdt;

and s is the parameter of Laplace transform.
The solution of Equation 10 may be given as:

��(z; s) =
1

s

�
T0 +

1

2

T 2

0

�
+ C1ch

r
s

a0
z

+ C2sh

r
s

a0
z: (12)
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For determining three constants, 
; C1 and C2 , there
are three conditions (Equations 11). Not concerned
with intermediate calculations, the following expression
is used for de�ning the required value of parameter 
:


=2
f�(s)� T0

s

�
1�ch

q
s
a0
l
�
�'�(s)ch

q
s
a0
l

'�
1
(s)ch

q
s
a0
l+

T 2

0

s

�
1�ch

q
s
a0
l
�
�f�

1
(s)

: (13)

From Equation 13 it is shown that the value 
 depends
greatly on the input and output information of the tem-
perature changes by time, f(t) and '(t). Experiments
carried out in [6] revealed the following laws for the
functions f(t) and '(t):

f(t) = T0 + T01(1� e��1t);

'(T ) = T0 + T02(1� e��2t):

Hereafter, T01; T02; �1 and �2 are empirical permanent
magnitudes. The Laplace images of these functions
have the view:

f�(s) =
T0
s

+
T01�1

s(s+ �1)
;

'�(s) =
T0
s

+
T01�2

s(s+ �2)
;

f�
1
(s) =

(T0 + T01)
2

s
�

2T01(T0 + T01)

s+ �1
+

T 2

01

s+ 2�1
;

'�
1
(s) =

(T0 + T02)
2

s
�

2T02(T0 + T02)

s+ �2
+

T 2

02

s+ 2�2
:

Inserting the values of the above listed functions
f�(s); '�(s); f�

1
(s) and '�

1
(s) into Equation 13, one can

calculate the value 
. Assuming s = 1=t0, where t0 is
the temperature relaxation time, one could transform
Equation 13 into :
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It is obvious that:
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� T0t0 �

�
'�
�
1

t0

�
� T0t0

�

= t2
0
fF11(t0)� F12(t0)g ;

where:

F11(t0) =
T01�1

1 + �1t0
;

F12(t0) =
T02�2

1 + �2t0
ch

r
1

a0t0
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In the same way, one may yield, respectively:
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l
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F21(t0)=2T0T01+T 2

01
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)
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+

T 2
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1 + 2�2t0
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Under these permissions, the value 
 is determined by
the following relationship:




t0
= �

F11(t0)� F12(t0)

F21(t0)� F22(t0)ch
q

1

a0t0
l
:

The left side of this relationship is a linear dependence
on factor 1=t0. Naturally, the right side of the last
equation should be linear in dependence on 1=t0 also.
Having drawn the graph of the right side vs 1=t0 and
compared the angle coe�cient of this line with 
, one
can �nd the magnitude 
. It is shown that Equation 14
is su�ciently di�cult, so let a partial case be studied
when:

f(t) = T1 = const:; '(t) = T2 = const:

Then, one obviously has:

f�(s) =
T1
s
; '�(s) =

T2
s
;

f�
1
(s) =

T 2

1

s
; '�

1
(s) =

T 2

2

s
:

Using the last expression in Equation 14, after non-
complex calculations, it yields:


 = �
2

T1 + T2
:

In this case, the temperature dependencies of the
thermophysical parameters of solids and liquids may
be represented as:

�(T ) = �0

�
1�

2

T1 + T2

�
;

c�(T ) = c0�0

�
1�

2

T1 + T2

�
: (15)
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THE PROBLEM WITH HEAT EXCHANGE

Absence of heat exchange between solid/liquid and the
surrounding medium during laser radiation action is
greatly idealized. In practice, this aspect is always
valid and essentially changes the �nal result. Let one
consider how heat exchange a�ects the temperature
dependencies of basic parameters. With an account
of heat exchange, the di�erential equation of heat
conductivity has a view of:

c(T )�(T )
@T

@t
=

@

@z

�
�(T )

@T

@z

�
� �(T )

P

S0
(T � T0);

(16)

where �(T ) is the coe�cient of the heat exchange, T0
is temperature of ambient medium that is accepted
to be constant during the process and P and S0 are
perimeter and square of a cross-section of the cylinder,
respectively. The initial and boundary conditions for
Equation 16 will be the same as the condition in
Equations 3, but the additional boundary condition in
Equation 4 is changed into:

��(T )
@T (l; t)

@z
= �(T ):(T � T0); (17)

that is usually taken for problems with heat exchange.
For solving Equation 16, under the conditions in Equa-
tions 3 and 17, one introduces an auxiliary function as
above (Equation 5). The temperature dependencies of
the coe�cients � and c� are taken as in Equation 1.
The temperature dependence of the heat exchange
coe�cient, �, is expressed by the following equation:

�(T ) = �0

�
T + 1

2

T 2

�
T � T0

;

where �0 is the initial value of the coe�cient of
heat exchange before the laser radiation action. For
the auxiliary function, �(z; t), there is the following
equation:

@�

@t
= a0

@2�

@z2
� �0

P

S0
�; (18)

and the following conditions:

�(z; 0) = T0 +
1

2

T 2 = const:;

�(0; t) = f(T ) +
1

2

f2(t);

�(0; t) = '(T ) +
1

2

'2(t);

��0
@�(l; t)

@z
= �0�(l; t): (19)

For solving Equations 18 and 19, one may also use the
Laplace transform. In images, the following di�erential
equation appears as:

d2��

dz2
=

s+ w

a0
�� �

1

a0

�
T0 +

1

2

T 2

0

�
;

w = �0

P

S0
: (20)

In images, the existing boundary conditions are repre-
sented as:

��(0; s) = f�(s) +
1

2

f�

1
(s);

��(l; s) = '�(s) +
1

2

'�

1
(s);

��0
d��(l; s)

dz
= �0�

�(l; s): (21)

Solution of Equations 20 can be written in a form
formally close to that of Equation 12, obtained for
the problem without the heat exchange. The only
di�erence is that instead of parameter s, now, in the
�nal solution, the index (s+ w) takes place:

��(z; s) =
1

s+ w

�
T0 +

1

2

T 2

0

�
+ C1ch

r
s+ w

a0
z

+ C2sh

r
s+ w

a0
z:

(22)

The value of parameter 
 is found by solving the
system of three Equations 21 relative to three unknown
magnitudes C1; C2 and 
. The �nal result for required
magnitude 
 is noted without intermediate calcula-
tions:


=�2
Bi:'�(s)sh�l��l[P1�'�ch�l]�P3

�0
lsh�l

Bi:'�
1
(s) ch�l ��l[P2�'�

1
sh�l]

: (23)

Herein, the next notations are introduced

Bi =
�0l

�0
; � =

r
s+ w

a0
; P1 = f�(s)�

T0
s+ w

;

P2 = f�
1
(s)�

T 2

0

2(s+ w)
; P3 =

�0�T0
s+ w

�
1 +

T0
2

�
:

Analyzing Equation 23 for every interesting variant of
the laser radiation in
uence on solid/liquid, one is able
to de�ne parameter 
 of the appropriate solid/liquid,
for each case, with an account of the heat exchange
with the surrounding medium. Although Equation 23
is di�cult, for some cases it can be simpli�ed. In
the �rst case, realizing the algorithm with relaxation
time s = 1=t0 for a steady temperature regime at



Temperature Dependencies of Properties of Solids and Liquids 375

both sections, when T1 and T2 are permanent, at small
values of the Bi number, one has, for parameter 
,
the value equivalent to that obtained for the previous
problem, namely:


 = �
2

T1 + T2
:

So, in this case, coe�cients � and c� could be rep-
resented by the known Equations 15. However, the
last law is not always valid. The second case, which
is of practical interest, corresponds to su�ciently great
values of the Bi number. For this process variant, a
form of parameter 
 is changed and, according to the
authors calculations, becomes equal to the following
magnitudes that have been obtained from Equation 23;


 = �
2

T2
; (24)

with corresponding dependencies for � and c�, respec-
tively;

�(T ) = �0

�
1�

2

T2

�
; c�(T ) = c0�0

�
1�

2

T2

�
:
(25)

The physical matter of the result (Equation 25) is,
for intensive heat exchange, available between the
solid/liquid and ambient medium. Temperature T1
at the point z = 0 does not play a su�cient role in
temperature distribution along the pipe. On the other
hand, the temperature of section z = l is much more
important, since it characterizes the temperature as
well as all the thermophysical parameter gradients.

ACCOUNT OF LIQUID CONVECTION DUE

TO LASER RADIATION

On the basis of the theoretical calculations in [7], it
has been established that if the laser radiation energy
density is greatly less than the liquid internal energy
density (in other words, there is the condition I <<
C�cpT (herein C = sound velocity in the medium,
other indications are well-known)), then the medium
is weakly absorbing and the thermophysical coe�cient
may be accepted to be constant. In this case, the
mathematical model of the heat transfer is described by
a linear di�erential equation. However, if I � c�CpT ,
then the temperature of the liquid already changes over
a wide area and the thermophysical parameters of the
liquid involved above essentially alter by temperature.
Hence, for determining the kinetic coe�cients, it is
necessary to use the non-linear models, one of which
has been successfully considered above.

During non-resonance interaction of great laser
radiation with non-transparent liquids, various opto-
thermophysical and opto-thermodynamic processes

take place, which are connected with strong compres-
sion and the heating of the liquids. In propagating
laser radiation in absorbing the medium (liquid), there
are convection 
ows due to its heating. Increasing
laser generator power leads to a transformation of the
laminar 
ow to a turbulent one [7]. It is of great
interest to elucidate what changes in the temperature
dependence of the liquid thermophysical parameters
leads to the liquid convection.

The non-linear di�erential equation of the heat
conductivity of liquid with a convective laminar 
ow
may be represented as :

c(T )�(T )

�
@T

@t
+ v

@T

@z

�
=

@

@z

�
�(T )

@T

@z

�
: (26)

Hereafter, v is the velocity of the liquid convection.
Here, for simplicity of mathematical calculations, one
considers the problem of liquid convection without
heat exchange, although, in solving the more general
problem of heat conductivity, the last circumstance can
be taken into account without any principal di�culties.
For solving this variant of the equation, it is necessary
to introduce the same non-linear auxiliary function
�(z; t). Subsequently, Equation 26 is transformed into
the appropriate linear equation:

@�

@t
+ v

@�

@z
= a0

@2�

@z2
; (27)

with the initial and boundary conditions valid for the
problem without the convection of Equations 8 and 9.
Then, in full accordance with the already considered
algorithm of problem solving, it is necessary to realize
a Laplace transform. Now there is the following
equation, relative to the function ��(z; s):

d2��

dz2
�

v

a0

d��

dz
�

s

a0
�� = �

1

a0

�
T0 +

1

2

T 2

0

�
; (28)

which is the equation of forced vibrations. Solution of
Equation 28 is well-known. The form of its solution
depends on parameter �:

� =

�
v

a0

�2

+ 4
s

a0
: (29)

A general solution of Equation 28 may be represented
as:

��(z; s) = C1e
��1z + C2e

�2z +
1

s

�
T0 +

1

2

T 2

0

�
;
(30)

therefore:

�1 =
v

a0
+ �; �2 =

v

a0
� �:
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For �nding the three magnitudes C1; C2 and 
, one
should apply Equations 8 and 9. The following is a
system of three equations relative to three unknown
magnitudes:

C1 + C2 = a1 +
1

2

a2;

C1e
��1l + C2e

�2l = b1 +
1

2

b2;

��1C1e
��1l + �2C2e

�2l = 0:

After simple computations, one can �nd any constant.
Herein, one is interested in the value of parameter 
.
Let this be described without the bulky intermediate
calculations:


 = �2
a5e

�1l + a3e
��2l � a1(�1 + �2)

a6e�1l + a4e��2l � a2(�1 + �2)
; (31)

where the following abbreviations are used:

a1 = f�(s)� 1

s
T0; a2 = f�

1
(s)� 1

s
T 2

0
;

a3 = �1b1; a4 = �1b2;
b1 = '�(s)� 1

s
T0; b2 = '�

1
(s)� 1

s
T 2

0
;

a5 = �2b1; a6 = �2b2:

(32)

Equation 31 is the most general form of parameter 
.
For every variant of the problem, which is of practical
interest, one can �nd concrete values of the parameter
using the conditions of the problem. For example, in
a steady case of the radiation action at both sections
(the values of T1 and T2 are constant) Equations 32 are
simpli�ed. As a result, one has for parameter 
:


 = �
2

T1 + T2
; (33)

with appropriate dependencies for basic thermophysi-
cal magnitudes.

�(T ) = �0

�
1�

2

T1 + T2

�
;

c�(T ) = c0�0

�
1�

2

T1 + T2

�
: (34)

Comparison of Equations 33 and 34 with Equations 15
previously obtained, allows one to reach the conclusion
that, in cases of liquid convection with permanent
velocity of 
ow, the coe�cient of heat conductivity is
absolutely the same as for �xed liquid. However, this
situation will be realized only if one considers stabilized
liquid 
ow. For heat conductivity with convection, the
period of time considered has great meaning, because,
as may be concluded from Equation 30, temperature
distribution is highly sensitive to the duration of this

investigation. At the beginning of the heat conductiv-
ity process with laminar convection under radiation,
the dependence �(T ) is not already determined by
Equation 33. For �nding the exact value of parameter

 at the beginning of the process, it is necessary to
resolve Equation 31 at great values of magnitude s
corresponding to small values of t.

As follows from Equation 31, the laminar con-
vection of the liquid caused by laser radiation is not
able to su�ciently change the value of parameter 
. In
other words, the presence of laminar convection with
permanent velocity, v, does not change the character
of the thermophysical behavior of the studied liquid
in full accordance with experimental research [8]. The
dependencies (Equations 33 and 34) are valid only if
there is the condition v = const. Unfortunately, one
is not able to describe here all the speci�cations of
the thermophysical behavior of liquid moving under
laser radiation action, for example, 
ow with altered
velocity, v(z), due to the real liquid viscous tensions [9],
as well as the in
uence of turbulence 
ow that takes
place under the great values of radiation intensity as
has been experimentally observed in [8]. All these
questions are proposed to be the subjects of separate
investigation.

CONCLUSION

In the present paper, the algorithm of an exact an-
alytical solution of the non-linear problem of heat
conductivity is developed. The dependence of basic
thermophysical parameters on temperature are as-
sumed as linear (see Equations 1). In practice, the
existing experimental data is the most available in
support of this class of problem. The procedure
developed here is not to be considered as a linearization
of the non-linear equation, since linearization means
a certain approximation (in other words, average)
and, ultimately, leads to an inaccuracy in the �nal
result. The author's technique is free of this defect
and yields to a correct solution of the problem. Such
an approach gives an opportunity to acquire useful
information about the thermophysical properties of
studied solids and liquids, in particular when realizing
the experiment is complicated by the conditions of the
problem involved. For example, on the basis of the
authors' research, it is deduced that the dependence:


 = �
2

T1 + T2
;

is the most available for processes of heat conductivity
caused by laser radiation action on solids or liquids. It
may be seen from this ratio that the closer the values
of the temperature at the initial and �nal sections of
the body involved (T1 and T2), the more in
uence the


