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Numerical Study of Detonation Instability

for a Two-Step Kinetics Model

K. Mazaheri�, S.A. Hashemi1 and J.H. Lee2

The stability of CJ detonations has been investigated numerically with a two-step kinetics model.
The reaction model consists of a non-heat release induction step, followed by an exothermic
step. Both steps are governed by the Arrhenius kinetics model. The e�ect of activation energies
associated with these steps on the detonation front behavior has been studied. This study was
arranged in two stages. At each stage, one of the activation energies was kept constant and the
other one was changed. In the steady detonation structure, the activation energies of the �rst and
second steps (Ea1; Ea2) control the induction and reaction lengths, respectively. Increasing Ea1
(for a �xed Ea2) increases induction length and destabilizes a detonation, the same behavior as
a one-step model. Increasing Ea2 �rst increases reaction length and has a stabilizing e�ect (i.e.,
the amplitude of oscillation decreases). Further increasing Ea2 has a destabilizing e�ect. The
present study shows that the ratio of the reaction length to the induction length characterizes
general features of detonation stability.

INTRODUCTION

Detonation waves are composed of a lead shock that
initiates chemical reaction in the combustible mixture
and the release of chemical energy, which sustains
the lead shock. In this paper, only self-sustaining
detonations that travel about the CJ velocity are
studied. Detonations that are supported with pistons
and whose velocity is greater than the CJ value, are
not considered here. The �rst theoretical work about
detonation was the CJ theory that was proposed by
Chapman and Jouguet [1]. They assumed that the
thickness of a detonation wave is negligible and the
wave travels with a constant velocity. This theory
predicts the velocity, pressure and other thermody-
namic properties that are in very good agreement with
experiments.

The steady, one-dimensional structure of a det-
onation wave was �rst determined independently by
Zeldovich, Von-Neumann and Doring [1] and is known
as the ZND structure.

In practice, a stable one-dimensional detonation
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wave is seldom observed. Experimental observations
show that self-sustaining detonation waves exhibit a
signi�cant three-dimensional unsteady structure. How-
ever, average velocity is always about the CJ value.
According to Strehlow, the unstable structure of det-
onation waves was observed �rst by Campbell and
Woodhead [2]. Two regimes of detonation instability
were observed when blunt-body projectiles were �red
into a reactive atmosphere [3,4]. The �rst involved
regular periodic oscillations of the ow �eld, while
the second showed less regular with larger-amplitude
oscillations.

The �rst formal linear stability study of detona-
tion waves was conducted by Erpenbeck [5], who used
a Laplace transform approach to study the behavior
of small-amplitude disturbances for a plane steady
detonation wave. Parameters that were studied by
Erpenbeck are heat of combustion, wave number of dis-
turbances and the activation energy of the combustion
reaction.

Lee and Stewart [6] developed a normal mode
approach to the linear stability problem. They em-
ployed a two-point numerical boundary value-shooting
algorithm to determine the stability characteristics of
detonations. Their study provides highly resolved
information about linear stability characteristics, neu-
tral stability boundaries and growth rates of unstable
disturbances.

Other works, such as those due to Buckmaster
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and Ludford [7], have been handicapped in the physical
interpretations of the various modes of instability.
Sharpe [8] developed a new normal mode approach
and applied it to a detonation with a single one-step
reaction. This method was found to be superior to that
of previous researchers in the sense that the CJ case
was well posed and the e�ect of much higher activation
energies was considered.

Most work on the stability analysis of detonations,
have used a one-step, irreversible reaction with an
Arrhenius form of the reaction rate. In the one-step
Arrhenius type reaction model, the linear stability
analysis indicates that increasing the activation energy
destabilizes the detonation.

In parallel with linear stability analyses, there
have been numerous studies concerned with the nu-
merical simulation of the pulsating detonation insta-
bility with Arrhenius one-step reaction kinetics. Uti-
lizing characteristic and �nite di�erence techniques,
respectively, Fickett and Wood [9] and Abouseif and
Toong [10] were able to reproduce the salient stability
features that were predicted by Erpenbeck. Using
advanced numerical methods, a signi�cant improve-
ment in the quality and accuracy of numerical simu-
lation was obtained by Bourlioux et al. [11]. Those
simulations were able to obtain numerical results in
close agreement with the theoretical predictions. In a
one-dimensional simulation, the detonation instability
appears as the oscillatory behavior of the detonation
front. By increasing the activation energy of a one-step
model, numerical simulation yields a range of linear
oscillation to chaotic oscillatory behavior of the shock
front. Stable detonation has a uniform behavior of the
shock front and travels with a constant CJ velocity.
The structure of a stable detonation obtained from the
numerical simulation is identical to the steady ZND
structure.

Short and Quirk [12] carried out linear stability
analysis and direct numerical simulation of detonation
by making use of a three-step chain-branching reaction
model. They used the chain-branching crossover tem-
perature as a bifurcation parameter. This parameter
controls the ratio of the induction length to the length
of the reaction zone. By varying this parameter,
the mechanisms of regular and irregular modes of
instability and, �nally, failure mode, were obtained.
Ng and Lee [13], who used this three-step model for
studying direct initiation of detonations, suggested
that the ratio of induction and reaction zone lengths is
the main parameter (independent of the rate process),
which characterizes the stability of detonation waves.

A two-step reaction model was used by
Sharpe [14] to study the linear stability of pathological
detonations. In his model, the �rst step was exothermic
and the second one was endothermic. He concluded
that decreasing the value of Ea1 �Ea2 (the activation

energy of the �rst step minus the activation energy
of the second step) tends to destabilize pathological
detonations.

Previous works indicated the important role of the
induction and reaction lengths on instability. However,
no attempt has been made to investigate this role
systematically. For example, Howe et al. [15] showed
that by changing the heat release rate, the induction
delay has a destabilizing e�ect.

In this paper, a two-step reaction model is used.
The �rst is a non-heat release induction step and the
second is an exothermic reaction. In the next section,
the model used for this investigation is presented and
the modeling assumption behind it is described. Then,
the spatial structure of the steady detonation wave
admitted by the model is detailed and a description
of how this structure changes, as Ea1 and Ea2 are
varied, is presented. Furthermore, the numerical tech-
niques used to obtain the numerical simulations of the
nonlinear evolution of the pulsating, one-dimensional
detonations are outlined and the results of this compu-
tational study are discussed. Finally, this paper ends
with some conclusions that have been drawn from the
investigation.

PHYSICAL MODEL

The detonation is initiated using a blast wave. The
chemical reaction is modeled by two-step kinetics. The
�rst step indicates an induction delay where no heat
is released and reactant A is converted to an excited
state, A�. When the �rst reaction is near completion,
the second step starts. In the second step, A� is
converted to B (product of reaction) and the energy
of the reaction is released. These two steps are shown
by two reactions:

A! A�; and A� ! B: (1)

The rates of reactions progress are given by:

w1 =
d�

dt
= �K1� exp

�
�Ea1
RT

�
;

w2 =
d�

dt
= �K2� exp

�
�Ea2
RT

�
; (2)

where w1 and w2 are reaction rates, K1 and K2 are
constant of reactions, T is the absolute temperature,
R is the speci�c gas constant and Ea1 and Ea2 are
activation energies. � and � are progress variables
of two reactions. �, which represents consumption of
reactants, decreases in the induction step from 1 to
zero. (It is not possible to choose � = 0, because the
�rst step gives in�nite time to be completed. Instead,
the value of (10�5) was chosen as a typical small value
for �.) �, the progress variables of the second step,
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remains constant during the induction step (� = 1)
and decreases in exothermic step from 1 to zero.

The governing equations used are the one-
dimensional reactive Euler equations:
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where variables �; u; p and e are density, particle ve-
locity, pressure and total internal energy, respectively.
A polytropic equation of state and an ideal thermal
equation of state are used,

e =
p

�( � 1)
+
u2

2
+Q�; p = �RT; (4)

where Q is the heat release per unit mass of the
reactant and  is the ratio of the speci�c heats.
The dependent variables are non-dimensionalized with
respect to the post shock steady-state properties of
ZND detonation. Thus, the density, pressure and
velocity are non-dimensionalized with the post shock
density (�s), pressure (ps) and sound speed (Cs),
respectively. The characteristic length scale, Lc, is
chosen arbitrarily as the half reaction length of the
steady ZND detonation for Ea1 = 5 and Ea2 = 28.
The characteristic time scale is tc = Lc=Cs. Q;Ea1 and
Ea2 are non-dimensionalized with RTo (for briefness,
RTo will not be shown in the next sections). In all
calculations here, Q=RTo = 50 and  = 1:2 are used.

STEADY-STATE ZND STRUCTURE

For a set of known parameters (e.g., Q;Ea1; Ea2 and
), detonation may be stable or unstable. Stability
of detonation is determined with numerical simulation
of unsteady gas-dynamic equations or linear stability
calculations. Here, the �rst method is chosen.

The steady-state ZND structure of a detonation
represents the structure of a stable detonation. The
induction and reaction length of this structure are
two meaningful length scales, which have been used
by many researchers (e.g., [12,13]) to investigate the
di�erent detonation dynamic phenomena, such as the
instability problem.

The steady-state ZND structure of detonation
with two-step chemical kinetics can be determined by
neglecting unsteady terms in the governing equations

(Equations 2 to 4). The result is a set of linear
di�erential equations with respect to X , which could
be solved analytically. This solution is denoted in the
following by the superscript*.

It is assumed that the steady detonation prop-
agates with the CJ velocity to the left along the
path xl = �D�

CJt
l (superscript l denotes lab frame

reference), where xl denotes position of shock front and
D�

CJ is the CJ detonation velocity, which in terms of
Q and  is:

D� = D�

CJ

=

2
4�1+ (2�1)Q



�
+
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1+
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�2

�1

!1=235
1=2

:
(5)

Calculations are performed in a steady shock attached
coordinate system (X):

X = xl +D�

CJ t
l: (6)

Pressure, velocity and density (non-dimensionalized
with shock conditions) can be shown to satisfy [6]:

p� = a+ (1�a)(1�bq�)1=2;

u� =
(1� p�)

M�

s

+M�

s ;

�� =
M�

u�
; (7)

where:

M�
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2 + 2
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;

a =
M�

s
2 + 1

( + 1)
;

b =
M�

s
22( � 1)

(1� a)2( + 1)
: (8)

M�

s is the Mach number immediately behind the shock.
The chemical energy release, q�, in the steady wave
satis�es:

q� = Q̂��; (9)

where Q̂ = Q=RTs and the second reaction parameter,
��, is assumed as an independent parameter in this
step.

Note that the steady-state variables immediately
behind the shock (X = 0), satisfy the shock conditions:

�� = p� = 1; u� =Ms; �� = 1; �� = 1: (10)
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In the next step, X must be calculated from the
following kinetics relations:

w�1 =
d�

dt
= u�(�)

d�

dX
= �K1�

� exp

�
��1
p�v�

�
;

w�2 =
d�

dt
= u�(�)

d�

dX
= �K2�

� exp

�
��2
p�v�

�
;

�1 = Ea1=(RTs); �2 = Ea2=(RTs): (11)

It is assumed that K1 = K2. These two parameters are
selected such that length scale becomes half reaction
length for Ea1 = 5 and Ea2 = 28. Scaling procedure
is further explained in Appendix A.

Since the second step starts after completion of
the �rst step, it follows that:

X =

�Z
1

u�(�)=w�1(�)d� +

�Z
1

u�(�)=w�2(�)d�: (12)

Because in the �rst step no heat is released, from
Equation 7 it is observed that the pressure, velocity and
density remain constant at their initial values and only
� varies (see Figure 1). Thus, the length of the �rst
step could be obtained from the following equation:

X =

�Z
1

Ms=w
�

1(�)d� =
�Ms exp(�1)

K1

�Z
1

d�

�

=
�Ms exp(�1)

K1

ln(�): (13)

The induction length, from the shock to the location
where � = 0:95 (in which 5% of the heat of combustion

Figure 1. Steady ZND pro�les for temperature (T ),
velocity (U), pressure (p), second reaction parameter (�)
and �rst reaction parameter (�) (Q = 50;  = 1:2;
Ea2 = 25 and Ea1 = 5).

is released) and the reaction length, from the end of
the induction length to the location where � = 0:05
(in which 95% of the heat of combustion is released),
are de�ned as shown in Figure 2. It is noted that the
induction length is the sum of the �rst step length to
the induction length associated with the second step.

It is interesting to study the changes in the steady
wave structure as the activation energies of the two
steps, Ea1 and Ea2, are varied.

Figure 3 shows the change in the steady wave
structure for Q = 50;  = 1:2 and Ea2 = 20, while the
activation energy of the �rst step (Ea1) varies from 1
to 10. Across the shock, the pressure jumps abruptly to
the Von Neumann state. During the induction period,
the pressure remains constant. When energy starts
to release in the reaction zone, the pressure drops.
At the end of the reaction zone, the products are at

Figure 2. De�nition of the induction and reaction
lengths in terms of the second reaction parameter (�).

Figure 3. Steady ZND pro�les: Pressure pro�le for
increasing the activation energy of the �rst step (Q = 50;
 = 1:2 and Ea2 = 20).
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Table 1. Values of the induction length (�induction), the
reaction length (�reaction) and the ratio of the reaction
length to the induction length (Q = 50;  = 1:2 and
Ea2 = 20).

Ea1�induction�reaction�reac.=�ind.Behavior

1.0 0.1651 0.6194 3.7528 Stable

5.0 0.3428 0.6194 1.8072 Unstable

8.0 0.6151 0.6194 1.0071 Unstable

10.0 0.9176 0.6194 0.6751 Unstable

equilibrium and the �nal state corresponds to the CJ
condition. In Figure 3 it is seen that by increasing Ea1,
the induction length increases. The numerical values
of the induction and the reaction lengths for Figure 3
are given in Table 1. It is seen that by increasing
Ea1, the induction length (�induction) increases, while
the reaction length (�reaction) remains constant (the
same results were obtained with other de�nitions of
reaction length) and, hence, the ratio of the reaction
length to the induction length (�reaction=�induction)
decreases. Since Ea2 is constant, Ea1 controls the
induction length.

Figure 4 shows the change in the steady wave
structure for Q = 50;  = 1:2 and Ea1 = 5, while
the activation energy of the second step varies. For
Ea2 = 10, the structure of steady detonation is very
close to the square wave model [6]. For a higher
value of Ea2, the di�erence between the structure
of steady detonation wave and this model becomes
greater. Table 2 shows the induction and reaction
lengths for di�erent Ea2. By increasing Ea2, the
induction length increases slightly. This is due to
increasing the induction length associated with the
second step. For Ea2 > 35, the induction length of
the second step is greater than the induction length of

Figure 4. Steady ZND pro�les: Pressure pro�le for
increasing the activation energy of the second step
(Q = 50;  = 1:2 and Ea1 = 5).

Table 2. Values of the induction length (�induction), the
reaction length (�reaction) and the ratio of the reaction
length to the induction length (Q = 50;  = 1:2 and
Ea1 = 5).

Ea2�induction�reaction�reac.=�ind. Behavior

10.0 0.3186 0.2198 0.6899 Unstable

15.0 0.3251 0.3659 1.1253 Unstable

20.0 0.3428 0.6194 1.8072 Unstable

22.0 0.3565 0.7690 2.1572 Stable

25.0 0.3906 1.0709 2.7414 Stable

28.0 0.4529 1.5050 3.3229 Unstable

35.0 0.8747 3.4655 3.9617 |�

37.5 1.2382 4.7385 3.8270 |�

50.0 11.601 25.764 2.2208 |�

* Although this case was not simulated numerically, as noted

in the introduction, the instability of this case is obvious.

the �rst step, thus, Ea2 controls the induction length.
The reaction length (�reaction) increases, when Ea2
increases. The ratio of reaction length to induction
length (�reaction=�induction) increases for Ea2 < 35
and, then, decreases for Ea2 > 35. It is seen
that by increasing Ea2, both induction and reaction
lengths increase. However, for small values of Ea2
(i.e., Ea2 < 25), the induction length of the second
step is small relative to the reaction length and the
total induction length. Therefore, the induction length
approximately remains constant. Above this limit, the
induction length of the second step becomes signi�cant
and Ea2 controls both the induction and reaction
lengths. Decreasing of the ratio (�reaction=�induction)
for Ea2 > 35 is due to the dominant e�ect of the second
step. At the limit, when Ea2 is very large relative
to Ea1, the two-step model is similar to the one-step
model. Therefore, it can be concluded that small values
of Ea2 control the reaction length and large values
of Ea2 control both induction and reaction lengths.
Furthermore, this analysis shows the salient features
of the two-step model in order to study the individual
e�ects of induction and reaction lengths.

The variation of the ratio of reaction length to
the induction length with Ea2 is drawn in Figure 5.
This ratio has been introduced by many investigators
as a criterion, which controls the stability of gaseous
detonation, (e.g., [13,15]). For a one-step model, the
ratio is decreased by increasing the activation energy.
Therefore, for a single-step model, decreasing the ratio
causes the instability. Ng et al. [13] obtained the
same conclusion for a three-step model. However, the
present analysis of the ZND structure for a two-step
model predicts that the variation of the ratio with the
activation energy of the second step has an extremum
(Figure 5). This means that for Ea2 < 35, the ratio
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Figure 5. Variation of the ratio of the reaction length to
the induction length vs Ea2.

increases with increasing Ea2 while, for Ea2 > 35,
the ratio decreases with increasing Ea2. To study the
stability behavior of the two-step model, the complete
unsteady gas dynamics equations should be solved.
This is the subject of the next section.

NUMERICAL METHOD

Over the past 40 years, a great number of numeri-
cal schemes have been devised for the simulation of
gas dynamics. In recent years, a number of new
shock-capturing schemes, often called high-resolution
schemes, have been proposed. Among them are the
FCT, MUSCL, ENO and PPM methods. There are
several excellent review articles, which compare these
schemes from di�erent points of view. Interested
readers should refer to those articles, particularly the
paper of Yang et al. [16] and the Ph.D. thesis of
Bourlioux [17]. After comparing di�erent schemes,
the PPM (Piecewise Parabolic Method) [18] is recom-
mended as the best in overall performance. Therefore,
in the present work, PPM is chosen as the main gasdy-
namics solver. Details of this method are explained in
Appendix B.

In analyzing the propagation of pulsating det-
onation, the tracking of the shock front plays an
essential role. In the past twenty years, several methods
have been developed to track the front and other
discontinuities in the ow �eld. For the purpose of
this paper, the simplest one is the conservative front
tracking of Chern and Colella [19], which has been
utilized in the present study. Since all reactions are
completed in a narrow region close to the shock, it is
more economical to use a �ne grid only in this region
and coarse grid elsewhere. To ful�ll this requirement,
a simple version of the \Adaptive Mesh Re�nement"
of Berger and Collela [20] has been used. The entire
domain is covered by coarse grids and the �ne meshes

are superimposed on the coarse grid near the front.
The number of meshes that are necessary, depends on
the behavior of the shock front [12]. Unless noted
otherwise, the computations were performed using a
grid resolution of 20 points in the half-reaction length
(L1=2) as the �ne grid. It was observed that further
increases in grid resolution have no e�ect other than
to cause very small changes in the amplitude and
period of the shock pressure oscillation. For some
cases up to 120 points per half reaction length were
used. The developed code is validated via several test
problems [21].

RESULTS AND DISCUSSION

Previous researches have shown that for a one-step
Arrhenius kinetics model, the activation energy is the
main parameter, which determines the instability of
CJ detonation (e.g., [5,6]). In a one-step model, for a
mixture with Q = 50 and  = 1:2, the ZND structure
is unstable for Ea higher than 25 [6]. Increasing the
activation energy beyond this limit causes the detona-
tion front to exhibit oscillatory behavior as shown in
Figure 6. In this �gure the shock pressure, normalized
with ZND shock pressure, is used for demonstrating
detonation front behavior. Therefore, increasing Ea in
the one-step model destabilizes a detonation.

The e�ect of the activation energies of the two-
step model on detonation front behavior has been
studied in this work. Calculations were arranged in
two stages. At each stage, one of the activation energies
was kept constant and the other was changed. From
these results, the front shock pressure is plotted vs the
instantaneous shock location.

At the �rst stage, the activation energy of the
second step was kept constant (i.e., Ea2 = 20) and
Ea1 was changed. The variation of shock pressure for

Figure 6. E�ect of the activation energy of the one-step
model on detonation instability.
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Ea1 = 5 is demonstrated in Figure 7. It is seen that the
front shows regular oscillation, with small amplitude.
Increasing Ea1 to 8 causes larger amplitude to occur
(Figure 8). An irregular oscillation appears as the
activation energy increases to 10 (Figure 9). In this
case, it is observed that increasing the activation energy
of the induction step promotes detonation instability.
This result is similar to that of the one-step model.

Table 1 shows induction and reaction lengths and
the stability status of these cases. It is observed that
increasing induction length (occurred by increasing
Ea1) destabilizes detonation. The reaction length
remains constant because Ea2 is kept constant. Thus,
decreasing the ratio of reaction length to induction
length, as a criterion, causes instability of detonation.

In the second stage of the calculations, the e�ect
of Ea2 on detonation instability has been studied while
Ea1 was kept constant (i.e., Ea1 = 5). Figure 10
shows the variation of the front shock pressure for

Figure 7. Regular oscillation with small amplitude of the
detonation shock pressure for Ea1 = 5.

Figure 8. Regular oscillation with large amplitude of the
detonation shock pressure for Ea1 = 8:

Figure 9. Irregular oscillation with large amplitude of
the detonation shock pressure for Ea1 = 10:

Ea2 = 15. An almost regular oscillation with large
amplitude is observed (it is noted that the steady
structure of this case is similar to the square wave
model, Figure 4). Increasing Ea2 to 20 causes a
smaller amplitude oscillation with respect to Ea2 = 15
(Figure 11). As Figure 12 shows, further increasing
Ea2 to 22 stabilizes the front propagation. The front
is also stable for Ea2 = 23 to 25. Figure 13 shows the
detonation front behavior for Ea2 = 28. An oscillatory
variation of the front pressure with a very large period
(in comparison with other cases) is observed for this
case. Therefore, it is concluded that increasing the
activation energy of the exothermic step decreases the
amplitude of oscillation for Ea2 < 22, while increasing
the amplitude for Ea2 > 25.

Table 2 shows induction and reaction lengths and
the stability status of the above cases. It is observed
that by increasing the reaction length and the ratio
of the reaction length to the induction length (both
occurred by increasing Ea2), detonation tends to be

Figure 10. Regular oscillation with large amplitude of
the detonation shock pressure for Ea2 = 15:
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Figure 11. Regular oscillation with small amplitude of
the detonation shock pressure for Ea2 = 20.

Figure 12. Stable behavior of the detonation shock
pressure for Ea2 = 22.

Figure 13. Oscillatory variation of the detonation shock
pressure for Ea2 = 28.

stabilized for Ea2 < 22. However, for Ea2 > 25,
detonation becomes more unstable. The behavior of
the induction and reaction lengths does not change
during increasing Ea2. From Figure 5 it is seen that
by increasing Ea2, the ratio of reaction length to
induction length increases for Ea2 < 35 and decreases
for Ea2 > 35. As expected, the behavior of this
ratio is changed when detonation is stabilized and then
destabilized. However, the change in the behavior
of the ratio of the ZND structure does not coincide
with the change in the stability status of detonation
determined by numerical simulation.

CONCLUSION

Detonation instability (using a two-step chemical ki-
netics model) has been studied in this work. It was
shown that:

1. For a �xed Ea2, increasing Ea1 (i.e., the activation
energy of the induction step) increases the induc-
tion length and destabilizes detonation, the same
behavior as the one-step model;

2. For a �xed Ea1 = 5, increasing Ea2 (i.e., the
activation energy of the heat release step) increases
the reaction length and the induction length. In-
creasing the reaction length may have a dominant
stabilizing e�ect for Ea2 < 22;

3. For a �xed Ea1 = 5, if Ea2 increases above 25,
increasing the induction length has a dominant
destabilizing e�ect;

4. The ratio of reaction length to induction length
of the ZND detonation characterizes detonation
instability, but its behavior does not exactly co-
incide with the instability status of detonation,
which is determined by the numerical solution of
the unsteady governing equations.
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APPENDIX A

Scaling Procedure

The half reaction length of the case (Ea1 = 5 and
Ea2 = 28) is chosen as length scale. This length can
be calculated from Equation 12.

lc = 1 = X� +

1

2Z
1

u�(�)=w�2(�)d�

=
11:513Ms exp(�1)

K1

+

1

2Z
1

u�(�)=w�2(�)d�: (A1)

If Q = 50 and  = 1:2 then:

Ms = 0:324; �1 = 1:039; �2 = 5:817: (A2)

Calculating Equation A1 gives K1 = K2 = 33:45.

APPENDIX B

Piecewise Parabolic Method (PPM)

The Piecewise Parabolic Method (PPM) of Colella
and Woodward [18] is a higher-order extension of the
Godunov method. To explain PPM, the numerical
solution of an initial-boundary value problem is con-
sidered for the hyperbolic equation:

ut + �fx = 0; (B1)

here, u(x; t) is an unknown function of x and t and
f(u) is called the ux function. Figure B1 illustrates
space-time domain and indexing.

Equation B1 has the following discretized form:

un+1

j = unj �
��t

�x
(fj+ 1

2

� fj� 1

2

); (B2)

where �x = xj+1=2 � xj�1=2 and �t = tn+1 � tn.
\f" is the ux at the interface between two cells.
Knowing the value of u at time level tn, the key
to �nding the solution at a new time level, tn+1, is

Figure B1. Computational domain, indexing.
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to properly compute the interface uxes, fj+1=2 and

fj�1=2. Indeed, the di�erence between the di�erent
methods mentioned above is in the treatment of these
uxes.

The main contribution of Godunov is the way
in which the uxes are computed. Instead of using
some averaging between cell values, in the Godunov
method the uxes are computed from an exact solution
of the Riemann problem at the interface between
two adjacent cells. PPM is a higher-order Godunov
method which, instead of using a constant value for
the dependent variable at each cell (as in the Godunov
method), uses a parabolic pro�le in each cell with form:

u(x) = uj� 1

2

+ �[�uj + u6;j(1� �)]; (B3)

where:

� =
(x � xj)

�x
; xj� 1

2

� x � xj+ 1

2

; (B4)

�uj = uj+ 1

2
;L � uj� 1

2
;R; (B5)

u6;j = 6[uj� 1

2

(uj+ 1

2
;L + uj� 1

2
;R)]: (B6)

The left and right side state variables for the Riemann
solver, uj+1=2;L and uj+1=2;R, are calculated by �rst
using an interpolation scheme to obtain u(x) and then,
an approximation to the value of u at xj+1=2, subject to
the constraint that uj+1=2 does not fall outside of the
range of values given by uj and uj+1. The interface
value is calculated as:

uj+ 1

2

=
1

2
(uj+1 + uj) +

1

6
(�luj � �luj+1); (B7)

where:

�luj = min
�
j�uj j; 2j�j+1=2j; 2j�j�1=2j

�
sign(�uj);

if : �j+1=2:�j�1=2 > 0; (B8)

�luj = 0; otherwise: (B9)

Here, �uj =
1

2
(uj+1 � uj�1);�j+1=2 = unj+1 � unj and

�j�1=2 = unj � unj�1.
In smooth regions away from the high gradients,

the left and right states can be computed directly as:

uj+ 1

2
;L = uj+ 1

2
;R = uj+ 1

2

; (B10)

then, the interpolation function is continuous at the
interface. If the interpolation function, u(x), takes
on the values, which are not between uj+1=2;L and
uj+1=2;R, to satisfy the monotonocity condition, more
limitations must be applied. The left and right states,
uj+1=2;L and uj+1=2;R, are modi�ed so that u(x) is a
monotone function on each cell. The new expressions
for uj+1=2;L and uj+1=2;R are as follows:
I) uL;j = uR;j = unj ,

if: (uR;j � unj )(u
n
j � uL;j) � 0;

II) uL;j = 3unj � 2uR;j ,

if: (uR;j � uL;j)

�
unj �

1

2
(uR;j + uL;j)

�
>

(uR;j � uL;j)
2

6
;

III) uR;j = 3unj � 2uL;j,

if: �
(uR;j � uL;j)

2

6
>

(uR;j � uL;j)

�
unj �

1

2
(uR;j + uL;j)

�
: (B11)

Finally, the cells interface ux is computed as:

fj+ 1

2
;L(y) = uR;j �

x

2

�
�uj � (1�

2

3
x)u6;j

�
;

where: x =
y

��j
;

fj+ 1

2
;R(y) = uL;j+1 �

x

2

�
�uj+1 + (1�

2

3
x)u6;j+1

�
;

where: x =
y

��j+1

: (B12)

In Equations B11 and B12, y = ��t if � > 0 and
y = ���t if � < 0.

With the left and right states at the interface
known, the next step is to solve the Riemann problem
to compute the value of the state variables at the
interface. Details of the PPM method for the system
of Euler equations are described by Colella et al. [18].


