Scientia Iranica, Vol. 11, Nos. 1&2, pp 138-145
(© Sharif University of Technology, April 2004

Research Note

Solution of Three-Dimensional Line-of-Sight
Guidance with a Moving Tracker

S.H. Jalali-Naini* and V. Esfahanian!

The closed-form solution of a three-dimensional line-of-sight guidance with a moving tracker
is derived for an ideal case, in which a pursuer is always on the instantaneous line between
the target tracker and the target. The solution can be applied to both surface-to-air and air-to-
surface applications. Some significant characteristics, such as intercept time, cumulative velocity
increment, initial condition for interception, and the effect of acceleration limit, are also obtained
and discussed. In addition, the equivalent effective navigation ratio for the line-of-sight guidance
is introduced. Finally, solutions for a special case of maneuvering target are presented.

INTRODUCTION

In Line-Of-Sight (LOS) guidance, a pursuer maneuvers
so as to be on the instantaneous LOS between the
target tracker and the target. If the pursuer is always
on the tracker-target LOS, then it will surely hit
the target. This guidance law is also called 3-point
guidance [1-9].

The differential equation of the pursuer range,
with respect to its angular position for LOS trajectory,
is not integrable, even for a constant-speed pursuer
and nonmaneuvering targets [4]. Locke gave a 10-
term series solution for this problem [1]. The solution
can also be described in terms of elliptic integrals [5].
Jalali-Naini and Esfahanian presented the closed-form
solution of the LOS trajectory for nonmaneuvering
targets, assuming the total pursuer acceleration to
be equal to the required acceleration in the direction
normal to the LOS [10,11]. This solution was extended
to solve a modified LOS guidance [12]. A general
differential equation was then introduced by Shoucri
to model the two-dimensional (2-D) trajectory of a
pursuer for various guidance laws against maneuvering
targets [13]. An approximate solution of the 3-D LOS
guidance, for a pursuer with an arbitrarily time-varying
velocity against maneuvering targets, was presented
in [14], in which the pursuer commanded acceleration
to be in the direction normal to the pursuer velocity.

. Corresponding Author, Aerospace Research Institute,
P.O. Boz 15875-3885, Tehran 14666, 1.R. Iran.

1. Department of Mechanical Engineering, Unwversity of

Tehran, Tehran 14395, I.R. Iran.

In this study, the solution of the 3-D LOS trajec-
tory for nonmaneuvering targets is derived for a moving
tracker. Here, the total pursuer acceleration is also
assumed to be equal to the required acceleration in the
direction normal to the LOS. This solution is also valid
for air-to-surface applications, whereas the previous
solutions are only suitable for a stationary tracker.
In addition, the analytical solution for a special case
of maneuvering target is presented. Note that the
minimum acceleration which must be applied in order
to keep the pursuer on the LOS is termed “required
acceleration”.

EQUATIONS OF RELATIVE MOTION

The inertial Opyy, Cartesian coordinate system and
the nonrotating Oxyz Cartesian coordinates with the
origin fixed at the moving target-tracker (point O), are
shown in Figure 1. These two coordinate systems are
coincident at firing instant. In the figure, M and T
denote the pursuer and the target, respectively and r,
is the distance of particle P (pursuer M or target T)
from the tracker, O. Consider the spherical coordinates
(r,3,¢) with origin at the target-tracker, in which
and ¢ are azimuth and elevation angles, respectively.
Let (e, eg,e.) be the unit vectors along the spherical
coordinate axes.

The position, velocity and acceleration vectors
of the target tracker and particle P, with respect to
the inertial reference, are Ro, Vo, Ao and R, V,, A,
respectively. One can write the relative position vector;
r, = R, — Ro, velocity vector; v, = V, — Vg and
acceleration vector; a, = A, — Ag, for particle P.
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Figure 1. Pursuer-target engagement geometry.

Therefore, one has:
v, = e, (1a)

Vp = Tpe, 4 1, cOSEpep + Thipe.. (1b)

The three relative acceleration components of particle

P (aj,al,a5) are as follows:

-- -2 32 02
a, =1p —1pe, — 1pf3, COS” £p, (2a)

ag = rpﬁp cosep + 27'“,,31, cosep — QTPBpép sin g, (Qb)
a5, = 1pép + 27pE, + 1, sin e, oS £ (2¢)

The preceding relations can be expressed in the form
of:

Vp=Tper+§p, X Ip, (3a)
a,=7pe, 421, (R, x e,)+Q, xr,+Q, x (Q, x1r,), (3b)

where Q,, is the angular velocity vector of r, and is
given by:

Q, = (r, x Vp)/rf,, (4a)

Q, =/ + ﬂf] cos? g, (4b)

It should be noted that Equations 3 are in terms of €2,
instead of the angular velocity vector of the moving
spherical coordinates w, = wye, + €2, in which w; =
B, sine, [12]. The reason is simple. Since:

wp X e, = —w + Q, xe,, (5a)
wp X (wp X e;) =w, 2+ Q, x (2, xe,), (5b)
one has:

Wy X e tw,x (wyxe,) =8, xe,+Q,x(2,xe,). (6)
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The angular momentum of unit mass for the relative
motion (H, =r, X v,) can be written as:

H, = Hye, = 13(—¢,e5 + B, cose,e.), (7)

where ey, is the unit vector of H, or 2,(2, = Q,ey).

The other unit vector can be defined as e,J; =ep X €,

therefore [15];
e# = (Ti/Hp)(Bp coscyeg + £pe:). (8)

By the preceding definitions, Equations 3 can be
expressed in the following form:

v, = pe, + S er, (9a)
a, = (i, — rpﬁi)er + 27, Qe +Q, x 1, (9Db)
The set of unit vectors (e, e,f, ep) constitutes new

moving coordinates, which are called h coordinates [15].
The relative acceleration vector can be expanded in this

coordinate system with the components of (aj, aﬁ, ag):
a, = aye, + a;‘eﬁ + aZeh. (10)

In terms of the h coordinates, Equations 2 can be
rewritten as [16]:

iy —1rpQ2 = ar, (11a)
oS + 21,0, = ar, (11b)
h
: p 1
= — . 11
€n n, €h (11c)

Equations for a Nonmaneuvering Target and
Tracker

Consider a case in which the target and its tracker do
not maneuver. In other words, their velocity vectors
and the target relative velocity, v, remain constant.
Therefore, the angle between the target relative ve-
locity and the LOS, v = cot™! rjf),v decreases with
time where the subscript “¢” denotes the target (see
Figure 1). In addition, h* is defined to be the nearest
distance from the tracker to the line along the target
relative velocity vector.

The unit angular momentum for the target rel-
ative motion remains constant for a nonmaneuvering
target and tracker, that is:

H; = ryvesiny = e, ve sin o, (12)

where the subscript “0” describes the initial value.
Therefore:

rysiny = 1y, sinyg = h”. (13)
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It can be seen that h* is equal to Hy/v;. From Figure 1,
one can write:

T4+ = Vi COS7, (14a)

re§dy = vesin-y, (14b)

where ), is the tracker-target LOS rate. By differ-
entiating Equation 13 with respect to time and using
Equation 14a, one obtains:

v, sin? vy V¢ sin vy

8l i o (15)

Comparing Equations 14b and 15, one can conclude
the relation Q; = —%. The other useful relations can
then be found as:

5 = 242 cot 7, (16)
coty = cotyg + (vi/R")t. (17

The relations for (7, B¢, c:) and their time derivatives
are simply derived in the moving Cartesian coordinates
(z,y,z). For instance, one has:

17 =10 4 2(rey ey )+ VL, (18)
tan B = yi/we = (Yoo + Yeot)/(we, + T4y t), (19)
Zt[) + 2t0t

(20)

sine; = z¢ /1y =

T3 4 27 Tyt + Vit

Using Equation 19 gives an expression for the current
time as:

t= (xto tan 615 - yto)/(yto - Cbto tan ﬂt)v (21)

and by substituting that into Equation 18 or 20, one
can eliminate the current time, ¢, from the equations.
Therefore, an explicit relation between r, and (; or
g, and (; can be obtained. Similar procedure can
be applied to obtain relations between the variables
(¢, Bt,€¢) and fy.

Assume that the target relative velocity is in the
negative y direction and x4, 2¢, # 0. One can obtain
simple relations for this case as:

Ty = (g, Sin gy, )/ sin g, (22)

tane; = (taney, / cos By, ) cos fr, (23)

sin y=(sinyp/ siney, ) sine, = \/1 — cos? e, sin? fy,

(24)

and for angular rates, one arrives at:
B/ By, = cos? B/ cos® By, , (25)
£¢/é4, = (sin? e, sin 3;)/(sin? &, sin Gy, ). (26)
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EQUATIONS OF LOS GUIDANCE

The basic guidance law in 3-point guidance is 3,,(t) =
Bi(t) and e,,(t) = e(t), where the subscript “m”,
denotes the pursuer. An ideal case is assumed, in which
the pursuer is always on the line between the target
tracker and the target without any error. If the pursuer
is initially fired at the target from the target tracker
and maneuvers according to the following relations:

ozfI = rth COSEpy + 21'“th COSEpy — ZTthém Sin €y,
(27a)
a5, = Tt 4 2méy + rm B2 sine,, cosen, (27D)
then, it will always remain on the tracker-target LOS.
The proof of Equations 27 can be observed as follows.
By the definition p,, = 7, cos ey, Equation 27a can be
rewritten as a?, = p,m B¢ + 2pm3; therefore, one has:

55 B = B0+ 20 (B = ) = 0 (28)

The preceding relation is a linear first-order differential
equation which has a solution in the form of pfn(ﬂ.m —
Bt) = constant. Thus, one has Bm = Bt. Using
Equation 27b, one can also obtain 12 (¢, — &) =
constant. Hence, one has 3,,(t) = B:(t) and ,,(t) =
e¢(t). Hereafter, the subscript “m” or “t” will be
dropped for 3 and ¢ for convenience. It should be noted
that a], = 0 is assumed. The value of a], does not
cause any deviation from the LOS.

The objective of LOS guidance may be stated by
the vector product r,, xr; =0 for r,, <7; and r,, - r; >
0 [5]. By differentiating the preceding relation with
respect to time, one has:

Ty, X Vi =Tp X V. (29)

The scalar form of Equation 29 can be written as:

ViTm

siny = sin 7, (30)

VTt
where 1 is the angle between the pursuer relative
velocity and the LOS. By differentiating Equation 29
with respect to time, one arrives at:
2Vy X Vi

Tm
+ —(a; X e;). (31)
Tt Tt

a, Xe,=
With the definition a,jos = a—(a.e,)e,, one can obtain:

Amplos plos (32)

. Tm . 1 T'm
= 2(1, — —7¢)e;, + —ay
Tt Tt

The pursuer relative acceleration can then be found as:

A= — T 22)er +2(i — ) Qe+ ay  (33)
Tt Tt

plos
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or:

. . . T'm
ay, = (Fm — rm%)e, + (rmQ+ 2er)efL‘ + —afeh.

"t (34)

The pursuer relative velocity vector can be expressed
in the form of v, = cie, + covy, in which ¢; = 7, —
T T/t and ¢a = 7, /7. This means that the vectors
e, v, and v, are coplanar.

SOLUTION OF LOS GUIDANCE FOR A
NONMANEUVERING TARGET AND
TRACKER

Consider that the target and its tracker move with con-
stant velocity vectors. The total pursuer acceleration
is also assumed to be equal to the required acceleration
in the direction normal to the LOS, therefore, a], = 0,
which becomes:

Py — T y? = 0. (35)
By using:
drm,
= Y ——, 36
Fm = (36)
Ldry, o dPry,

T = F—— 37
and with the change of independent variable ¢ to 7y, one
may rewrite the differential Equation 35 in the form of

L drp, .2 d2rm
— — —7Tn ) =0. 38
o T (W ' ) 39

Using Equation 16, the preceding differential equation
simplifies to :
d?r,,

dr,,
—— +2coty—— —
dy

o T = 0. (39)

By changing the variable u = r,, siny, one can rewrite
Equation 39 as:

1 d*u
Z =0 40
sin v dv? ’ (40)

which has a solution in the following form:

Ay + Ay

41
sin (41)

where A; and A, are integrating constants and can be
determined from the initial conditions. From Figure 1,
one may write:

Tm = Vi COSY, (42a)

T'm$ = Vv, sin, (42Db)
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In LOS guidance, the pursuer is initially fired at
the target from the tracker (r,,, = 0). By using
Equations 42, one can conclude g = 0 and 7, = Viny;
therefore,

_ Ty (70 =)

. for Yo 7& 077‘—7 (43)
sin y

where n is the ratio of initial relative velocity of the
pursuer to the target relative velocity (v.,,/v:). By
differentiating Equation 43 with respect to time, one
obtains:

Fm = (Vi / sinyo)[siny + (v0 —7) cos ], (44)

One can also obtain the pursuer acceleration as:

2V . 20"V,
G = L iy = ST T (45)
h* sin v T3

Dividing Equation 42a by Equation 42b yields
T COt Y = —dry, /d7y; therefore:

Yo — 7

tany = .
L+ (70 — 7) coty

(46)

2 Q2 and after some

. . 2 _ .2
By using the relation vi, =72 + 1
manipulation, one derives:

2
—5—[(70 = 7)* +sin”y + (70 — 7) sin 29].
sin ’70 (47)

V2:

One may also write:
Vinsin ¥ = |V,,, x e,], (48a)
Vincos¥ =V, .e,, (48b)

in which ¥, the pursuer velocity-to-beam angle, is the
angle between the pursuer velocity vector and the LOS.
Therefore:

VS + (Vs + )
tan ¥ = . , (49)
Tm + V3
where V3, Vg and VJ are the components of the
tracker velocity in A coordinates.
The pursuer and target positions are equal at the
collision instant, therefore, by equating r,, and r; from
Equations 13 and 43, one arrives at:

Vs =" — (1/n)sinyo, (50)

where the subscript “f” denotes the final value. Using
Equation 17, intercepting time can then be found as:

tr = (h*/vi)(cotyy — cot ). (51)
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Using Equations 13 and 43, for interception of the
target, one must have:

n>sinyy /v for v #0,m. (52)

The cumulative velocity increment is defined as:

ty
AV = / A, |dt, (53)
0

in which A, is the pursuer acceleration. Therefore, by
using Equation 45 and for a nonmaneuvering tracker
(A,, = a,,), one arrives at:

AV = (2v,,,/ sinvyg)(cosys — cosp). (54)

The pursuer acceleration in the spherical coordinates
can be expressed as:

(Bcose es + £ e.). (55)

An important parameter in a command to LOS
system is the integral of the component of angular
velocity vector of the moving spherical coordinates
along the LOS, that is:

t
r :/0 Bsine dt. (56)

In a case where the target relative velocity is in
the negative y direction, the two preceding relations
simplify to:

2V, v
a,, = &;(— cos feg + sine sin fe, ) sin? g,
Tt, SIN” €g (57)

P =sgn(wi,2,) {sin—l (Sm )_Sin_l (M )} |
) <)

where sgn(-) is the sign function and c is:

c= \/1 + cos? By cot? gg. (59)

Equation 58 is valid for xy,,2, # 0, but for x;, = 0
or zy, = 0, one has I' = 0. When z;, = z;, = 0 and
Yi, > 0, the target will be intercepted before it passes
through the tracker.

In a special case, when target and tracker velocity
vectors are equal (V; = V), the pursuer moves on a
straight course with respect to an inertial reference. It
means V,, = const. and a,, = 0. Therefore, one has
¥ =Ty and rp, = v, t.
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Analysis of LOS Guidance for a Stationary
Tracker

The three-point guidance performance, unlike Propor-
tional Navigation (PN), is highly dependent on target
speed. In 3-point guidance, pursuer acceleration is
proportional to target speed. The pursuer acceleration
increases with time for an approaching target (; < 0)
and decreases for a receding target (/7 > 0). The
maximum pursuer acceleration occurs when the target
is at the nearest distance of its trajectory to the target
tracker.

In 3-point guidance, the ratio of pursuer initial ve-
locity to target velocity must be greater than sin o /7o,
in order for the pursuer to have the capability of
intercepting the target.

In order to compare 3-point guidance and true PN
(TPN), let the pursuer be fired at the target and then
guided under the TPN guidance law. The question is
what the effective navigation ratio should be so that
the pursuer will follow the LOS trajectory. For this
purpose, one can equate Equation 45 and the TPN
commanded acceleration. Therefore, one can find the
equivalent effective navigation ratio, N/, as:

;o am 2V, Visin®y

AT Y0 T hrsinyV.

(60)

where V. is the pursuer-target closing velocity. By
using the relation Q = (V;/h*)sin? v, one has:

N = 2V, Siny

eq —

. 61
Ve sinyg (61)
When the pursuer is on the tracker-target LOS, the
closing velocity can be obtained from the simple rela-
tion V. = 7, — ;. Therefore, one can arrive at the
following relation for the equivalent navigation ratio:

Nig=2/[L = (v =) cotr]. (62)

The pursuer follows the LOS trajectory if it is initially
fired at the target and guided under the TPN guidance
law with the preceding equivalent navigation ratio. The
value of Néq for an approaching target is less than 2,
whereas, for a receding target, it is greater than 2 and
equal to 2 at the collision instant for both approaching
and receding targets.

LOS guidance may be used for midcourse guid-
ance followed by PN. The previous solution can, thus,
be applied to a mixed guidance strategy, i.e., LOS
guidance in midcourse and TPN in the terminal phase.
The equivalent navigation ratio is a useful concept for
switching between the two guidance methods.

In practice, the pursuer maneuvering acceleration
cannot exceed a limit, which is called saturation ac-
celeration (ag,). Because the pursuer can ideally keep
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itself on the LOS without any error, one must have
A < Qgat O

oy, | 03y
Ty > 0t 81/ sin? g o> E <%,
QAsat in3 .
sin ('ys(;n;iyjm Y0) Yo > %7 vy > g (63)

Consider a case where the target velocity is in the
negative y axis (siny = \/1 — cos? esin® 3). Figure 2
presents the loci of target initial positions, in which a
pursuer can keep itself on the LOS until interception
occurs due to the acceleration limit. The region shown
in the figure is produced by rotating the 2-D area in
yz plane around the y axis using asot = 30 g and
the pursuer initial velocity and the target velocity
are 400 and 200 m/s, respectively. Because of the
symmetry of this region, with respect to yz plane, only
for —7/2 < 8 < m/2 is shown.

Analysis of LOS Guidance for Stationary
Targets

Consider the target to be stationary (V; = 0), which

yields vi = —Vo. Therefore, the relations in the
previous section can be simplified as:
Vipsin @ = <1 - r_m> Vo sin~y, (64a)
Tt
Vi cos¥ = 7, — Vo cos . (64Db)

Dividing Equation 64b by Equation 64a results in:
n
sinyo — (70 —7)

cot ¥ = — coty, (65)

where n = v,,,/Vo. Suppose that a helicopter has
a constant velocity and moves at a constant altitude

600

400

200

Figure 2. The region in which the pursuer can keep itself
on the LOS due to the acceleration limit (Equation 63)
(all the units are in meters).
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of 500 m. When its distance from a surface target
is 5000 m, it fires a missile at the target. The
missile initial velocity, with respect to the helicopter, is
150 m/s. For the 2-D engagement, one has h* = 500 m.
The angle between the missile velocity and the LOS
versus 7 is shown in Figure 3 for two cases, Vo =
150 m/s (Case 1) and 300 m/s (Case 2), respectively.
As can be seen, the final value of ¥ becomes zero.

SOLUTION FOR A SPECIAL CASE OF
MANEUVERING TARGET

Consider a special case where a constant-speed ma-
neuvering target moves on the surface of a sphere
with radius p and origin fixed at the stationary target
tracker. Therefore, one has r, = p,Q = v¢/p and
a; = —p%e, +aley, in which a* depends on the target
motion. Also, n = cot™*(—pQ?/al) is defined as the
angle between the target acceleration and the LOS.

One may express the pursuer velocity in terms of
e, and V., as follows:

Vm = imer + (’I‘m/’l"to )Vt (66)

As can be seen, the vectors e,., Vi, and V,, are
coplanar, although the engagement is not planar.

The pursuer acceleration in Equation 34 can be
simplified as:

a, = (Fm — er2)eT + Zimﬂefb‘ + (rm/p)a?eh.
(67)

Equation 67 implies that the pursuer acceleration is
not in the plane containing (e,, V¢, V,;,). The pursuer
acceleration has a component in the direction of e;,. For
this maneuvering target, simple but useful analytical
solutions are available for the two following cases:

1. The pursuer acceleration being equal to the re-
quired acceleration;

5
al
sk Case 2: n = 0.5
= }
O
A
= I
2} Case 1: n =1
1}
0 e AP R
5 10 15 20

180 — ~(deg)

Figure 3. The pursuer velocity-to-beam angle versus .
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2. A constant-speed pursuer.

When a target circles around the target tracker with
a constant radius at a constant altitude, which is a
special case of moving on the surface of a sphere, one
hase = eg,ﬂ = Bg and a* = pQ? tan & for Bg > 0. This
case was studied for a constant-speed pursuer in [5] and
with the assumption that the pursuer acceleration is
equal to the required acceleration in [11].

Case 1: Pursuer Acceleration is Equal to the
Required Acceleration

Consider the pursuer is initially fired at the target
from the tracker and then maneuvers according to
Equations 27, in order to remain on the tracker-target
LOS. With the assumption that the pursuer accelera-
tion is equal to the required acceleration, Equation 11a
reduces to ', — Q% = 0. Therefore, one can derive
the following solutions as:

Tm = (Vin, /§2) sinh(2t), (68)
Vin = Vg v/ cosh(202), (69)
tan U = tanh(Qt). (70)

The pursuer acceleration is also obtained as:

am = VmUQ\/4 + (4 + tan® ) sinh? (). (71)

The pursuer and target positions are equal at the
collision instant, therefore,

sinh(Qtf) = 1/n. (72)

In this case, one must have n > 0 for intercepting
the target. The final values for the pursuer velocity,
acceleration and velocity-to-beam angle can then be
found as:

Viny = Ving V1 + (2/n?), (73)
Uy [, :\/1+(4n2+3)c032nf, (74)

tan Wy =1/v/n?+ 1. (75)

Case 2: Constant-Speed Pursuer

Consider that the pursuer, with a constant speed, is
initially fired at the target from the target tracker
and then maneuvers according to Equations 27. Note,
for this case, a;, # 0. In other words, the pursuer
acceleration is in the direction normal to its velocity
vector and the component of the pursuer acceleration
normal to the LOS must be equal to the required
acceleration. The solution of r,,(t) can be found

S.H. Jalali-Naini and V. Esfahanian

by rearrangement and integrating the relation 72, +
r2 0? = V2 with respect to time, that is:

Tm = (Vin /) sin(Q2). (76)

Comparing Equations 42b and 76, the pursuer velocity-
to-beam angle can be found as:

U= Ot (77)

The pursuer acceleration is also obtained as:

= Vi /4 + tan? ysin®(Q2). (78)
The intercept time is then calculated by:

sin(Qy) =1/n. (79)
The preceding relation implies that the intercept con-
dition is n» > 1. The final values for the pursuer

acceleration and velocity-to-beam angle can also be
obtained as:

Gy Jar, = \/1+ (4n2 — 1) cos? (80)
Ty =sin~*(1/n). (81)

When a target circles around the stationary tracker,
one has n = m — gy for 3y > 0.

CONCLUSIONS

The 3-D equations of LOS guidance with a moving
tracker are presented for maneuvering targets. Then,
the closed-form solution of the 3-D LOS trajectory of
a pursuer for a moving tracker and nonmaneuvering
targets is derived with the assumption that the total
pursuer acceleration is equal to the required accelera-
tion in the direction normal to the LOS. In this study,
the pursuer is always on the line between the target
tracker and the target without any error. The present
solution can be used in both surface-to-air and air-
to-surface applications. In addition, some significant
characteristics, such as total flight time, cumulative
velocity increment, initial conditions for interception
and the effects of acceleration limit, are obtained and
discussed. The equivalent effective navigation ratio
for the LOS guidance is also derived for comparison
with TPN guidance law. Finally, the solutions for
a special case of a maneuvering target, in which its
trajectory is on the surface of a sphere with origin at
its tracker, are presented for the two cases with different
assumptions, namely, a constant-speed pursuer and
the pursuer acceleration to be equal to the required
acceleration.
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