Scientia Iranica, Vol. 11, Nos. 1&2, pp 121-127
(© Sharif University of Technology, April 2004

Research Note

Parameter Estimation of Vehicle
Handling Model Using Genetic Algorithm

M.R. Bolhasani* and S. Azadi!

This paper implements a derivative free optimization method called 'Genetic Algorithm’ to
estimate the parameters of a four-wheel, three degrees of freedom vehicle handling model. At
first the model is developed containing a non-linear tire model called ‘Fiala’. Then, an error
function is defined and the ‘Genetic Algorithm' optimization method is introduced and applied
to minimize the error. Finally, verification of parameter estimation is checked.

INTRODUCTION

In order to design a more efficient vehicle, extensive
simulations must be performed and vehicle responses
should be analyzed, therefore, mathematical vehicle
models for lateral and longitudinal dynamics, struc-
ture, NVH and etc. are needed. However, as each
model consists of several parameters, this more com-
plex model requires more parameters to be run.

Some of the parameters are known or easily
measurable. For example, geometrical properties, such
as tread width and wheelbase, are known. However,
there are some parameters that are unknown and
directly immeasurable, such as tire model parameters,
sprung and unsprung mass, suspension stiffness and
etc. These parameters are usually estimated through
an identification process and vehicle testing. This
means that parameter identification plays an important
role in vehicle simulations. This paper deals with the
lateral dynamics of a passenger car and focuses on
identifying the parameters of a vehicle handling model.

A review of the literature shows numerous meth-
ods of parameter estimation. Bolzen et al. have
estimated the magic formula tire model parameters
of a 2DOF vehicle model, using an extended Kalman
Filter [1]. Hauqe and Schuller implemented the special
case of a neural network, called the Fourier series neural
network, to identify vehicle model parameters [2].
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Wohler et al. have identified the cornering stiffness
of a tire model in a 2DOF vehicle model, as a function
of the slip angle, using the evolution method and the
mode-filtering method [3]. Also, Huang et al., by using
random steer as an input of the model, have estimated
some parameters of the 2DOF and 3DOF vehicle model
in the frequency domain [4].

The identification method in this paper is based
on minimizing the error between model and reference
outputs, which is developed by simulation of a complex
vehicle model (a model with more than 100 DOFs) in
ADAMS, a validated software in vehicle dynamics.

The present paper aims to set up a procedure that
will make it possible to use road test data to obtain
unknown parameters.

In this paper, a quadricycle 3DOF vehicle model
is developed accounting for lateral velocity, yaw rate
and roll angle as degrees of freedom. Then, the
‘Genetic Algorithm’ optimizing method is applied
using reference data and the unknown parameters
are estimated. Finally, validation of the process is
checked using another data set, which will be explained
later.

VEHICLE MODEL FORMULATION FOR
PARAMETERS IDENTIFICATION

For simulating the lateral dynamics of the vehicle, a 4-
wheel 3DOF model is used containing lateral velocity
(V), yaw rate (r) and roll angle (¢). The input of the
model is the steering angle (6) on the front tires. Also,
the continuum mass of the vehicle is modeled by three
lumped masses, which are front and rear unsprung
masses (M, My,) and sprung mass (M;), so the entire
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vehicle mass is:
My =M+ M5+ M,,. (1)

In order to derive the equation of motion, a moving
reference frame is attached to the vehicle with its origin
at the center of gravity, as shown in Figure 1.

Since the coordinate system is attached to the
vehicle, the inertia properties of the vehicle will remain
constant. Also, as the result of symmetry assumption,
all the products of inertia are ignored. The state
variables are assumed to be lateral velocity, yaw rate
and roll angle.

Using the above assumptions, the equations de-
scribing the motion are [5,6]:

Mt(f/_'_TU)_|_Mshs(5:Fyfr-l-Fyfz-f—Fyrr‘f‘Fyfla (2)

Lwt + Mho(V + 1u) = L, (3)

Izz”:’:a(Fyfr+Fyfl)_b(Fyr'r‘+FyTl)7 (4)
where:

Ly = Moghs¢ — Ky¢ — Cy, (5)

where M is the sprung mass, which is the mass sup-
ported by the vehicle suspension, I, is the sprung mass
moment of inertia about longitudinal axis (x), I, is the
moment of inertia of the entire vehicle about vertical
axis (z), Ky and Cy are roll stiffness and roll damping
coefficient of suspensions, respectively, h is the vertical
distance of CG from the roll axis , a and b are the
distances of the front and rear axles from CG, u is
the longitudinal speed of the vehicle, which is constant
in vehicle maneuvers, and F, ., Fy 1, Fypp, Fyry are the
tire cornering forces of front right, front left, rear right
and rear left, respectively.

The cornering force of a tire is mainly dependent
on the slip angle, vertical load, longitudinal slip and
camber angle of that tire. In this paper a tire model
called ‘Fiala’ [7], in which the cornering force of the tire
is a function of the cornering stiffness, vertical load, slip
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Figure 1. Vehicle coordinate system.
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angle and longitudinal slip has been used and the effects
of camber angle and aligning moments are ignored. In
order to compute tire forces, the slip angles of the tire
should be calculated as below [6]:

V +ar
_ s e N e
ap, =0 — tan (u—tfr/2>’ (6)
ap =6 — tan"! Vtar : (7)
U+tf’l‘/2
oz”:tan_1 7[)7‘—‘/ (8)
uw—t.r/2)’
br -V
_ -1
s = tan <7u+m /2), (9)

where ¢ is the steer angle as the input of the model and
ts,t, are the front and rear tread widths of the vehicle,
respectively.

Also, for obtaining the lateral load transfer, some
equations to describe vertical forces on each tire have
been written. In this paper, lateral load transfer is
assumed to be the result of three phenomena, which
are body roll, roll center height and unsprung mass [6].

Lateral load transfer, due to body roll, is as
follows:

kehs Mg .
Fjy = (f7> (ay cos ¢ + gsin ¢), (10)
Koty
s M .
F. = (%) (ay cos ¢ + gsin @), (11)
IX¢tT

where k; and k, are the front and rear roll stiffness and
ay is the lateral acceleration, which is:

Mhsé

ay:V—l—ru—l— 0,

(12)

Lateral load transfer, due to roll center height, is as
follows:

M;bhysa
Fpo =179 13
2= 4 (a+0) (13)

M.ah,a
F.,= smry 14
2 t-(a+0b)’ (14)

where hy and h, are the front and rear roll center
heights, respectively.

And lateral load transfer, due to unsprung masses,
is:

h

Fps = Mya, L, (15)
ty
h,

Fr3 = Mwayt—. (16)
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The vertical load on each tire can be described by the
following equations:

szrZ%—Fﬂ—Ffz—ng, (17)
szl:%‘f‘Ffl‘FFfZ‘f‘FfBa (18)
For = % — F — Fp — Fis, (19)
F.= W + Fo + Fro + Fis, (20)

where Wy and W, are the static load distribution on
the front and rear axles and can be computed by the
following equations:

Wi = Mg——
! tga—}—b’

W’r‘ = Mtg

a+b

TIRE MODEL

As mentioned before in this paper, a tire model called
‘Fiala’ is used in the vehicle dynamic simulation. This
model calculates tire cornering forces as a function of
vertical load (F.), slip angle («), cornering stiffness
(Cy), longitudinal slip (Ss) and the maximum and
minimum friction coefficients (Upax, Umin) between tire
contact patch and road [7]. The relations of this model,
which finally return the tire cornering force, are:

U = Umax - (Ulnax - Unlin)~Ssa7 (23)
U |F.|sgn(a) a > acm,
F, = £ 5 (24)
U|F.|.(1—H?).sgn(a) a < aeriy
where:
Sea =1/ S52 + tan? (25)
_, (3U|F.|
cri — t H——= ) 26
a an < c. ) (26)
C, |tan o
H=1-———. 27
SUIE| 0

ESTIMATION OF VEHICLE PARAMETERS

The unknown parameters, which are to be identified,
are front and rear tire cornering stiffness, entire vehicle
yaw moment of inertia, sprung mass roll moment of
inertia, roll stiffness and roll damping coefficients. The
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unknown vector, (), is the set of under-estimating
parameters and can be written as:

0= [Cozf7Cova-[zzr[wva((b?C(P]' (28)

Since the model is a 3DOF and contains three equa-
tions of motion in terms of unknown parameters, the
equations can be described as:

f(0) =0, (29)

where ‘f” is a 3 X 1 vector containing Equations 2 to 4
and may be a nonlinear relation in #. Note that in
the identification process, the state variables are known
and Equation 29 is an algebraic equation in terms of 6
and not a differential equation.

The main idea in identification is to find an

approximate solution, #;, which minimizes the error as
defined below:

3

e(0) =Y (wifi)?, (30)

i=1

where f; is the ith row of vector ‘f’ and w; is the
suitable weighting factor used in order to have the same
order in f;.

For minimizing the error, the ‘Genetic Algorithm’
optimizing method is applied to the problem.

Except for the unknown parameters, the others
used in the identification process are listed in Table 1.

GENETIC ALGORITHM METHOD

The Genetic Algorithm method (GA) [8,9] is a stochas-
tic optimization method which is based on the concepts
of natural selection and evolution processes. Since this
method, like the other random based search methods,
does not require the derivation of objective function,
they are also called ‘Derivative-Free’ methods.

Table 1. The known vehicle parameters.

a=0.873 (m) M, =716 (kg)
b=1.497 (m) My =64 (kg)
t; = 1.404 (m) M,, =60 (kg)
t, =1.384 (m) w =50 (km/hr)

hs = 0.3972 (m)

h; = 0.160 (m) hy = 0.105 (m)

Tire Model Parameters

Ss =0.05

Ulnax =038 Ulnin =06
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GA was first proposed and investigated by John
Holland at the University of Michigan [10] and which,
as a maximizing method, has since received increasing
amounts of attention, due to its versatile optimization
capabilities for both continuous and discrete problems.
Since GA is derivative-free, it can be used for problems
with very complex objective functions such as structure
and parameter identification. Also, as a result of its
randomness nature, GA is a global optimizer and is able
to find the global optimum, given enough computation
time.

In order to use the GA method, each of the
parameters should be encoded into a binary string
called a ‘Gene’. The genes will then, combine with
each other resulting in a ‘Chromosome’ and a non-
negative real value called ‘Fitness’ is assigned to each
chromosome. The goal of GA is to maximize the fitness
value, therefore, in minimizing problems, ‘Fitness’
should be defined in such a manner that maximizing
the fitness value results in minimizing the objective
function.

In the GA method, a population of chromosomes
is randomly generated and then evolved repeatedly
towards a better overall fitness value. In each gen-
eration, the GA constructs a new population using
genetic operators such as ‘Crossover’ and ‘Mutation’,
remembering that members with higher fitness values
are more likely to take part in mating operations.

The algorithm of running this method can be
summarized as:

- Encoding the parameters into a binary string,
- Fitness evaluation,

- Parents’ selection,

- Crossover operation,

- Mutation operation.

In this paper, the vector 6 is encoded into the
binary string with a 39 bits length for the 6 parameters
of . The bits 1 to 7 and 8 to 14 are denoted to
Cay,Car, respectively. Also the bits 15 to 20 for I,
21 to 25 for I, 26 to 32 for K, and 33 to 39 for Cy
are assigned. Also, the fitness function in this paper is
defined as:

Fitness () = %, (31)

where A is a positive constant used for defining fitness
function as a maximizing problem.

After the fitness evaluation of all chromosomes is
completed, the selection operation determines which
parents will take part in mating in order to produce
offspring for the next generation. In this paper,
the parents are chosen with a selection probability

M.R. Bolhasani and S. Azadi

proportional to their fitness values. The selection
probability of each parent can be defined as:

(Fitness);

kzl(Fitness)k

pi =

where n is the number of chromosomes in a generation.

After parent selection, the crossover operation is
applied to the selected pair of parents with a prob-
ability called ‘Crossover Rate’. In this paper, ‘One-
Point Crossover’, which is the most common and basic
crossover operator, is used. In this method a crossover
point on the selected chromosomes is randomly found
and two parents’ chromosomes are interchanged at this
point.

When the crossover operation is completed, the
mutation operator, which is flipping a bit, is applied to
the selected chromosome with a very low probability
called ‘Mutation Rate’. Mutation can prevent the
population from stagnating at local optima. Usually,
the crossover rate is above 0.8 and the mutation rate
is below 0.05 and, if the mutation rate is high (above
0.1), the GA will approach to a simple and primitive
random search.

The above phases of GA will be repeated until
the terminating criterion is satisfied. In this paper, the
terminating criterion is assumed as: When the average
of the fitness values of a generation is not less than 98%
of the maximum fitness, the process will stop.

RESULTS OF IDENTIFICATION

To apply the GA optimization method, a computer
code has been written in MATLAB software and then
the GA has been applied to minimize the error and the
unknown vector, €, has been obtained.

For identification, a combined sinusoidal and step
steering angle, as an input of the model, is used, in
order to obtain both the transient and steady state
responses of the vehicle. This steering signal is shown
in Figure 2a.

As mentioned before, the reference data for iden-
tification has been obtained by ADAMS. After the
process has converged to the solution and the unknown
vector, #, has been estimated, the model is solved using
#; and the results are compared with the reference data,
as illustrated in Figures 2b to 2f. The path of the
vehicle is identified and the Adams model is plotted
during the simulation in Figure 2f.

Also, the convergence of the identification process
is illustrated in Figure 3. As seen, the average of the
fitness values of the generation increases during the
process.

In general, the identification process is always
followed by a validation process using another data set.
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Figure 2. (a) is the input steering for identification and (b) to (f) are the results of identification.
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Figure 3. Convergence of GA method used for
identification.

For validation, a sinusoidal input steering angle, which
is a slalom test (the vehicle moves sinusoidal) input,
with frequency 0.1 Hz, is used, as shown in Figure 4a.
The result of the validation process is illustrated in
Figures 4b to 4f. Note that the vehicle has the same
forward velocity, 50 (km/hr).

The estimated vector, ;, is:

6, = [20588, 21193, 946, 276, 30000, 2505].

Another validation check is performed, using a
single lane change maneuver at 60 (km/hr) forward
velocity. The steer angle of this maneuver, which
is a sharp and quick sinusoidal signal, is shown in
Figure 5a. The outputs of identified and Adams models
are compared with each other and shown in Figures 5b
to 5f.
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Figure 4. (a) is the input steering for the first validation process and (b) to (f) are the results of this validation.

Similar to the combined input used for identifica-
tion, in the validation phase, the same variables (lateral
velocity, roll angle, yaw rate, lateral acceleration and
path followed by the vehicle) are shown.

The lateral velocity is very sensitive to the non-
linear behavior of the suspension components and tire.
Since in the 3DOF model all the suspension non-
linear dynamics are ignored, the lateral velocity of the
identified model has more error, compared with the
reference data, than the roll angle and yaw rate.

CONCLUSIONS

In this paper, it is illustrated that some of the vehicle
model parameters, which are directly immeasurable,
can be estimated using one of the optimization meth-

ods. The data used for identification was obtained
by simulating a complex model in Adams, however,
this method can be implemented using road test data
to get the value of the parameters for a real vehi-
cle.

Also, it is illustrated that, for identification of a
continuous system, such as a vehicle handling model,
the optimization techniques (like the GA method) can
be used instead of discretizing the model of the system
and using the conventional methods of identification.
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Figure 5. (a) is the input steering for the second validation process and (b) to (f) are the results of this validation.
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