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Three-Dimensional Eigenmode
Flutter Analysis of a Rectangular
Cantilever Plate in Low Subsonic Flow

F. Bakhtiari Nejad* and S. Shokrollahi'

In this paper, a 3-D, unsteady vortex lattice model to compute aerodynamic coefficients,
using time domain eigenmode analysis, is presented. A computationally efficient technique for
constructing a reduced order model of unsteady flow about a low aspect ratio wing, modeled
as a cantilever plate of constant thickness, is presented. Analysis demonstrates that limit cycle
oscillations of the order of the plate thickness are possible. The eigenmodes of the system, which
may be considered as aerodynamic states, are computed and, subsequently, used to construct a
computationally efficient, reduced order model of an unsteady flowfield. Only a handful of the
most dominant eigenmodes are retained in the reduced order model. The effect of the remaining
eigenmodes is included approximately, using a static correction technique. An advantage of the
present method is that, once the eigenmode information has been computed, the reduced order
model can be constructed for any number of arbitrary modes of wing motion very inexpensively.
The method is particularly well suited for use in the active control of aeroelastic phenomena, as
well as in standard aeroelastic analysis for flutter or gust response. Finally, a numerical example
is presented that demonstrates the accuracy and computational efficiency of the present method.

INTRODUCTION

In recent years, significant progress has been made in
the development of unsteady aerodynamic analysis to
predict the flutter and forced response of airfoils, wings
and even complete aircraft configuration.

Most unsteady aerodynamic modeling can be
obtained by two main groups; time domain and fre-
quency domain analyses. In time domain analysis, one
discretizes the governing equations on a computational
mesh and then marches the solution from one time
step to the next. At each time step, one imposes
boundary conditions arising from either the prescribed
motion of the airfoil or wing. For example, Davis and
Bendiksen [1] have time marched two-dimensional Eu-
ler equations to find the unsteady flow about vibrating
airfoils. Batina [2] has computed the time dependent
Euler flow about a complete harmonically deforming
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aircraft. Chaderjian and Guruswamy [3] have applied
the time marching technique to solve transonic Navier-
Stokes equations about an oscillating wing. Deman
Tang et al. [4] have applied a 2D vortex Lattice model
to compute aerodynamic coefficients in a 3-dimensional
flowfield.

In this paper, a 3-D unsteady vortex lattice model
is applied to compute aerodynamic coefficients, using
time domain analysis.

Time domain analyses, although able to model
extremely complex flow features and nonlinear effects,
are computationally expensive, due to the requirement
of the solutions to be both accurate and stable. In
frequency domain analyses, one assumes that the un-
steadiness is small compared to the mean flow. Thus,
the unsteady flow is governed by linear small distur-
bance equations. The unsteady motion is assumed to
be harmonic in time (e™?!), so that the time derivative
operator, %, is replaced by iw. Hence, time does not
appear explicitly in the governing equations. One of the
main difficulties with both time domain and frequency
domain techniques is that a separate analysis must
be performed for each frequency and mode shape of
interest. Unfortunately, in aeroelastic calculations, the
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frequencies and mode shapes are often not known a
priori. A number of investigators have circumvented
this difficulty by simultaneously marching the fluid
and structural dynamic equations of motion. This
approach, although relatively straightforward, is still,
computationally, very expensive. Furthermore, sep-
arate analysis must be performed for each reduced
velocity or mass ratio of interest. Finally, for appli-
cations to active control problems, such simulations
do not provide the control engineers with the Laplace
plane information needed to formulate control laws.
One approach to overcoming these difficulties is to
develop reduced order models of time domain or
frequency domain aerodynamic analyses. The goal
is to describe the unsteady aerodynamic loads over
a range of reduced frequencies, using models with a
small number of aerodynamic states. One way to do
this is to simply evaluate the unsteady load, due to
a particular mode shape of vibration, at a number of
reduced frequencies and, then, curve fit the results to a
convenient time domain representation. The approxi-
mate time domain representation is usually taken to be
a sum of exponentials, since the corresponding Laplace
transform is a rational polynomial. The parameters
in the approximation, such as the time constant of
the exponentials or the constant multiplying of each
exponential, are found by minimizing the error between
the approximation and the exact solutions at a finite
number of frequencies. Note that this method requires
the approximation for the unsteady aerodynamic loads
to be computed for each mode shape of the vibrating
wing.

AERODYNAMIC EQUATIONS : VORTEX
LATTICE MODEL

The flow about the cantilever plate is assumed to be
incompressible, inviscid and irrotational. Hence, the
unsteady flowfield may be modeled using potential flow
techniques. Here, an unsteady vortex lattice method
is used to model this flow. A typical planar vortex
lattice mesh for the three-dimensional flow is shown in
Figure 1. The plate and wake are divided into a number
of elements. All of the elements on the wing and
wake are of equal size, Az, in the streamwise direction.
Point vortices are placed on the plate and in the wake
at the quarter chord of the elements. At the three-
quarter chord of each plate element, a collocation point
is placed for the downwash, i.e., the velocity induced by
the discrete vortices is required to equal the downwash
arising from the unsteady motion of the plate. Thus,
one obtains the relationship:
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Figure 1. Three-dimensional aeroelastic model of a
cantilever plate.

where w!*! is the downwash at the ith collocation point

at time step t + 1,I'; is the strength of the jth vortex
and K;; is an aerodynamic kernel function that is given
in [5].

As described by Deman Tang et al. [4], there are
three sets of equations in the wake. At the first vortex
in the wake, at time step ¢ + 1, one has:

km

t+1 t+1 ¢
Dbl ==Y (I -1 (2)

J

Once the vorticity has been shed into the wake, it
convects in the wake with speed U. From the second
vortex point to the last two vortex points in the wake,
for the special case where Ax = UAt, this convection

is described numerically by:

1

IﬂzH_ = Ft—lv

2

i=km+2,... . kn—1 (3)

At the last vortex point in the wake, one has the
following relationship for the vortex distribution:

it =T +alt i=kn, (4)

where « is a relaxation factor; usually 0.95 < a < 1.0.
Putting together Equations 1 to 4 gives an aero-
dynamic matrix equation:

AT 4+ B = o't (5)

where A and B are aerodynamic coefficient matrices.
From fundamental aerodynamic theory, one can obtain
the pressure distribution on the plate at the jth point,
in terms of the vortex strength, as:

J
Ap;=EZ (U 4T0) /24 Y AT -TY)/AY

(6)
Let:

T=T/(Uc), U=Ax/At,
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and the overbar of I" is then dropped for convenience.
Thus, the nondimensional pressure is given by:

c

A]_)j - Ax

(T 203 (0 | 7

and the aerodynamic generalized force is calculated
from:

1

1

- ooU2C4 _

@ = =0 [ [ Apo,duay. (®)
0 0

REDUCED-ORDER AERODYNAMIC
MODEL (EIGENMODES)

If one assumes the structural response to be zero, then,
from Equation 5 one can obtain a representation of
unforced fluid motion as:

AT 4 BI = 0. (9)

From Equation 9, an aerodynamic eigenvalue problem
may be found. Because the matrices A and B are
nonsymmetric, the right and left eigenvalues and eigen-
vectors of the generalized eigenvalue problem must be
computed. They are :

AXZ = -BX, (10)
and:
Aty z = -BtY, (11)

where X and Y are the right and left eigenvector
matrices and Z is a diagonal matrix whose diagonal
entries contain the eigenvalues. The discrete-time
eigenvalues, z;, are related to continuous-time eigen-
values, A;, by z; = exp(A\;At). The real part of \;
indicates the damping of the system and the imaginary
Ai provides the oscillation frequency. The right and
left eigenvectors are orthogonal with respect to the
matrices A and B. The eigenvectors are normalized
such that they are orthonormal with respect to A.
Therefore:

YTAX =1, (12)
and:
YI'BX =-2Z. (13)

Next, let the point vortex vector, I', be a linear
combination of the Ra, right eigenvectors (where, in
practice, Ra << kn x kmm), i.e.:

I' = XRg.7, (14)

where v is the vector of the aerodynamic modal
coordinates.
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One finds that with the reduced order aerody-
namic model, only a few aerodynamic eigenmodes need
to be retained in the aeroelastic model for good accu-
racy. However, whereas the dominant eigenmodes have
been retained, all of the eigenmodes participate in the
response to some degree. To account for the neglected
eigenmodes, therefore, a quasistatic correction is used,
which accounts for much of their influence. This
technique is similar to the mode-acceleration method
common to structural dynamics and was first suggested
in the context of fluid eigenmode analysis by Florea and
Hall [6]. Thus, let:

I'= Fs + Fd = Fs + XRarydv (]‘5)

where the first term on the right-hand side is a
quasistatic solution of the vortex flow and the second
term is a dynamic perturbation solution. By definition,
the quasistatic portion, I, is given by:

[A+ B|T. = w, (16)

where w! is the downwash at time step t. Equations 5
and 16 may be inverted once to determine I', in terms
of w! and do not need to be evaluated at each time
step.

NONLINEAR STRUCTURAL EQUATIONS

The nonlinear structural equations for a plate were
derived from Hamilton’s principle and Lagrange’s equa-
tions. These equations are based on the Von Karman
plate theory using total kinetic and elastic energies and
the work done by applied aerodynamic loads on the
plate [7]. Approximate modes are substituted into the
energy expression and then into Lagrange’s equations
to yield equations of motion for each structural modal
coordinate. The results are presented as follows.

STRUCTURAL MODE FUNCTIONS

The transverse or out-of-plane displacement, w, and
the in-plane displacements, v and v, are expanded as
follows:

u= Z Z aij(t)ui(x)u;(y),
v = Z Zbrs(t)vr(x)vs(y)v

0= dmn(O)m(@)tn(y), (17)

where the mode functions w;,u;, v, vs, ¢, and ¥, are
given by:

u;(x) = cosim(z/c)
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uj(y) = sin[(25 — 1)/2|w(y/L),

vr(z) = cosrm(x/c),

vs(y) = sin[(2s — 1)/2]n(y/L),

()= Zsin | B/ + J5] +xp = in(a o)
+ (—1)7”"'1 exp{—ﬁm 1- (x/c)]},
. 1
%@PM%mhMM%_ﬂ+wmﬂMWW

o)

+(-1)" exp{ —Bn [1 - (y/L)

+ (=1)" exp(—fn),
with:
3 1

ﬁm:(m_i)ﬂ-v 677.:(”_5)7{'7

dm(z) is a free-free beam function and ¥,(y) is a
cantilever beam function. For m < 2, the rigid-body
translation and the rotation modes are:

¢1(x) =2, ¢a(x) =2[1 - 2(x/c)],

and @;j,brs,@mn,u,v and w are normalized by plate
thickness, h and x and y by ¢ and L, respectively.

IN-PLANE EQUATIONS

It is assumed that all of the nonconservative forces
act in the z direction only and the in-plane inertia
may be neglected. Thus, the in-plane equations of
motion are determined from stretching strain energy
and Lagrange’s equation. The nondimensional in-plane
u and v equations are, thus:

Z Z Ckpakp + Z Z C” tbgr =
ZZDW%P +ZZ orbaf = ) (18)

where C% and D" are nonlinear (quadratic) functions
of the plate transverse direction. The coefficient terms

C;JP,C;]]»,D” and D% are, respectively:

o h 1 1
2, ! ! r 1
Ciy =2 (E) /0 ukuidx/o v, vidy
h 2 1 1
+(1-v) (f) / ukuidx/ U;,v;-dy,
0 0
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cy

- h2 1 1
= 21/—/ u u;dx/ vl dy
9f cL J, 9 0 V]
h2 1 1
! !
(I—I/)CL/ uguidx/o vpvidy,

h2 1 1
Dis = 21/—/ u'iurdx/ vpvidy
kp CL 0 k 0 r

h2 ' ! ' !
+(1- 1/)—/ ukurdx/ v, vsdy,
cL J, o P
B2 1 1
rs =2 <Z> /0 ugurdx/o vivldy
h 2 1 1
+(1-v) <—> / u'gu'rdx/ vvsdy,
¢ 0 0

and the terms C% and D"* are given in [8].

TRANSVERSE EQUATIONS

The transverse equation is formed by substituting the
kinetic, bending and stretching energy expressions into
Lagrange’s equation. The nondimensional equation is:

ZZ AZ i (T)+ BY  Gn (T)] + FY +QY =0.

(19)
That is:
[A]{q} + [B{a} + {F} +{Q} =0, (20)
where:

i Z%W / .

i é{ /¢,m s / bty

0/1 Om @} dx 0/1 Unibidy
+j¢mMZ%W4

() [enss oo}

+ 2 1—1/
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F% is a nonlinear force that depends on the deflection
of the plate. Q¥ is the nondimensionalized, generalized
aerodynamic force, which was discussed earlier.

AEROELASTIC MODEL

Having discussed the reduced order modeling technique
earlier, a brief description is now given of how to in-
corporate the reduced order aerodynamic model, with
the structural model discussed in the last part, into an
aeroelastic model of flutter. Consider a discrete-time
history of plate motion, ¢(t), with a constant sampling
time step, A¢. The sampled version of ¢(t) is then
described by:

(¢ +4)

¢==—" (21)

and the velocity of this discrete-time series is defined

(22)

The structural dynamic, Equation 19, can be reconsti-
tuted as a state-space equation in discrete-time form.
It is given by:

Doft 4 D10+ O T = —FL2 (23)

where the vector, 0, is the state of the plate, {8} =
{¢,q} and D; and D5 are matrices describing the plate
structural behavior. Cjand C, are matrices describing
the vortex element behavior on the plate itself. There is
a linear relationship between the downwash, w, at the
collocation points and plate response, 8. It is defined
by:

w = E#@. (24)

Thus, combining Equations 5, 23 and 24, one obtains
the aeroelastic state-space model in matrix form:

B AR S N

Equation 25 is referred to as the complete
fluid/structure model. The eigenvalues of the
homogeneous part of Equation 25 determine the
stability of the aeroelastic system. If any of the
eigenvalues have magnitude greater than unity, then
the system is unstable. In principle, one could find
the eigenvalues of Equation 25 directly. However,
for most aeroelastic calculations, one must compute
the eigenvalues of the system as a function of some
parameters such as the reduced velocity.  Under
these circumstances, it is computationally much more

F. Bakhtiari Nejad and S. Shokrollahi

efficient to model the unsteady aerodynamic loads
using the reduced order aerodynamic model presented
in earlier parts. Changing to normal mode coordinates
(see Equation 14) and premultiplying the upper
portion of Equation 25 by Y, gives:

I —YEE] [~ t“+ ~Zpa 0] ("
C2XRa Dy 0 CiXra D1 |0

- {_%N}Hé. (26)

Finally, incorporating the static correction technique
into the reduced order aerodynamic model and after
some manipulation, one obtains:

I —YE[I-AA+B)'E] fv '™
CyXRe Dz-f—Cz(A-f—B)ilE 0

o ~Zre YA [BUB) M E| () _f 0
CiXkro Di+Ci(A+B)'E || 0 ) | —Fn (27)

The eigenvalues of Equation 27 will closely approxi-
mate the eigenvalues of Equation 5, provided that a
sufficient number of eigenmodes are retained in the
model.

NUMERICAL RESULTS

Equation 27 is a set of nonlinear ordinary differential
equations. Note that the nonlinear Fly include, not
only the generalized coordinates, ¢y,,, but also, a;; and
b.s- Equations 18 and 19 are algebraic equations. If
@mn is given, the generalized coordinates a;; and b,
obtained from Equation 18 can be substituted into
Equation 17. Then, Equation 19 can be solved by
the Runge-Kutta method, step by step in time. Four
rectangular cantilever plate models of varying aspect
ratio were considered. The models are taken to be an
aluminum alloy plate of constant thickness with aspect
ratios of AR = L/c = 0.75 — 10. The plate streamwise
length, ¢ = 0.3 m is fixed. The plate thickness is
h = 0.001 m and Poisson’s ratio is » = 0.3. For
the basic case, the plate was modeled using 50 vortex
elements, i.e., km = 10 and kn = 5. The wake was
modeled using 150 vortex elements, i.e., kmm = 40.
The total number of vortex elements (or aerodynamic
degrees of freedom) is 200. The plate modal numbers
are nx = 4,ny = 2, mx = 10 and my = 2. The vortex
relaxation factor was taken to be a = 0.992.

VORTEX LATTICE MODEL

The results in this section are presented to validate
the unsteady vortex lattice model. Figure 2 shows the
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Figure 2. Time history lift due to step change in
downwash for plate.

indicial response of a rectangular wing with an aspect
ratio of 5.0, due to the rigid-body plunging motion of
the wing.

To reduce the number of vortex elements required,
the solution was assumed to be symmetric about the
longitudinal axis.

For this example, the wing was modeled with 8
vortex elements in the streamwise direction and 10 in
the spanwise direction. The wake was taken to be five
chords long and was modeled using 40 vortex elements
in the streamwise direction and 10 in the spanwise
direction. The wake relaxation factor, a, was set to
0.992.

EIGENMODES OF AERODYNAMIC
SYSTEMS

Typical eigenvalues for the basic vortex lattice model
are shown in Figure 3. This figure shows eigenvalues
in terms of discrete time multiplier, Z. Note that for

0.8
@
0.6} m " o m
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0.4f Bgigu®fEy, 8 =
@ B gp@ay @8 _a &
= mmmmﬂmﬁwﬁ - I
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2 B g B m O, @ -
—~ mmm [] a ]
N B Bggtd =]
A mass
- m Ba ] B8 g
02f g B mEy 22 o @ -
B @ mg =] =)
B g @ BE- 8 @ @
0.4 B p g Y"\a0 B B
T a a 2B EIE ] B
s " @ am | w
-0.6}F @ B
a B ]
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Figure 3. Eigenvalue solutions of vortex lattice model of
unsteady flow about a three-dimensional plate:
kn =5, km = 10 and kmm = 40.
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normalization purposes, the airspeed, U, is assumed to
be unity and, thus, At = Az.

There are 64 real and 136 complex conjugate
eigenvalues. When the wake elements are increased
(note that the number of spanwise vortex locations
kn does not change), the eigenvalues become denser
in their distribution. A numerical example is shown
in Figure 4 for km = 40 and kmm = 160. To deter-
mine the contribution of the individual aerodynamic
eigenmodes to overall wing lift, a numerical experiment
was considered. It is assumed that the wing plate is
absolutely rigid and a unit step change in downwash is
prescribed over the wing. The lift is defined as:

1 1

1

Cp= e //Ap(x,y)dxdy, (28)
0 0

the results for C'r, are shown in Figure 5 [9].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Re (Z2)

Figure 4. Eigenvalue solutions of vortex lattice model of
unsteady flow about a three-dimensional plate:
kn =5, km = 40 and kmm = 160.
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Figure 5. Contribution of each aerodynamic eigenmode
to overall wing lift [9].
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Figure 5 shows the magnitude of the lift created
by individual aerodynamic eigenmode Cp (i) vs the
aerodynamic eigenmode number :.

For comparison, the total lift created by all eigen-
modes, C7 total, i also plotted in Figure 5, as shown
by the thick bar. Only 90 aerodynamic eigenmodes are
plotted in Figure 5 because, beyond 90 eigenmodes, the
lift contribution is almost zero. The first 12 eigenmodes
plotted are from the pure real eigenvalues and the
order is from smaller to larger damping. It is seen
that the first important contribution is from the 6th
eigenmode and the second most important is from the
13th eigenmode. The contribution decreases as the
eigenmode order, i.e., damping, increases. For the
pure real eigenmodes, the eigenmodes with the smallest
damping are not always the most important. For the
present example, only a few eigenmodes are significant,
which provides very useful information for the flutter
analysis using the reduced-order aerodynamic model.

REDUCED ORDER AERODYNAMIC
MODELS

The eigenmode information computed in the previous
section is now used to construct reduced order aero-
dynamic models. One considers the case of the finite
wing vibrating with a rigid-body plunging motion.
Two reduced order models were used; both contained
39 eigenmodes, but one used the static correction
technique and one did not. Figure 6 shows the unsteady
lift as a function of reduced frequency. The results show
that the reduced order model using static correction
agrees well with the direct vortex lattice solver, whereas
the reduced order model without static correction has
significant errors at high reduced frequencies. One
interesting feature of the case shown in Figure 6 is
that most of the eigenmodes used in the reduced order
model were eigenmodes of the first mode branch cut

Real lift

0.4p

Unsteady lift

0.2k Imaginary lift

0.1

0.5 1 1.5
Reduced frequency, k

Figure 6. Unsteady lift due to harmonic rigid body

plunging motion of plate.

F. Bakhtiari Nejad and S. Shokrollahi

10

-10}

Re (A)
¢

-30F

-40}F

-50F

-60 N N . N M N
0 10 20 30 40 50 60 70 80
Flow velocity (m/s)

a) Real part

Im (X)

0009

-150f
-200}

-250

0 -50 -40 -30 -20 -10 0 10
Re (M)
b) Root locus

Figure 7. Eigenvalue solutions of linear aeroelastic model.

(the branch cut nearest the imaginary axis). This
suggests that one might be able to reduce the size of
the vortex lattice model by using vorticity distributed
in a few appropriately shaped spanwise modes.
Another interesting point is that no more modes
were required to obtain satisfactory results for a finite
wing than were required for two-dimensional, even
though the wing has a total of 480 degrees of freedom.

FLUTTER CALCULATIONS

Next, one considers the use of reduced order models
to compute the flutter stability of a cantilever plate.
When the nonlinear force, Fi, in Equations 25, 26
or 27, is set to zero, a linear aeroelastic model is ob-
tained. The aeroelastic eigenvalues from solving these
equations determine the stability of the system. When
the real part of any eigenvalue, A\, becomes positive,
the entire system becomes unstable. Figures 7a and 7b
show a typical graphical representation of the eigen-
analysis in the form of real eigenvalues, Re();), vs the
flow velocity and, also, a root-locus plot for the nominal
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linear system using all aerodynamic eigenmodes. There
are two intersections of Re(\;) with the velocity axis.
One is Uy = 42 m/s, for the critical flutter velocity
with the corresponding flutter oscillatory frequency
wy = 76.8 rad/sec. The other is U; = 54.3 m/s, for
the divergent velocity with zero oscillatory frequency.
Note that the divergent velocity corresponds to a pri-
marily aerodynamic mode. Figure 8 shows a graphical
representation of the eigenanalysis using a reduced-
order aerodynamic model with a static correction for
seven aerodynamic eigenmodes (Ra = 7), i.e., the 6th
and 13th-18th eigenmodes corresponding to Figure 5.
Excellent agreement between the full and the reduced
aerodynamic eigenmode results is obtained. However,
the computation time using the reduced-order model is
only about 15 that of the original model.

From Figure 7, it is found that the linear flutter
motion is dominated by the coupling between the
first two structural modes, i.e., the spanwise bending
mode and the rigid plunge and rotation modes in
the chordwise direction. Figure 8 shows the flutter
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a) Oscillation frequencies
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b) Flutter velocity

Figure 8. Linear aeroelastic model vs aspect ratio of the
plate.
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velocities (Figure 8a) and frequencies (Figure 8b) of the
linear system vs the aspect ratio AR = L/c from 0.75 to
10, using a five-eigenmode, reduced-order aerodynamic
model (6th and 13th-16th) with a static correction.
Both flutter velocity and corresponding frequency are
increased as the aspect ratio decreases. It was found
that the results for the five and seven reduced-order
aerodynamic modes are virtually identical.

Figure 9 shows the convergent behavior of the
linear flutter velocity vs the numbers of the structural
modal function, nx and ny. Figure 9a is for the
flutter velocities and Figure 9b is for the correspondent
frequencies of the linear system. The present method
has good convergence, both for ny = 1 and ny = 2,
when na > 3. Note that the flutter velocities for ny =1
are modestly higher than those for ny = 2. It is found
that for AR = 1, when ny = 1 and nz = 3, the
first three plate natural frequencies are 6.5, 18.2 and
58.9 Hz. Thus, it is found that there is a lower second
natural frequency of the plate for ny = 2, as compared
with ny = 1. This leads to a lower flutter velocity for
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Figure 9. Linear aeroelastic model vs the numbers of
structural modal function.
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ny = 2. The results for ny = 3 are essentially the same
as for ny = 2.

CONCLUSIONS

Vortex lattice aerodynamic theory has been used to
construct a reduced-order aerodynamic model about
a three-dimensional cantilever plate. It was shown
that the unsteady fluid motion could be modeled
accurately using just a small number of aerodynamic
eigenmodes. A static correction is applied to approxi-
mate the influence of the remaining eigenmodes. Such
a reduced order model is particularly useful when a
large number of calculations are to be performed. The
present method has good accuracy and computational
efficiency for both linear flutter and nonlinear response
analysis.

The present paper provides new insight into
a nonlinear aeroelastic phenomenon not previously
widely appreciated for low aspect ratio wings that
have a plate-like structural behavior. Comparing the
results obtained in the present paper with those of [1],
verifies the accuracy of the present method for a 3-D
aerodynamic model.

REFERENCES

1. Davis, G.A. and Bendiksen, O.0O. “Unsteady transonic
two-dimensional Euler solutions using finite elements”,

F. Bakhtiari Nejad and S. Shokrollahi

AIAA Journal, 31(6), pp 1051-1059 (1993).

Batina, J.T. “Unsteady Euler algorithm with unstruc-
tured dynamic mesh for complex-aircraft aerodynamic
analysis”, AIAA Journal, 29(3), pp 327-333 (1991).

Chaderjian, N.M. and Guruswamy, G.P. “Transonic
Navier-stokes computations for an oscillating wing
using zonal grids”, Journal of Awrcraft, 29(3), pp 326-
335 (1992).

Tang, D., Dowell, E.H. and Hall, K.C. “Limit cycle
oscillations of a cantilevered wing in low subsonic

flow”, AIAA Journal, 37(3), pp 364-371 (March 1999).
Bertin, J.J. and Smith, M.L., Aerodynamic for En-

gineers, Second edition, Prentice-Hall, International
Editions, pp 271 (1989).

Florea, R. and Hall, K.C. “Reduced order modeling
of unsteady flows about airfoils”, Aeroelasticity and
Fluid Structure Interaction Problems, P.P Friedmann
and J.C.I. Chang, Eds., 44, American Society of
Mechanical Engineers, New York, USA, pp 49-68
(1994).

Dowell, E.H., Aeroelasticity of Plates and Shells,
Kluwer, Dordecht, The Netherlands, pp 35-49 (1975).

Weiliang, Y. and Dowell, E.H. “Limit cycle oscillation
of a fluttering cantilever plate”, AIAA Journal, 32(12),
pp 2426-2432 (1994).

Hall, K.C. “Eigenanalysis of unsteady flow about
airfoils, cascades, and wings”, AIAA Journal, 32(12),
pPp 2426-2432 (1994).



