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Surface Balance Laws of Linear and Angular

Momenta and Cauchy’s Stress Theorem

A. Nosier* and A. Yavari'

Using Helmholtz's decomposition theorem, the laws of balance of linear and angular momenta
are restated as surface integrals over the closed surface of an arbitrary subregion in a continuum.
Newton’s law of action and reaction and Cauchy’s theorem for stress and couple-stress are proved

as corollaries of these surface balance laws.

INTRODUCTION

Usually, balance laws in continuum physics are writ-
ten as volume integrals because, when the integrand
is continuous, so that the localization theorem may
be used, field quantities, which are pointwise, can
be derived. In this article, the laws of balance
of linear and angular momenta are considered and
restatements of them are obtained as surface integrals
over the boundary of any subregion in the continuum.
These restated balance laws are called surface balance
laws.  These surface balance laws are applied to
some specific sequences of compact subsets of the
continuum to prove Newton’s law of action and re-
action and Cauchy’s theorem for stress and couple-
stress.

This paper is structured as follows. First, the
precise assumptions and applications of Helmholtz’s
representation theorem, are reviewed. Integral forms of
balance of linear and angular momenta in a micropolar
continuum are cousidered and the corresponding sur-
face balance laws are obtained using Helmholtz’s rep-
resentation theorem for the total body force vector. By
applying surface linear and angular momenta balance
laws to a specific sequence of boxes, Newton’s law of
action and reaction for stress and couple-stress vectors
is proved. The assumptions, significance and history
of Cauchy’s stress theorem for stress and couple-stress,
are discussed. Finally, this theorem is proved using
surface balance laws.
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HELMHOLTZ’S REPRESENTATION
THEOREM

Helmholtz’s decomposition theorem [1] (or the Stokes-
Helmholtz’s decomposition theorem [2]) states that any
continuously differentiable vector function, with some
decay conditions at infinity can be decomposed into a
divergence-free and a curl-free vector (weak version) or
into the gradient of a scalar function plus the curl of
another vector function (strong version), i.e.:

F=vb+vx¥ in Q (1)

where @ is the scalar potential and ¥ the vector
potential. This is also known as the fundamental
theorem of vector analysis. If there exists a vector field
G € C?(Q) such that:

v’G=F in 0, (2)
then:
F=vvG-VXxVxG. (3)

Thus, F has the desired decomposition (Equation 1)
with:
®=v.G, ¥T=-vxG. (4)

Therefore, F has the representation of Equation 1 if
the vector Poisson Equation 2 has a solution. When
) is bounded regular [3] and F € C°(Q) N C1(Q), G is
expressed by:
1 F(r')dV'
Gt = - [ T 5)
Q(t)

and this proves Helmholtz’s theorem [4,5]. Actually,
this theorem holds for a larger space of functions. It
can be proved [6] that Helmholtz’s theorem is true for
all L? functions (L?(12) is the vector space of all square
Lebesgue integrable functions in §2). Applications of
this theorem in elasticity can be found in [7-9].
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SURFACE BALANCE LAWS OF LINEAR
AND ANGULAR MOMENTA

Consider a continuum R in the reference configuration.
The law of balance of linear momentum in the contin-
uum can be written as [10]:

/ a’(x,n,t)dS+/p(x,t)b(x,t)dV

OB(t) B(t)

= / p(x,t)a(x,t)dV, (6)

B(t)

where B is any nice subregion in R and 9B is the
boundary of B, and o, p,b and a are the stress vector,
density, body force vector and acceleration vector,
respectively. Also, x and n are, respectively, position
and unit normal vectors. Note that, here, according
to Cauchy’s postulate, it is assumed that the stress
vector acting at point x at time ¢ on an oriented surface
depends only on x,n and ¢ (see [11]). Equation 6 can
be rewritten as:

o(x,n,t)dS + / F(x,t)dV =0, (7)
oB(t) B(1)
where:
F(x.t) = p(x, t)[b(x,1) — a(x, 1)) (8)

Here, instead of converting the surface integral in
Equation 6 to a volume integral, the volume integrals
are converted to surface integrals. Assuming that
b(x,t) and a(x,t) are L? functions of x, one can use
Equation 1; therefore:

/ F(x,t)dV = / [V(x, t) + ¥ x W(x, £)]dV
B(t) B(t)

:/ v@(x,t)dv+/v><\ll(x,t)dv. )
B(t) B(t)

Using the gradient and curl theorems, it is obtained
that:

/V@(x,t)dV—f— / v x ¥(x,t)]dV

B(t) B(t)

= / n(x,t)®(x,t)dS+ / n(x,t)x ¥(x,t)dsS.

0B(t) 9B(t) (10)
Substituting Equation 10 into Equation 7 yields:
[o(x,n,t) + n®(x,t) + n x ¥(x,t)]dS = 0.
(11)

OB(t)

A. Nosier and A. Yavari

This holds for any closed surface, 9B, in the continuum.
It is seen that the integrand of this restated balance law
depends on the unit normal vector in addition to the
position vector and time. For obtaining the equations
of motion of the continuum at a point x, an arbitrary
subregion is shrunk to the point arbitrarily; i.e., for
any subregion, the only restriction is that the point x
belongs to the subregion. Consider a sequence {B,, }52,
of compact subregions with the following properties:

(i) x€B, Vne|

(i) Bp41 C By Vne| (12)

(iii) nIer;o vol(B,,) =0 ,
where vol(B,,) is the volume (3-measure) of the subre-
gion B,,. The balance of linear momentum as a volume
integral reads:

/{V.S(x,t)+p(x,t)[b(x,t)—a(x,t)]}deO Vel
Ba(t) (13)

where S is Cauchy’s stress tensor. From Equations 12
and 13 one has:

lim [ {v.S(x,t)+p(x,t)[b(x,t)—a(x,t)]} dV =0.

Bo(t) (14)

Using localization theorem [10], it is found that:

V'S(Xv t) + p(X7 t)[b(X,t) - a(x,t)] =0. (15)

For the restatement of balance of linear momentum
(Equation 11), one cannot use the localization theorem,
because of the explicit dependence of the integrand on
the unit normal vector, n.

The law of balance of angular momentum for a
micropolar continuum states that [12,13]:

/ [r(x,t) X o(x,n,t) + m(x,n,t)]|dS
9B(t)

+ / p(x,t)[r(x,t) X b(x,t) + c(x, t)]dV
B(t)

= [ st 0) x a0 + iV, (16)
B(¢)

where m is the couple-stress vector, ¢ is the body-
couple vector, 1 is the spin angular momentum and i is
its material time derivative [13]. The above equation
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can be rewritten as:

/ [r(x,t) X o(x,n,t) + m(x,n,t)]|dS
9B(t)

+c(x,t)—i(x,t)]dV = 0.
(17)
Assuming that p(x,t)[r(x,t) x (b(x,t) —a(x,t)) +
c(x,t) —i(x,t)] is L% one can use Helmholtz’s rep-
resentation theorem to write:
p(X,t)[I'(X,t)X(b(X,t)—a(X,t))+C(X,t)—i(X,t)]

=Ve®(x,t) +V x ¥(x,t).
(18)

Hence:

[r(x,t) x o(x,n,t) + m(x,n,t)

aB(t)

+n®(x,t) + n x ¥(x,t)]dS = 0. (19)

This is a restatement of the balance of angular momen-
tum as a surface integral over any closed surface in the
continuum.

NEWTON’S LAW OF ACTION AND
REACTION (CAUCHY'’S POSTULATE ON
THE TRACTION VECTOR)

Here, a proof of Cauchy’s postulate on the traction
vector is presented using the surface balance of linear
momentum. Consider the box subregion, B,, ,, shown
in Figure 1. Points x and x' lie on S; and S,
respectively. Applying the restated balance of linear
momentum on B, ,, it is obtained that:

Ly, = / [0 +n® + n x ¥]dS
9B(t)

6
:Z / [0+ n® + n x ¥|dS. (20)

=Bt

Now, consider a double sequence of box subregions,
{Bm,n}mm n=1, with the following properties:

(i) X€Bm, Ym,ne|

(i) Bmmni1 C Bmm Ym,ne€|

(iii)  lim height(B,, ) = lim width(B,, ,)=0.
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Figure 1. A box subregion B, , for proving Cauchy’s
postulate on the traction vector.

Consider a limit process consisting of two steps:
(1) n = oco(h — 0) and (2) m — oo(a — 0). When
n — oo one has:

lim L,,, =L, = / [0 +1n® +nx ¥]dS

n— oo

S1(t)

+

[0 +n®+n x ¥]dS

So t)

—~

Zlo+nd+nx ‘I]](x,m)

+lo+n®e+nx ¥, =0, (22)

n1)

where n; and —n; are normals of the surfaces S; and
Sy, respectively (see Figure 2a). Note that use has
been made of the continuity of the integrand. As m —
00,x = x' (see Figure 2b). Thus:

[o(x,n1,t) + 01 ®(x,¢) + ng x ¥(x,t)]

+ [o(x,—n1,t) —n; ®(x,t) —n; x ¥(x,t)] =0.
(23)

Therefore:
U(Xv_nlvt) = _U(Xvnlvt)' (24)

A similar analysis, using the surface angular momen-
tum balance (Equation 19), yields:

m(x,—ng,t) = —m(x,ny,t). (25)

CAUCHY’S THEOREM FOR STRESS AND
COUPLE-STRESS

Cauchy’s stress theorem states that the stress vector on
each oriented surface at any point in a continuum is a
linear function of the unit normal to the surface. This
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Figure 2. (a) Three consecutive members of the sequence
{Bm,»} when m is fixed and n is increasing; (b) Three
consecutive members of the sequence when n is infinity
and m is increasing.

is known as the most important theorem in continuum
mechanics and guarantees the existence of the stress
tensor. Cauchy [14] proved his theorem in 1823 by
considering the balance of linear momentum for a
tetrahedron. His proof was based on the assumption
of the continuity of the stress and body force vector.
However, some researchers offered proof of the theorem
under weaker conditions. Gurtin et al. [15] showed
that the theorem remains true under much weaker
hypotheses. They proved that the theorem is true
almost everywhere (The set in which the theorem is
not valid has Lebesgue volume measure zero.), if the
stress vector and the body force are integrable over the
continuum volume (see also [16]). Fosdick and Virga
[17] presented a variational proof of Cauchy’s stress
theorem. Segev and Rodnay [18] (see also [19] and [20])
generalized Cauchy’s theorem on general differentiable
manifolds.

The classical proof of Cauchy’s stress theorem
is to invoke Newton’s second law (or the balance of
linear momentum) for a tetrahedron and then shrink
the tetrahedron to a point. In this way, inertia
and body force effects disappear because they are
of higher orders. Here, a proof of Cauchy’s stress
theorem is presented using the surface linear momen-
tum balance. Applying the surface balance law to a
special sequence of tetrahedrons yields Cauchy’s stress
theorem.

For the restated balance law (Equation 11), a
sequence of specific subregions is considered, namely
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tetrahedrons. Consider a sequence {Bj};2, of tetra-
hedrons with the properties (as in Equation 12). It
is also assumed that three edges of each tetrahedron
are along the coordinate axes. The origin (point x)
belongs to the tetrahedron and the unit normal to the
oblique face is n. Three members of this sequence are
shown in Figure 3. Because o(x,n,t) is assumed to be
continuous in x, for large enough k, Equation 11 can
be rewritten as:

/ [o(x,n,t) + n®(x,t) + n x ¥(x,t)]ds
9B(t)

=0 +n®+nx ¥ AS

x,n,t)

+[0'+n<I>+n><\Il](x )Asl

,—el,t

+ [0 +n® +n x ¥] ) ASy

x,—e2,t

+[o+n® +nx ¥ ASs. (26)

x,—e3,t)

Again, the continuity of the integrand has been used.
Therefore, in the limit, when & — oo, one has:

[o’+n<I>+n><\Il]AS— [U(l)+e1‘1>+e1 xq:] AS,
- [0'(2)+e2<1>+e2 X \Il] AS,

- [cr(3)+e3<1>+e3><\1:]A53:o. (27)
Substituting AS; = n;AS into Equation 27 yields:
oc4+n®+nx¥—(no +ny0? +ng0®)
— (n1e; + noes + nzes)®

— (n1e1 + noes + 11383) X W =0. (28)

€1

Figure 3. Three consecutive members of a sequence of
tetrahedrons that approach a point x and all have unit
normal vector n on the oblique face.
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Thus:

o = ’I’LrLO'(l) = ’I’LiS]'ie]' = (29)
where S;; are components of the stress tensor. It
is observed that when & — oo, the effects of scalar
and vector potentials vanish. Hence, there is no
need to have their explicit expressions in terms of the
characteristics of body and inertia force vectors.

Similarly, the restated balance of angular momen-
tum, Equation 19, can be considered for the same
sequence of tetrahedrons. In the limit £ — oo, one
has:

[r><0'+rn+n<I>+n><\Il](

o = 955Ny,

yAS

x,n,t

+[rxo+m+n®+nx¥| ASy

x,—er,t)

+[r><a'+m+n‘l>+n><\11](x )A52

,—ex,t

+[rxo+m+n®+nx¥| yAS3 =0, (30)

x,—es,t
or:
rxo+m+nd+nxw

—(rx oW +mb +e,®+e; x Wn,
—(rx o +m® 4+ e,® + ey x Wing

—(rx o® +m® 4+ e3P +e3 x ¥)ng =0.
Thus,

(31)

r x (0 —n;e™) + (m —n;m") = 0. (32)

Finally, from Equations 29 and 32, it is obtained that:
(33)

_ 1) _ _
m = nlrn( ) = ni[lj;€;5 = My = Wing,

where p;; are components of the couple-stress ten-
sor [12].

CONCLUSIONS

This article presents restatements of the laws of balance
of linear and angular momenta as surface integrals over
the closed boundary of any subregion in the contin-
uum. For this restatement, Helmholtz’s representation
theorem is used. Newton’s law of action and reaction
and Cauchy’s theorem for stress and couple-stress are
proved as corollaries of these surface balance laws.
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