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Prediction of Collapse Potential for Compacted
Soils Using Artificial Neural Networks

G. Habibagahi* and M. Taherian'

Collapse, defined as the additional deformation of compacted soils when wetted, is believed to be
responsible for damage to buildings resting on compacted fills, as well as failure in embankments
and earth dams. In this paper, three different types of neural networks, namely, conventional
Back-Propagation Neural Network (BPNN), Recurrent Neural Network (RNN) and Generalized
Regression Neural Network (GRNN) are employed as computational tools to predict the amount
of collapse and to investigate the influence of various parameters on the collapse potential. To
arrive at this goal, 192 series of a single oedometer test were carried out on three soils with
different initial conditions and inundated at different applied pressures. The test results were
used to prepare the necessary database for training the neural network. Similar test results
available in literature were also included in the database to arrive at a total of 330 sets of data.
A comparison of the network prediction for collapse potential with some available models shows
the superiority of the network in terms of the accuracy of prediction. Moreover, by analyzing the
network connection weights, the relative importance of different parameters on collapse potential
was assessed. Based on this analysis, for a given soil type, the initial dry unit weight, v4, is the

most important factor influencing collapse potential.

INTRODUCTION

All soils settle upon loading. However, unsaturated
soils may reduce in volume when inundated under con-
stant applied pressure. The amount of this additional
deformation, called “collapse”, depends on several
factors, such as applied pressure, water content, dry
density, principal stress ratio, clay content and com-
paction method. The effective stress principle, used to
describe the mechanical behavior of unsaturated soils,
fails to predict the collapse phenomena. This fact was
first indicated by Jennings anf Burland [1].

Collapse may occur in natural soils as well as
in compacted fills and embankments, although the
mechanism and contributing agents may differ. The
influence of different parameters on the amount of
collapse has been discussed by many investigators [2-6].
Collapse potential is assessed by different investigators
employing different methods. These methods vary
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from simple empirical equations based on statistical
regression [7,8] to experimental procedures, such as
single and double oedometer tests, which have been
described by Jennings and Knight [9] and Houston et
al. [10], respectively.

Wetting induced collapse is believed to be re-
sponsible for failure in several earth dams [11,12], as
well as damage to buildings resting on compacted
soils, reported by Lawton et al. [13]. Despite the
considerable amount of work done in this area, the
functional relationship between various soil parameters
and the amount of collapse deformation is not well
established and the exact interrelationship is still a
matter of speculation. The neural network, as a compu-
tational tool, has proved to be capable of establishing
a relationship between a series of input data and the
corresponding outputs, no matter how complex this
relationship may be. Hence, this method is employed,
in this paper, to investigate the collapse potential
of unsaturated soils. In order to arrive at a robust
neural network, a comprehensive database is required
a priori. Therefore, the results of 192 oedometer tests
performed in this study were used to serve as the
required database. Furthermore, other similar data



available in the literature were included to arrive at a
more comprehensive database. Next, the efficacy of the
method was verified by comparing the predicted results
with some of the existing empirical relationships.

NEURAL NETWORKS

A Neural Network (NN) is a computational method
inspired by the neural operation of the human brain.
The network “learns” from previous experience by
adjusting the network’s unknowns. Various types of
neural network have been developed and have found
their applications in different disciplines of engineering.

The Back-Propagation Neural Network (BPNN),
has received attention in different engineering domains
and, more recently, in geotechnical engineering. The
works of Ghaboussi [14], Goh [15], Ellis et al. [16],
Goh [17], Ghaboussi and Sidarta [18] and Habibagahi
et al. [19] are typical examples of the application of the
BPNN in geotechnical engineering. Besides BPNN; the
application of other networks, such as the Recurrent
Neural Network (RNN) and the Generalized Regression
Neural Network (GRNN), have also been found in
geotechnical engineering. Examples for the application
of RNN and GRNN in geotechnical engineering include
the works of Zhu et al. [20], Abu Kiefa [21] and
Penumadu and Zhao [22].

In this paper, the three above-mentioned net-
works, namely, BPNN, RNN and GRNN were em-
ployed to assess the collapse potential of unsaturated
soils. In the following sections, a brief description
of each network is presented and interested readers
are referred to available textbooks, such as Bose and
Liang [23] and Haykin [24] for more details.

BPNN

A Back-Propagation Neural Network (BPNN) is com-
prised of three components: An architecture (ar-
rangement of neurons in the network), an activation
function and a learning rule. The architecture itself
is comprised of three parts, namely, an input layer,
an output layer and one or more hidden layers. Each
layer consists of a number of neurons. All neurons
of each layer are fully connected to the neurons of
the next layer, but there is no connection between
the neurons within the same layer. A weight is
assigned to each connection and each neuron has an
activation function, usually of the sigmoid type. The
activation function of each neuron receives, as input,
the weighted sum of all outputs from the previous
layer and, in turn, outputs the result to the neurons
of the next layer. Figure 1 indicates a block diagram
for a BPNN. A learning rule is required to adjust
the weights (unknowns) in the network, in order to
minimize the difference between the network outputs
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Figure 1. Block diagram for Back-Propagation Neural
Network (BPNN).

and the target (desired) values. The back propagation
algorithm, as described by Rumelhart et al. [25], is the
most commonly used algorithm. In this algorithm,
the summed square of the errors is calculated and
back propagated through the network using a gradient-
descent rule. This process is repeated and the connec-
tion weights are adjusted each time until the summed
square of the errors is below an acceptable value. At
this point, the network is said to be “trained”. In
order to check the performance of the network, it is
a usual practice to test the network using some series
of data (test patterns) that have not been presented
to the network during the training process. It is a
common practice to devote about 20% of the datasets
present in the database for testing (validation) of the
network.

RNN

Recurrent Neural Networks (RNN) are very similar to
BPNN. They utilize the same kind of activation func-
tion and learning rule. However, the basic difference
lies in the architecture or arrangement of neurons. In
RNNs, outputs of hidden neurons are not only fed
forward to the next layer but are also fed back to
the input layer. Hence, additional neurons, equal in
number to the hidden neurons, are assigned to the
input layer. Figure 2 represents a block diagram for
RNN.

GRNN

Generalized Regression Neural Network (GRNN) is
based on the nonlinear regression theory and is a pop-
ular statistical tool for function approximation. Unlike
BPNN and RNN; in GRNN, the training patterns are
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Figure 2. Block diagram for Recurrent Neural Network
(RNN).

propagated through the network only once and, thus,
the training is achieved very quickly. In its network
form, GRNN is a four-layer network with one input
layer, two hidden layers and one output layer. In the
first hidden layer, also known as the pattern layer, one
neuron is assigned for each training pattern (dataset)
present in the database. These neurons have radial
basis activation functions of the form:

hi = e~ DI/, (1)

TSN

where h; is the output of neuron “”; o is a con-
stant controlling size of the basis function also called
“smoothing factor” and D; is the Euclidean distance
between the input vector and the center of the hidden
neuron “¢”, given by:

Di = Jle - will = [(& = w)' (e —u)]””, (2)

where x is the input vector and u; is the center of
neuron “i”.

The second hidden layer, also called the summa-
tion layer, performs a weighted sum of outputs from
the previous layer. Figure 3 represents a GRNN block
diagram for a network with one output neuron. Gen-
erally, GRNN is robust for approximating continuous
functions. However, it may require a larger number
of parameters than BPNN for the same degree of
accuracy. Furthermore, it is possible to improve the
accuracy of the model by adjusting the shape and size
of the basis functions through replacing the Euclidean
distance by the Mahalanobis distance, expressed by:

D; = [(z — u)' K (z — u;)] >, (3)

where K is the inverse of the covariance matrix of input
vectors, given by:

K =[B(x —m)(@—m)] ", (4)
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Figure 3. Block diagram for Generalized Regression

Neural Network (GRNN).

where m is mean vector over all input vectors. Using
this method, the hidden neuron output is given by:

h; = e D2, (5)

Using the Mahalanobis distance, the basis function is
no longer symmetric and the contours of the constant
Mahalanobis distance define hyper-ellipsoids in the
input space. In other words, the size and shape
of the basis function are adjusted automatically to
optimize partitioning of the input space and there is
no need to determine the optimum smoothing factor
as required by the first approach. Here, the latter
method was employed to study the collapse poten-
tial.

EXPERIMENTATION

Neural networks need a large and comprehensive
database both for training and testing phases. To
achieve this goal, a large number of single oedometric
tests were carried out on soil specimens prepared
with different initial conditions. Details of the soil
properties, preparation and testing method are given
in the following sections.

Soil and Test Program

Bulk samples of soil were obtained from three locations
at a site in Seavand, 65-km northeast of Shiraz City
in the Fars province of Iran. Previous experience
had revealed the collapsing nature of the soil [26].
Figure 4 shows the particle size distribution of the
soils. A large number of oedometric tests (192 tests)
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Figure 4. Grain size distribution of the soils tested.

were conducted and the amount of collapse was mea-
sured under different initial conditions and at different
applied stresses. The general characteristics of the
soils are presented in Table 1. The method of sample
preparation and the test procedure are subsequently
described.

Sample Preparation

To prepare samples for the oedometer test, soil, having
a certain amount of water content, was compacted into
the consolidation ring. The ring was placed into a
prefabricated mold that made it possible to compact
the soil into the consolidation ring using a standard
proctor hammer. The hammer blows were applied on
a metal pad resting on top of the soil, in order to
provide relatively uniform compaction of the soil into
the consolidation ring.

Samples with different initial conditions were
obtained by varying the number of blows and/or water
content. Table 2 shows the initial conditions of the
samples prepared using the aforementioned procedure.

Testing Method

Single oedometer collapse tests were conducted on all
samples. For this purpose, each specimen was placed
between two porous stones in a conventional floating
type oedometer apparatus. To minimize any change in
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Table 1. Properties of tested soils.
Soil Series | Sand % | Silt % | Clay % | Cy | Cc | LL % | P1 % | G,
A 13.0 75.0 12.0 16.7 | 14 22.6 5.0 2.68
B 32.0 52.0 16.0 50.0 | 1.8 24.2 8.0 2.68
C 35.0 52.0 13.0 35.0 | 24 28.2 3.0 2.68
Clay ) E water content during the tests, the top of the oedometer
size el Haskl g box was covered using a plastic sheet fixed with a
100 T rubber ring. A seating pressure of 20 kPa was applied
90 ,‘ and the load was doubled when the monitored dial
~ "H gauge reading versus time became asymptotic. At
R . .
g ol ] a predetermined pressure the sample was inundated
& ‘ with distilled water and the amount of collapse was
2 o0 H measured.
$ 50 L
& 10 H ]
e Soil A ; Test Results
— - S0il B |
20] ‘ A total of 192 single oedometer collapse tests were
10l = = = SeilC | performed on soil samples with initial dry densities
5 | ] varying from 1.23 Mg/m? to 1.91 Mg/m?® and initial
0.001 0.01 0.1 1 10 water content, which was varied from 4.9% to 16.9%.

Collapse was measured at inundation pressures of 100,
200, 400 and 800 kPa. Typical test results are shown in
Figure 5. Values of the collapse potential, determined
from the test results, are given in Table 3. There
are different equations cited in literature for defining
collapse potential. Luttengger and Saber [27] presented
a summary of these equations proposed by different
investigators. The term, “collapse potential”, used in
this study, is defined as the ratio of the change in the
specimen height upon inundation to its initial height
before loading. Note that for several tests, no collapse
was observed.
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Figure 5. Typical oedometric test results.
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Table 2. Details of tested specimens.

Soil Soil Initial Water Initial Dry Applied Pressure at
Series Specimens Content (%) | Density (Mg/m?) Wetting (kPa)
A S1, S2, 3, S4 49 1.36, 1.47, 1.56, 1.64 100
A S5, $6, S7, S8 5.3 1.30, 1.45, 1.50, 1.66 200
A S9, S10, S11, S12 6.0 1.32, 1.42, 1.52, 1.61 400
A S13, S14, S15, S16 5.8 1.30, 1.42, 1.55, 1.61 800
A S17, S18, S19, S20 9.4 1.23, 1.48, 1.61, 1.73 100
A S21, S22, $23, S24 9.7 1.28, 1.45, 1.55, 1.72 200
A $25, $26, $27, $28 9.3 1.24, 1.43, 1.54, 1.68 400
A $29, 30, S31, S32 9.2 1.24, 1.42, 1.53, 1.69 800
A S33, $34, S35, $36 12.5 1.32, 1.54, 1.62, 1.84 100
A S37, 938, $39, 540 11.6 1.28, 1.41, 1.54, 1.70 200
A S41, S42, $43, S44 12.4 1.25, 1.39, 1.53, 1.69 400
A S45, S46, S47, S48 12.1 1.26, 1.43, 1.50, 1.68 800
A S49, S50, S51, S52 15.7 1.40, 1.50, 1.65, 1.84 100
A S53, $54, S55, $56 15.6 1.25, 1.37, 1.48, 1.55 200
A 557, 558, 559, S60 15.6 1.28,1.35, 1.50, 1.56 400
A S61, $62, S63, S64 16.3 1.25, 1.34, 1.50, 1.58 800
B S65, S66, S67, S68 5.4 1.36, 1.44, 1.56, 1.65 100
B $69, S70, S71, S72 6.1 1.34, 1.44, 1.54, 1.62 200
B S73, S74, S75, S76 5.0 1.38, 1.49, 1.57, 1.65 400
B S77, S78, S79, S80 5.5 1.38, 1.48, 1.54, 1.62 800
B S81, $82, S83, S84 9.2 1.32, 1.46, 1.62, 1.72 100
B 585, 586, S87, S88 9.1 1.35, 1.50, 1.60, 1.73 200
B $89, $90, S91, S92 8.4 1.36, 1.49, 1.65, 1.75 400
B 593, $94, S95, S96 9.1 1.36, 1.46, 1.57, 1.72 800
B 97, $98, $99. S100 12.4 1.30, 1.45, 1.55, 1.77 100
B | S101, S102, S103, S104 12.4 1.32, 1.44, 1.60, 1.77 200
B | S105, S106, S107, S108 12.4 1.33, 1.40, 1.51, 1.74 400
B | S109, S110, S111, S112 12.4 1.30, 1.41, 1.58, 1.69 800
B | S113,S114, S115, S116 16.9 1.40, 1.52, 1.59, 1.75 100
B | S117, S118, S119, S120 16.9 1.34, 1.47, 1.60, 1.75 200
B | S121, S122, S123, S124 16.9 1.34, 1.51, 1.62, 1.80 400
B | S125, S126, S127, S128 16.9 1.37, 1.47, 1.61, 1.77 800
C | s129, s130, S131, S132 6.0 1.45, 1.57, 1.64, 1.77 100
C 5133, S134, S135, 5136 6.0 1.45,1.57,1.67, 1.79 200
C | s137, 8138, S139, S140 6.0 1.42, 4.53, 1.67, 1.78 400
C 5141, S142, S143, S144 6.0 1.48,1.59, 1.66, 1.80 800
C | s145, 8146, S147, S148 9.3 1.43, 1.58, 1.75, 1.91 100
C | s149, S150, S151, S152 9.3 1.40, 1.60, 1.75, 1.89 200
C S153, S154, S155, S156 9.3 1.36, 1.52, 1.65, 1.75 400
C | s157, 8158, S159, S160 9.3 1.41, 1.51, 1.61, 1.72 800
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Table 2. Continued.

Soil Soil Initial Water Initial Dry Applied Pressure at
Series Specimens Content (%) | Density (Mg/m?) Wetting (kPa)
C | S161, S162, S163, S164 12.2 1.50, 1.57, 1.73, 1.90 100
C | S165, S166, S167, S168 12.2 1.45, 1.58, 1.68, 1.85 200
C | s169, S170, S171, S172 12.2 1.46, 1.57, 1.69, 1.88 400
C | S173, S174, S175, S176 12.2 145, 1.54, 1.70, 1.84 800
C | s177, 8178, S179, S180 15.7 1.52, 1.65, 1.71, 1.78 100
C | s181, S182, S183, S184 15.7 1.45, 1.63, 1.70, 1.77 200
C | S185, S186, S187, S188 15.7 1.46, 1.55, 1.65, 1.74 400
C 5189, 5190, S191, S192 15.7 1.44,1.58,1.70, 1.76 800

NEURAL NETWORK ANALYSIS
Network Architecture

As mentioned earlier, three types of neural network
(Back-Propagation Neural Network (BPNN), Recur-
rent Neural Network (RNN) and Generalized Regres-
sion Neural Network (GRNN)) were used in this study.
All the networks had ten input neurons and one output
neuron. The ten input neurons represent sand content,
silt content, clay content, coefficient of uniformity,
coefficient of curvature, liquid limit, plasticity index,
initial water content, initial dry density and the applied
pressure before inundation. The input values for the
applied pressure were expressed in logarithmic form,
since it was found that this substantially improves
the networks’ training process. The output layer had
a single neuron to represent the amount of collapse
potential.

A single hidden layer was adopted for BPNN and
RNN. Currently, there is no rule to determine the
optimum number of hidden neurons. However, there
are two approaches to arrive at the optimum number
of hidden neurons. The first approach starts with a
network with a large number of hidden neurons and
then “pruning” the network by reducing the number
of hidden neurons to arrive at the final network archi-
tecture. The second approach, on the contrary, starts
with a network with a minimal number of neurons
in the hidden layer and increases the network size in
steps by adding a single hidden neuron each time and
examining the network performance. This process is
continued until there is no further improvement in
the network performance. In this study, the latter
approach was adopted to determine the number of
hidden neurons. Based on this approach, a network
with six neurons had the best performance for the back-
propagation type network, BPNN6 and a network with
four neurons had the best performance for the recurrent
type network, RNN4. As mentioned before, GRNN has
a fixed number of neurons in the hidden layer, equal in

number to the number of training datasets present in
the database.

Database

A powerful network needs a comprehensive database
to cover a wide variety of soil types with different
initial conditions. Such a network will be capable of
predicting collapse potential with good accuracy, not
only for the training patterns (training datasets) but
also, for the patterns that the network had not been
exposed to during the training process (validation or
generalization property). To arrive at this goal, an
attempt was made to increase the amount of data in
the database by adding data that were available in the
literature, based on similar test procedures.

A total of 138 sets of data from test results
performed on eight different soils and reported by
Basma and Tuncer [7], were added to the database to
arrive at a total of 330 sets of data. The properties of
these soils and the corresponding oedometer test results
are given in Tables 4 and 5, respectively.

The percentage collapse potentials given in Ta-
ble 5 were interpreted from the graphs provided by
Basma and Tuncer [7] and, hence, had a limited
accuracy (resolution in reading percentage of collapse
potential: £ 0.1). Moreover, in the experimental
procedure reported by Basma and Tuncer [7], a seating
pressure of 5 kPa was used compared to the 20 kPa
seating pressure adopted in the present experimental
program. Hence, an adjustment was made to the initial
dry densities of the specimens prepared in this study
by extrapolating the corresponding e-log P curves.

From a total of 330 sets of data, 264 sets were
used for training the network. The remaining 66 sets
of data were used to test the network. Testing and
training datasets are indicated in Tables 3 and 5.

Performance of Neural Networks

Network performance may be evaluated, quantita-
tively, in terms of coefficient of correlation (R?), mean
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Table 3. Oedometric test results.

Sample No. Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Content: % | Weight: kN/m? | Wetting: kPa | Potential: % Type

S1 4.9 13.64 100 14.1 Training
S2 4.9 14.72 100 8.1 Training
S3 4.9 15.60 100 4.2 Training
S4 4.9 16.48 100 3.9 Training
S5 5.3 13.15 200 17.3 Testing

S6 5.3 14.62 200 11.6 Training
ST 5.3 15.21 200 8.2 Training
S8 5.3 16.68 200 6.3 Training
S9 6.0 13.44 400 17.1 Training
S10 6.0 14.32 400 13.5 Testing

S11 6.0 15.30 400 9.0 Training
S12 6.0 16.28 400 6.1 Training
S13 5.8 13.14 800 15.2 Training
S14 5.8 14.42 800 14.6 Training
S15 5.8 15.60 800 11.3 Testing

516 5.8 16.19 800 9.3 Training
S17 94 12.56 100 17.6 Training
518 9.4 14.91 100 4.5 Training
S19 94 16.28 100 1.7 Training
520 94 17.46 100 0.0 Testing

521 9.7 12.85 200 17.6 Training
522 9.7 14.62 200 8.7 Training
523 9.7 15.60 200 3.7 Training
S24 9.7 17.27 200 0.4 Training
525 9.3 12.56 400 11.2 Testing

526 9.3 14.52 400 11.4 Training
S27 9.3 15.50 400 6.4 Training
528 9.3 16.97 400 1.0 Training
529 9.2 12.56 800 10.9 Training
S30 9.2 14.32 800 13.3 Testing

S31 9.2 15.60 800 7.7 Training
S32 9.2 16.97 800 4.1 Training
533 12.5 13.44 100 13.9 Training
S34 12.5 15.60 100 1.9 Training
S35 12.5 16.38 100 0.2 Testing

S36 12.5 18.54 100 0.0 Training
S37 11.6 13.05 200 14.1 Training
538 11.6 14.22 200 11.3 Training
S39 11.6 15.60 200 5.5 Training
5S40 11.6 17.17 200 0.3 Testing
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Table 3. Continued.

Sample No. Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Content: % | Weight: kN/m? | Wetting: kPa | Potential: % Type
541 12.4 12.65 400 11.0 Training
542 12.4 14.03 400 11.2 Training
543 12.4 15.50 400 4.8 Training
S44 12.4 17.07 400 0.4 Training
545 12.1 12.85 800 5.6 Testing
546 12.1 14.52 800 7.4 Training
S47 12.1 15.21 800 6.4 Training
548 12.1 16.97 800 24 Training
549 15.7 14.03 100 10.4 Training
S50 15.7 15.01 100 5.2 Testing
551 15.7 16.59 100 0.1 Training
S52 15.7 18.44 100 0.0 Training
553 14.6 12.65 200 9.0 Training
S54 14.6 13.83 200 9.3 Training
S55 14.6 14.91 200 74 Testing
S56 14.6 15.60 200 4.7 Training
S57 15.6 12.75 400 4.6 Training
558 15.6 13.54 400 4.9 Training
S59 15.6 15.11 400 5.1 Training
S60 15.6 15.70 400 4.5 Testing
S61 16.3 12.66 800 0.6 Training
562 16.3 13.54 800 1.3 Training
563 16.3 15.01 800 0.3 Training
S64 16.3 15.89 800 0.2 Training
S65 5.4 13.54 100 104 Testing
566 5.4 14.32 100 8.2 Training
S67 5.4 15.50 100 2.1 Training
568 5.4 16.38 100 2.9 Training
S69 6.1 13.54 200 13.0 Training
S70 6.1 14.32 200 10.0 Testing
S71 6.1 15.31 200 7.1 Training
S72 6.1 16.09 200 5.1 Training
S73 5.0 13.73 400 14.3 Training
S74 5.0 14.81 400 11.2 Training
S75 5.0 15.60 400 8.4 Testing
S76 5.0 16.38 400 8.3 Training
ST 5.5 13.73 800 13.2 Training
S78 5.5 14.72 800 12.7 Training
S79 5.5 15.30 800 11.1 Training
580 5.5 16.09 800 12.5 Testing
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Table 3. Continued.

Sample No. Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Content: % | Weight: kN/m? | Wetting: kPa | Potential: % Type
581 9.2 13.15 100 15.0 Training
582 9.2 14.81 100 5.5 Training
583 9.2 16.19 100 0.7 Training
S84 9.2 17.17 100 0.0 Training
585 9.1 13.54 200 15.0 Testing
586 9.1 15.01 200 9.0 Training
S87 9.1 15.99 200 0.2 Training
588 9.1 17.27 200 0.4 Training
589 8.4 13.54 400 14.4 Training
S90 8.4 14.81 400 114 Testing
591 8.4 16.38 400 3.8 Training
592 8.4 17.27 400 1.2 Training
593 9.1 13.64 800 11.1 Training
594 9.1 14.62 800 11.1 Training
595 9.1 15.70 800 8.0 Testing
596 9.1 17.17 800 2.1 Training
S97 12.4 13.15 100 14.3 Training
598 12.4 14.62 100 9.3 Training
S99 12.4 15.60 100 0.0 Training
5100 12.4 17.76 100 0.1 Testing
S101 124 13.34 200 10.5 Training
5102 12.4 14.52 200 5.6 Training
5103 12.4 16.09 200 1.4 Training
5104 12.4 17.76 200 0.1 Training
S105 124 13.44 400 10.1 Testing
5106 12.4 14.03 400 9.9 Training
5107 12.4 15.21 400 6.6 Training
5108 12.4 17.46 400 0.2 Training
5109 12.4 13.05 800 8.1 Training
S110 124 14.22 800 9.1 Testing
S111 12.4 15.99 800 5.1 Training
S112 12.4 16.87 800 1.4 Training
S113 16.9 14.13 100 10.8 Training
S114 16.9 15.03 100 7.0 Training
S115 16.9 15.99 100 1.1 Testing
S116 16.9 17.56 100 0.0 Training
S117 16.9 13.54 200 124 Training
S118 16.9 14.81 200 8.9 Training
S119 16.9 16.09 200 34 Training
5120 16.9 17.56 200 0.0 Testing
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Table 3. Continued.
Sample No. Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Content: % | Weight: kN/m? | Wetting: kPa | Potential: % Type
S121 16.9 13.54 400 5.0 Training
5122 16.9 15.21 400 5.4 Training
5123 16.9 16.28 400 24 Training
5124 16.9 18.05 400 0.0 Training
S125 16.9 13.83 800 0.1 Testing
5126 16.9 14.72 800 1.3 Training
S127 16.9 16.19 800 0.1 Training
5128 16.9 17.76 800 0.0 Training
S129 6.0 14.42 100 10.9 Training
5130 6.0 15.60 100 6.8 Testing
S131 6.0 16.28 100 2.9 Training
5132 6.0 17.60 100 0.8 Training
S133 6.0 14.42 200 13.8 Training
S134 6.0 15.60 200 8.5 Training
S135 6.0 16.58 200 4.3 Testing
5136 6.0 17.76 200 1.7 Training
S137 6.0 14.13 400 13.6 Training
5138 6.0 15.21 400 12.2 Training
5139 6.0 16.58 400 6.2 Training
5140 6.0 17.66 400 2.6 Testing
S141 6.0 14.72 800 13.0 Training
5142 6.0 15.79 800 12.6 Training
5143 6.0 16.48 800 7.0 Training
S144 6.0 17.85 800 5.4 Training
S145 9.2 14.22 100 4.7 Testing
5146 9.2 15.70 100 1.8 Training
5147 9.2 17.37 100 0.0 Training
5148 9.2 18.93 100 0.0 Training
5149 9.2 13.93 200 134 Training
S150 9.2 15.99 200 5.4 Testing
S151 9.2 17.37 200 0.5 Training
S152 9.2 18.74 200 0.0 Training
S153 9.2 13.54 400 74 Training
S154 9.2 15.11 400 8.4 Training
S155 9.2 16.38 400 5.6 Testing
S156 9.2 17.36 400 0.9 Training
S157 9.2 14.13 800 4.5 Training
5158 9.2 15.21 800 5.3 Training
S159 9.2 15.99 800 5.5 Training
5160 9.2 17.17 800 3.3 Testing
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Table 3. Continued.

Sample No. Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Content: % | Weight: kN/m? | Wetting: kPa | Potential: % Type
5161 12.2 14.91 100 10.1 Training
5162 12.2 15.70 100 6.4 Training
5163 12.2 17.27 100 0.0 Training
S164 12.2 18.93 100 0.0 Training
S165 12.2 14.52 200 5.5 Testing
5166 12.2 15.79 200 5.2 Training
S167 12.2 16.78 200 0.0 Training
5168 12.2 18.44 200 0.0 Training
5169 12.2 14.62 400 5.0 Training
S170 12.2 15.70 400 3.6 Testing
S171 12.2 16.87 400 2.0 Training
S172 12.2 18.74 400 0.0 Training
S173 12.2 14.52 800 1.5 Training
S174 12.2 15.40 800 2.3 Training
S175 12.2 16.97 800 2.3 Testing
S176 12.2 18.34 800 0.3 Training
S177 15.7 15.30 100 1.7 Training
S178 15.7 16.58 100 0.0 Training
S179 15.7 17.17 100 0.0 Training
5180 15.7 17.85 100 0.0 Testing
5181 15.7 14.62 200 0.9 Training
5182 15.7 16.38 200 0.3 Training
5183 15.7 17.07 200 0.1 Training
5184 15.7 17.76 200 0.0 Training
5185 15.7 14.72 400 0.1 Testing
5186 15.7 15.60 400 0.1 Training
S187 15.7 16.58 400 0.0 Training
5188 15.7 17.46 400 0.0 Training
5189 15.7 14.52 800 0.0 Training
5190 15.7 15.89 800 0.0 Testing
5191 15.7 17.07 800 0.0 Training
5192 15.7 17.66 800 0.0 Training
Table 4. Properties of soils tested by Basma and Tuncer [7].

Soil Series | Sand: % | Silt: % | Clay: % | C, | Cc | LL: % | PL: % | G

S1 40.6 50.5 8.9 175 | 7.2 36.6 127 | 2.74

S2 47.8 47.2 5.0 25.0 | 1.1 29.1 11.2 | 2.72

S3 13.3 73.5 13.2 60.0 | 15.0 57.2 28.9 | 2.69

S4 19.6 70.4 10.0 11.5 2.9 28.0 7.0 2.77

S5 244 49.6 26.0 35.0 | 0.5 36.0 11.1 2.66

S6 42.1 42.9 15.0 100.0 | 0.9 28.2 10.6 2.69

S7 84.0 7.0 9.0 6.4 1.6 30.0 3.0 2.63

S8 92.2 5.8 2.0 34 1.1 25.0 5.0 2.65

11
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Table 5. Results of oedometric collapse tests reported by Basma and Tuncer [7].

Soil Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Series | Content: % | Weight: kN/m?® | Wetting: kPa | Potential: % Type
S1 4.0 15.0 400 12.5 Training
S1 6.0 15.0 400 10.1 Training
S1 8.0 15.0 400 12.5 Testing
S1 12.0 15.0 400 11.9 Training
S1 16.0 15.0 400 9.1 Training
S1 20.0 15.0 400 7.5 Training
S1 6.0 13.1 400 144 Training
S1 6.0 14.0 400 13.2 Testing
S1 6.0 15.0 400 10.2 Training
S1 6.0 15.9 400 7.8 Training
S1 6.0 16.8 400 4.2 Training
S1 6.0 17.8 400 1.3 Training
S1 6.0 18.7 400 0.0 Testing
S1 6.0 15.0 200 7.1 Training
S1 6.0 15.0 400 12.7 Training
S1 6.0 15.0 800 15.0 Training
S1 6.0 15.0 1600 15.6 Training
S1 6.0 15.0 3200 15.8 Testing
S2 4.0 154 400 14.8 Training
S2 6.0 154 400 13.3 Training
S2 8.0 15.4 400 11.7 Training
S2 12.0 154 400 8.7 Training
S2 16.0 15.4 400 5.0 Testing
S2 20.0 154 400 0.1 Training
S2 6.0 13.5 400 21.3 Training
S2 6.0 14.5 400 18.7 Training
S2 6.0 154 400 13.6 Training
S2 6.0 16.4 400 9.6 Testing
S2 6.0 17.4 400 6.0 Training
S2 6.0 18.3 400 1.0 Training
S2 6.0 19.3 400 0.0 Training
S2 6.0 154 200 8.5 Training
S2 6.0 15.4 400 13.6 Testing
S2 6.0 154 800 14.7 Training
S2 6.0 15.4 1200 17.5 Training
S2 6.0 154 3600 17.9 Training
S3 4.0 13.6 400 19.2 Training
S3 6.0 13.6 400 17.5 Testing
S3 8.0 13.6 400 16.2 Training
S3 12.0 13.6 400 15.0 Training
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Table 5. Continued.

Soil Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Series | Content: % | Weight: kN/m?® | Wetting: kPa | Potential: % Type
S3 16.0 13.6 400 13.2 Training
S3 20.0 13.6 400 12.0 Training
S3 6.0 11.9 400 22.7 Testing
S3 6.0 12.8 400 20.0 Training
S3 6.0 13.6 400 17.5 Training
S3 6.0 14.5 400 9.5 Training
S3 6.0 15.3 400 6.3 Training
S3 6.0 16.2 400 3.3 Testing
S3 6.0 17.0 400 0.1 Training
S3 6.0 13.6 200 12.0 Training
S3 6.0 13.6 400 17.5 Training
S3 6.0 13.6 800 19.0 Training
S3 6.0 13.6 1600 21.6 Testing
S3 6.0 13.6 3200 21.9 Training
S4 4.0 13.8 400 16.8 Training
S4 8.0 13.8 400 15.1 Training
S4 12.0 13.8 400 14.3 Training
S4 16.0 13.8 400 7.0 Testing
S4 20.0 13.8 400 9.7 Training
S4 6.0 12.0 400 21.3 Training
S4 6.0 12.9 400 19.5 Training
S4 6.0 13.8 400 16.6 Testing
S4 6.0 14.6 400 12.0 Training
S4 6.0 15.5 400 7.5 Training
S4 6.0 16.3 400 5.2 Training
S4 6.0 17.2 400 3.7 Training
S4 6.0 13.8 200 12.0 Testing
S4 6.0 13.8 400 16.5 Training
S4 6.0 13.8 800 15.1 Training
S4 6.0 13.8 1600 20.8 Training
S4 6.0 13.8 3200 23.0 Training
S5 4.0 13.0 400 22.6 Testing
S5 6.0 13.0 400 21.1 Training
S5 8.0 13.0 400 19.3 Training
S5 12.0 13.0 400 19.2 Training
S5 16.0 13.0 400 14.9 Training
S5 20.0 13.0 400 11.0 Testing
S5 6.0 11.4 400 23.2 Training
S5 6.0 12.2 400 24.1 Training
S5 6.0 13.0 400 22.2 Training
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Soil Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Series | Content: % | Weight: kN/m?® | Wetting: kPa | Potential: % Type
S5 6.0 13.9 400 16.1 Training
S5 6.0 14.7 400 15.8 Testing
S5 6.0 15.5 400 11.9 Training
S5 6.0 13.0 200 17.0 Training
S5 6.0 13.0 400 22.0 Training
S5 6.0 13.0 800 21.2 Testing
S5 6.0 13.0 1600 23.2 Training
S5 6.0 13.0 3200 24.5 Training
S6 4.0 14.6 400 24.5 Training
S6 6.0 14.6 400 22.5 Training
S6 8.0 14.6 400 18.6 Testing
S6 12.0 14.6 400 16.3 Training
S6 16.0 14.6 400 16.0 Training
S6 20.0 14.6 400 14.0 Training
S6 6.0 12.8 400 26.4 Training
S6 6.0 13.7 400 25.1 Testing
S6 6.0 14.6 400 20.2 Training
S6 6.0 15.6 400 16.5 Training
S6 6.0 16.5 400 16.1 Training
S6 6.0 17.4 400 9.4 Training
S6 6.0 18.3 400 9.0 Testing
S6 6.0 14.6 200 14.9 Training
S6 6.0 14.6 400 19.9 Training
S6 6.0 14.6 800 23.0 Training
S6 6.0 14.6 1600 25.7 Training
S6 6.0 14.6 3200 26.4 Testing
ST 6.0 18.2 200 0.0 Training
ST 6.0 18.2 400 0.1 Training
ST 6.0 18.2 800 0.1 Training
ST 6.0 18.2 1600 1.5 Training
ST 6.0 18.2 3200 4.2 Testing
ST 3.0 18.2 400 1.2 Training
ST 6.0 18.2 400 0.0 Training
ST 9.0 18.2 400 0.0 Training
ST 12.0 18.2 400 0.0 Testing
ST 6.0 15.7 400 6.6 Training
ST 6.0 16.3 400 4.3 Training
ST 6.0 17.7 400 1.0 Training
ST 6.0 18.2 400 0.0 Training
S7 6.0 19.2 400 0.0 Testing
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Table 5. Continued.

Soil Initial Water | Initial Dry Unit Pressure at Collapse NN Pattern
Series | Content: % | Weight: kN/m?® | Wetting: kPa | Potential: % Type
S8 6.0 16.9 200 0.0 Training
S8 6.0 16.9 400 0.9 Training
S8 6.0 16.9 800 2.1 Training
S8 6.0 16.9 1600 3.1 Training
S8 6.0 16.9 3200 6.5 Testing
S8 0.0 16.9 400 2.7 Training
S8 3.0 16.9 400 1.0 Training
S8 6.0 16.9 400 0.5 Training
S8 9.0 16.9 400 0.0 Training
S8 12.0 16.9 400 0.0 Testing
S8 6.0 14.6 400 6.0 Training
S8 6.0 15.1 400 5.1 Training
S8 6.0 16.4 400 2.1 Training
S8 6.0 16.9 400 1.0 Training
S8 6.0 17.8 400 0.0 Testing

summed square of the errors (MSSE) and the error rate.
Error rate was defined by Yeh et al. [28] as:

N,
1 P
Error Rate = Fp ; error;, (6)
where:
Nout
error; = Z (Ty — 0s)?/Novur, (7)
J=1
where 7,0 = target and network output values,

respectively, N,= number of input patterns and Nou¢ =
number of neurons in the output layer. For a network
with one output neuron, as in this study, Equation 6
reduces to:

N,
Error Rate = Z

=1

(T; — O:)|/Np. (8)

These three indices were used to assess and compare the
performance of the different neural networks studied.
The results for BPNN6, RNN4 and GRNN are given
in Table 6. From this table, it is clear that BPNNG6
had the best performance in predicting the testing
datasets, while GRNN had the best performance for
the training datasets. Generalization capability is
of utmost importance in any modeling technique.
BPNNG6 showed the best prediction capability for
testing datasets (best generalization capability), also

presenting a reasonable performance for the training
datasets. Therefore, BPNN6 was selected as the
superior network for assessing the collapse potential of
unsaturated soils.

Neural Network Results

Figure 6 indicates the network architecture of the
selected neural network, BPNNG6. The training perfor-
mance of the network is shown in Figure 7. As shown
in this figure, the network was trained after 150,000
epochs, where the network error no longer decreased.

Figure 6. Architecture of neural network used to predict
collapse potential.



16

G. Habibagahi and M. Taherian

Table 6. Summary of performance indices.

BPNN RNN GRNN Eq. 9|Eq. 10
Training|Testing|Training|Testing|Training|Testing
Coefficient of Correlation (R?) 0.97 0.95 0.96 0.93 0.98 092 | 0.75| 0.68
Mean Sum Square of Error (MSSE)| 1.32 2.42 1.78 3.51 0.98 341 | 16.6 | 224
Error Rate 0.86 1.01 1.03 1.41 0.73 1.42 2.95 | 3.67
’T continuous reduction in the mean sum squared of errors
sk ==@=ilrain for testing records during the training process and,
—f— Test .
; hence, no overfitting had occurred.
| The weight matrix of the trained network,
64 BPNNG6, is given in Table 7. Figure 8 shows the
network prediction for collapse potential compared
@ 5 . . -
w with the actual measured values. As described in
24 the section dealing with testing method and sample
5 preparation procedure, the method adopted in this
study utilized a standard proctor hammer to compact
2 the soil into the consolidation mold. This procedure
1
0 : , , 30
100 1000 10000 100000 1000000 _
Number of epochs - O Train
° 925
Figure 7. Performance of the network during training. ? ° s
]
g 201
Each epoch is defined as one cycle of presentation of 2
all training datasets to the network. % 154 =
“Overtraining” (overfitting) may occur if a net- 2 - m|
work is trained excessively, at which point, the net- 73 16
work starts to learn “noise” contained in the training g O u
. . o
datasets. Beyond this point, although the network’s 2
. . . . . A5 O
training error may continue to decline, the testing
error increases rapidly. In order to guard against y
overtraining, the network was examined during the 5 10 15 20 25 30

training process by monitoring its performance for
the testing records. The results are also shown in
Figure 7. As indicated in this figure, there is an almost

Actual collapse potential (%)

Figure 8. Prediction of neural network (BPNNG6) versus
actual measured values.

Table 7. Connection weights of the BPNN6 and Relative Importance (RI) of input parameters.

Hidden | ¢ a| siit | Clay | ¢, | ce | 1L | PI w ve | Po TP Output
Neuron Bias
1 10.216 | -0.024 | 0.213 | -0.218 | 0.109 | 0.109 | 0.275 | -0.099 | 0.241 | -0.042 | 0.490 | 0.305
2 0.104 | 0.077 | 0.115 | -0.155 | 0.086 | 0.086 | 0.038 | 0.234 | 0.262 | -0.080 | 0.121 | -0.110
3 1.038 | 0.473 | -0.104 | -0.234 | -0.049 | -0.049 | -0.280 | 0.797 | -0.316 | -0.335 | -0.007 | -0.158
4 0.584 | 0.576 | -0.364 | -0.376 | -0.637 | -0.637 | 0.531 | 0.209 | 0.164 | -0.501 | 0.209 | -0.219
5 0.287 | 0.052 | 0.243 | 0.036 | -0.077 | -0.077 | 0.026 | 0.397 | 0.118 | -0.264 | 0.156 | -0.174
6 0.033 | 0.368 | -0.383 | -0.002 | 0.202 | 0.202 | -0.392 | 0.958 | -0.146 | -0.370 | -0.104 | 0.429
Bias - - - - - - - - - - 0.500
RI (%) | 748 | 647 | 884 | 10.18 | 5.43 | 15.04 | 13.90 | 8.55 | 15.32 | 8.72 - ;
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was different for the records obtained by Basma and
Tancer [7], where static compaction was employed to
prepare the samples. Some of the network prediction
scatter in Figure 8 may be attributed to this difference
in the sample preparation procedure.

COMPARISON WITH EMPIRICAL
EQUATIONS

Basma and Tuncer [7] proposed two relationships for
evaluation of the collapse potential, derived from the
statistical regression analysis of test results, given by:

CP =48.496 4+ 0.102C,, — 0.457w

—3.53374 + 2.801n P, (9)

and:
CP =47.506 — 0.072(S — C) — 0.439w

— 31237, + 2.851In P, (10)

where:

CP = collapse potential (%),

Cy= coeflicient of uniformity,

w= initial water content (%),

Y4 = initial dry unit weight (kN/m?),

P, = pressure at inundation (kPa),

(S —=C) = difference between the sand and clay

percentage.

Predictions of test results based on these equa-
tions are shown in Figures 9 and 10, respectively. The
relative accuracy of Equations 9 and 10 for prediction
of the collapse potential is presented in Table 6. It
is clear from Table 6 and Figures 9 and 10 that
the aforementioned equations have very poor accuracy
compared to the neural network results.
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Figure 9. Prediction of collapse potential based on
Equation 9.
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Figure 10. Prediction of collapse potential based on
Equation 10.

PARAMETRIC STUDIES

In order to study the influence of different parameters
on the amount of collapse potential, the network
BPNNG6 was tested by a set of input parameters. This
set of parameters were as follows: sand content = 13%,
silt content = 75%, clay content = 12%, uniformity
coefficient = 16.7, coefficient of concavity = 1.4, liquid
limit = 22.6, plasticity index = 5, initial water content
= 4.9%, initial dry unit weight = 13.6 kN/m? and
pressure at wetting = 100 kPa. The network prediction
was obtained by varying a single parameter each time
while keeping all the other parameters constant. The
influence of initial dry density, initial water content
and the pressure at wetting on collapse potential are
shown in Figures 11 to 13, respectively. As expected,
Figure 11 indicates that the collapse potential decreases
rapidly with an increase in the initial dry unit weight.

20

15
16
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12:
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Collapse potential (%)

12 13 14 15 16 17 18 19
Initial dry unit weight (kN/m®)

Figure 11. Influence of initial dry unit weight on collapse
potential (BPNNG6).
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Figure 12. Influence of initial water content on collapse
potential (BPNNG).
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Figure 13. Influence of pressure at wetting on collapse

potential (BPNNG6).

Figure 12 indicates the dependence of collapse potential
on the initial water content. It is interesting to note the
similarity in shape between this curve and typical soil
water characteristic curves, which relate soil suction
(pF) to soil water content. A logarithmic scale was
used for the vertical axis in Figure 12, purposely, to be
comparable with soil suction (pF) commonly expressed
in logarithmic form. In other words, Figure 12 im-
plicitly indicates dependence of the collapse potential
on soil suction, that is, collapse potential is higher at
high suction values (low water content) and reduces
rapidly with an increase in water content. However,
any further conclusion on the relationship between
Figure 12 and a soil water characteristic curve needs
substantial additional investigation. From Figure 13 it
can be concluded that the collapse potential increases
with an increase in applied pressure up to a “critical”
pressure and it is reduced afterwards. This behavior
is expected, since pressure at wetting has a dual

G. Habibagahi and M. Taherian

effect on the collapse potential. On the one hand, it
increases the shear stress in the clay bridges between
particles which results in subsequent shear failure of
these bonds upon saturation. On the other hand,
shear failure of these bonds occurs before saturation if
loading exceeds a critical value. This kind of behavior
has also been reported by other investigators, such as
Booth [3].

In order to study the influence of soil composition
on the collapse, the silt content was varied, incre-
mentally, from 55% to 85%, while decreasing the clay
content by the same amount from 32% to 2% and
fixing the sand fraction at 13%. The results shown in
Figure 14 indicate that the collapse potential increases
with an increase in silt content. Conversely, it may be
concluded from the same figure that an increase in clay
content accompanied by a decrease in silt content will
reduce the collapse potential.

Garson [29] proposed a procedure to determine
the relative importance of various input parameters for
a neural network by examining the connection weights.
This goal was achieved by partitioning the weights of
the output layer into components associated with each
input parameter. In other words, the net contribution
of each input parameter to the resulting output is
assessed. Based on this procedure, the relative impor-
tance, RI, of input parameters was evaluated and the
results, together with connection weights, are shown
in Table 7. The results indicate that for a given soil,
(that is, for given soil indices, Atterberg limits and
gradation characteristics) initial dry unit weight, vq4,
is the most important factor, followed by pressure at
wetting and initial water content. From the same table,
it may be concluded that the soil properties influencing
collapse potential are, ranked on a descending order of
importance, Atterberg limits (liquid and plastic limits)
followed by coefficient of uniformity and clay content.
Coefficient of curvature, C¢, is the least important
factor.
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Figure 14. Influence of silt content on collapse potential.
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SUMMARY AND CONCLUSION

Collapse potential was evaluated using three different
types of neural network (BPNN, RNN and GRNN).
Single oedometric test results were used to train and
test the network. A large number of sets of data
obtained in this study, as well as experimental results
reported by other investigators, were used for this
purpose. The capability of the neural networks to
predict collapse potential was evaluated and compared
with each other, as well as with some other relation-
ships available in the literature. Although the results
indicate a definite superiority in the neural network
approach, in terms of accuracy of prediction of collapse
potential, there is still room for further improvement if
a standard procedure for preparing the soil sample and
testing unsaturated soils in an oedometer apparatus
were set forth and followed by different investigators.

Furthermore, the influence of various soil param-
eters on collapse potential was discussed. From the
results, it was concluded that the collapse potential
increases with decreasing initial dry density and water
content. The collapse increases with the applied pres-
sure up to a critical pressure after which the collapse
potential decreases with further increase in the applied
pressure. The silt content seemed to play an important
role in the collapse potential, since any increase in the
amount of silt content showed higher collapse potential.

By analyzing the network connection weights, the
relative importance of different parameters on collapse
potential was assessed. Based on this analysis, for a
given soil type, the initial dry unit weight, 4, is the
most important factor influencing collapse potential
followed by pressure at wetting and initial water con-
tent. It was also concluded that the relative importance
of soil properties affecting collapse potential, in a
descending order, are Atterberg limits (liquid and
plastic limits) followed by coefficient of uniformity and
clay content. Coefficient of curvature, C¢, is the least
important factor. The proposed network is, therefore,
a suitable tool to assess different placement conditions
(initial dry density and placement water content), as
well as stress levels on collapse potential for a given
soil. On the other hand, the network may be used to
assess the effectiveness of a soil improvement procedure
on collapse potential by performing an appropriate
parametric study.

Future work is encouraged in the following areas:

1. Setting a standard procedure for sample prepa-
ration and testing of compacted soils in a single
oedometer test to arrive at more consistent and
comparable data;

2. All the results used in this study were confined to
soils exhibiting collapse potential. Therefore, the
network results are not suitable for soils showing

19

both collapse and swell potential. Hence, expanding
the database to include more soil types and a wider
range of initial conditions to cover both swell and
collapse potential is recommended;

3. Research is also encouraged toward similar work
for evaluating the collapse potential of natural soil
deposits.
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