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Research Note

Non-Symmetrical Plane

Contact of a Wedge Indenter

S. Adibnazari*, D. Naderi'! and A.R. Shahani?®

Different parameters of the asymmetric contact problem between an elastic wedge and a half-
plane have been introduced in this paper. These parameters include the distribution of contact
pressure and length of contact zones due to frictionless normal loading. For each parameter, the
results have been compared with the results of the symmetric problem and numerical solution,
which show excellent agreement. The method of approach is a completely analytical method
based on singular integral equations. In this method, the boundary conditions of the problem are
stated as some singular integrals, and distribution of the contact pressure is specified. Then, with
use of the equilibrium equations and the consistency conditions of the singular integral solution,

the lengths of the contact zones are specified.

INTRODUCTION

Contact is one of the principal methods of applying
loads to the surfaces of deformable bodies. The result-
ing regions of stress concentration are often the most
critical regions in the body. Contact is characterized by
unilateral inequalities, describing the physical impossi-
bility of tensile contact tractions (except under special
circumstances) and of material interpenetration. Addi-
tional inequalities and/or non-linearities are introduced
when friction laws are taken into account. These
complex boundary conditions can lead to problems
with the existence and uniqueness of a quasi-static
solution and to a lack of convergence of numerical
algorithms. In frictional problems, there can also be
a lack of stability, leading to stick-slip motion and
frictional vibrations.

Classical elastic contact problems for the wedge
and cone are attractive analytically because they have
a relatively simple form of solution and the interior
state of stress induced may also be found easily,
including the effects of sliding frictional shear tractions.
The principal applications of this geometry are to
understand the stress state induced beneath asperities
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on rough surfaces, the contacts arising in certain
fretting fatigue experiments and the loading imposed
by stylus instruments, such as surface profilometers.
In particular, the use of indenters with a linear profile
is attractive for fretting fatigue experiments, as this
permits a wide range of size of incomplete contacts
to be obtained and, thus, facilitates a control of the
size effect, i.e. the different fretting fatigue behavior of
the material under geometrically identical contacts of
varying size.

The problem of contact between two similar
cylinders in the absence of friction was first studied
by Hertz [1]. The results of Hertz's work are still
considered as the basis for many practical designs.
However, the friction between the contacting parts
plays a significant role in creating surface traction.
Hence, it is necessary to comsider friction when the
growth of surface cracks is the dominating parameter
for life prediction. This was first formulated by
Cattaneou using two similar spheres [2]. It should be
noted that the friction does not affect the peak stresses
at the contact area [3]. Similar studies can be found
on contacting bodies with different geometries [4-8].

The complexity of the geometries of the contact-
ing bodies, loading conditions, material properties and
environmental effects, etc. makes preferable the use
of numerical methods, like the FEM (Finite Element
Method) in analyzing some problems. The existing
FEM studies are divided into two different groups. The
first group is involved with integral equations obtained
from the weighted residual methods and variational
inequalities [9-11]. However, the reported studies in
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the second group are focused on the application of the
developed algorithms to practical problems [12-14]. It
must be mentioned that this group includes solving
particular problems that cannot be generalized and, for
some of the studies the discrepancy between the FEM
results and the Hertz solution is enormous [13].

The problem of the normal indentation of dis-
similar elastic bodies was first considered in detail by
Spence [15,16]. The Spence solution concentrates on a
rigid flat-ended punch and uses an iterative scheme to
develop the coupled solution. Using the same method,
Nowell et al. developed a solution for the contact of
dissimilar elastic cylinders [17,18].

The majority of contact solutions encountered
in the literature assume symmetrical profiles and
symmetrical indentation. This greatly simplifies the
solution of related contact problems. However, non-
symmetrical cases may be of considerable interest in
many engineering applications. Even with nominally
symmetrical contacts, there is the possible effect of a
relative rotation, as a result of an applied moment, or
of undesired geometrical asymmetry. Non-symmetrical
contact problems may occur in situations like hardness
testing and surface roughness measurement. In this
paper, the effects of asymmetry on contact pressure
distribution and contact lengths are considered. The
method used is completely analytical, based on singular
integral equations [19,20]. In this method, the bound-
ary conditions are expressed as singular integrals and,
then, by solving them, the contact pressure distribution
and lengths are calculated.

FORMULATION AND PROBLEM
SOLUTION

A plane contact problem containing an elastic half-
space and an elastic wedge indenter is considered
(Figure 1) [5]. A vertical force is exerted on the
tilted wedge, pushing it against the half space. It
is assumed that the external angles at the apex of
the indenter (¢1,@2) are small. This permits the use
of an elasticity formulation appropriate to a semi-
infinite body and this, in turn, facilitates a closed form
solution. Also, it is assumed that either of the contact
surfaces is lubricated or that the contacting bodies
are elastically similar to prevent the development of
interfacial shearing tractions. Even if neither of these
conditions is fulfilled, their influence on the contact
pressure distribution is likely to be very small.

It is well known that in the case of plane contact,
the basic singular integral equation relating the relative
surface vertical displacements of the two bodies, h(x),
to the contact pressure distribution, p(x), is given by:

10h 1 p(n)
RO d 1
A dx 7r/Lx—17 T 1)
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Figure 1. Tilted wedge in contact with half-plane.

where the composite compliance, A, is given by:
Ky +1 N Ky +].'

A=
4,[1,1 4,[1,2

(2)

In which, K; = 3 — 4vy; in plane strain, K; = f;—l’jl in
plane stress and L indicates the contact region. Also,
v; and p; are the Poisson ratio and the shear modulus
of body i(i = 1, 2), respectively. From Figure 1, it can
be seen that due to the unsymmetrical nature of the
contact phenomena, the contact regions on both sides
of the y-axis are not the same. So, Equation 1 can be

written as:

Loh 1 [ p(n)
= =2 4 3
Adx 71'/_1,33—17 777 3)

where a and b are the lengths of the contact area along
the z—axis. The relative surface vertical displacements
of the contacting bodies, h(x), can be defined with a
unique function using the singularity function:

hzr)=0—¢1 <x>—¢a < —x >, (4)

where the singularity function is defined, in general, as:
K >0

<z>={00 7 . (5)
0; 2<0

Substituting for A(x) from Equation 4 into Equation 3,
yields:

%[_% <x > +¢y < —x > = %/71) f(_nz?dn. (6)

The following linear mappings can be defined to nor-
malize the variables in Equation 6:

a+b a—>b
== T+ =ar+f,
b -b
x:a; s—l—a2 =as+ 3, (7)
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where:

a+b a—2b

o= 5 8= ) (8)

and -1 <r,s<1.
Substitution of Equations 7 into Equation 6 leads
to:

1 p(r) =1 <as+B8>+¢,<—as—p>"
;/13—1“6”_ A - ©)

Noticing that the pressure distribution is bounded
in the considered incomplete contact problem, the
singular integral Equation 9 can be solved to be:

_\/l—s2 Lor<ar+B > —py <—ar—p3>°
TA ) (r—s)v/1—12 (10)

p(s)=

provided that the following relation holds:

/1 —h1<ast P>t <—as-§>0, 0,
= AVI =2 (1)
Note that:
1; ar+8>0 or r>-2
<ar+p>= B o
0; ar+p<0 or r<—=-
<—ar—ﬂ>0:{1f —ar—(3>0 or r<—§'
07 _O”"_ﬁ<0 or r> - (12)

Equation 10 can be integrated to yield:

_ Gt de JatfBsty/ar- VI —s?
p(s)=— 1 In 5 .
m as (13)

In the special case of symmetrical contact problem
(¢1 = @2 = ¢), one should have a = b and, therefore,
a =a and £ = 0. Hence, the pressure distribution can
be simplified to give:

o) = 2o (1), (14)

This is exactly the same relation obtained by Truman
et al. for the symmetrical contact of a wedge inden-
ter [5].

Substituting for s, s = % into Equation 13 leads
to:
¢1+ P2
=— 1
pa)=- 2%
o’ =+ pr+/a? =3/ —(z— )

ax

(15)
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Integrating the consistency Equation 11 leads to:
B sin (f@_%). (16)
Q 2 ¢2 + ¢1

Substitution of Equation 16 into Equation 13 results
in:

(S)__¢1+¢2 I 1+ ssine + cospy/1 — s2
ps)= TA 5+ sin ’(17)
where:
_ TP~
z/)—2¢2+¢1, (18)

It is interesting to note that the pressure distribution
given by Equation 17 is independent of the lengths of
the contact zones, a and b (or o and f3).

The dimensionless contact pressure distribution is
plotted in Figure 2, as a function of nondimensionalized
parameter s. Two sets of combinations of angles are
considered, which are ¢; + ¢ = 4 and ¢; + ¢ = 16.
It is seen from the figure that, in all cases, the
pressure distribution has singularity at a point which
corresponds to the wedge apex. Also, it is observed
that the greater the sum of the external angles at
the apex, the greater the pressure magnitude and the
severer the pressure singularity at the apex.

To find the lengths of the contact zone, the
following relation should be used:

P= [bp(x)dx. (19)

In fact, this relation indicates the resultant of the con-
tact forces due to pressure distribution. Normalizing
Equation 19 with the aid of Equations 7 and, then,

Diagrams of A*p(s) versus s for¢1+¢2=4° and ¢p1+¢2=16°
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Figure 2. The dimensionless contact pressure
distributions versus nondimensionalized parameter s.
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using Equation 17, the following equation is obtained:

TAP —a/l I ssin ) + cosPv/1 — 52

- d
o1 + P2 1 s 4+ sin s

1
:al/ ln‘ssini/)—l—\/l—szcosz/)‘ds
-1

1
_/ 1n|s+sinz/)|dsl.
- (20)

Using the change of variable s = cosu in the first
integral, the following equation is derived:

— A—P (21)
T b1+ 6)cosy

Then, using Equation 16, one may easily obtain:

B

AP
= tan . 22
¢1 + P2 v (22)
The lengths of the contact zone can be obtained using
Equation &:

AP 1+4sing
a= )
¢1+ @2 cosy
AP 1 -—sin®
b=— i 23
¢1+ @2 cosy 23)

Examination of the above equations, for the special
case of symmetrical contact of a wedge and a half-space,
yields:
AP AP
= b= ———. 24
=55 5 (24)

These results are the same as those published by
Truman et al. for the symmetrical case [5].

It is worth mentioning that when ¢; — 0 and
1 — % and taking limits, then:

b— 0. (25)

a — 00,

This means that when ¢ is small, the corresponding
contact surface lies fully on the half-space and the other
surface ceases to contact with the half-space, as was
expected in a physical sense. A similar fact holds true
when ¢o — 0. These are shown in Figure 3.

COMPARISON WITH FEM

A finite element model of the specific geometry is
constructed (Figure 4) and is then analyzed with
ANSYS 7.0. Rigid Elements TARGE169 are used to
represent the rigid wedge with ¢; = 3° and ¢, = 6°.
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Figure 3. The dimensionless contact lengths distributions
versus ¢z at some constant ¢;.
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Figure 4. Finite element model of the contact problem.

A circular region of the half-plane is modeled with 2-D
elements PLANE42 and is fixed radially at R = 50 mm.
The z-axis of the half-plane represents the contact
surface and consists of CONTA171 elements, which are
associated with the target elements. The half-plane has
a modulus of Elasticity of E = IOOOmZX12 and Poisson
ratio of ¥ = 0.4999 ~ 0.5. The normal force is applied
on the wedge and is equal to 100, 000%.

A comparison of the normal pressure distribu-
tion from FEM and the analytical results is shown
in Figure 5. The difference between both methods
is very small. These small errors are due to the
approximate nature of the FE analysis. The figures
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Figure 5. Contact pressure distribution versus « for the
case ¢1 = 3° and ¢ = 6°.

also verify another result of the analytical solution, i.e.,
the lengths of the contact areas. This is because of
the unsymmetrical pressure distribution, which implies
that either of the regions on the left and right of the
line z = 0, corresponds to one of the contact areas and,
hence, indicates the length of the contact area.

CONCLUSION

A general model for the problem of contact between a
tilted wedge and a half-plane is developed. The method
of solution is completely analytical and is based on
Cauchy’s principal values for the singular integral equa-
tions. In the case of elastically similar materials, this
model was solved for pressure distribution and contact
lengths, of which the results are in full agreement with
the previous solutions for the symmetric case. The
effect of asymmetry on contact pressure distribution
and contact length diminishes with decreasing the tilt
angle and vice versa. Finally, the results are compared
with the FE solution and it is shown that there is good
agreement between these methods.
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