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Research Note

Solving One Problem of Diffusion

by Multiple Laplace Transforms

H.G. Hassanov!

In this paper, a new approach for solving partial differential equations by means of multiple
Laplace transforms is developed. The theorem regarding the independence of the final image
(final original) on the sequence of realizing the transforms is proved. The diffusion equation with
delay is analytically exactly resolved. An algorithm of the solution is given for cases £ >> «
and arbitrary values of parameter 7. It has been shown what changes in solution take place for
problems of diffusion with a moving boundary. The solution may be used for most problems with

a delay argument.

INTRODUCTION

In [1] it has been shown that such a parameter takes
on principally important significance in the course
of drilling at the functioning of a stem as a drill
cutting holdup at optional points of the well, z;, in
comparison with the moment of its development in
the bottom hole. In other words, in solving the
diffusion equation, it is necessary to take into account
that the required function of the drilling mud density
distribution along the well depth, Ap(¢, z), is, in fact,
the complicated function Ap(t — 7, z), where 7 is the
delay time (7 = z/v). A similar problem is the
partial case of a more general class of equations with
delay arguments. Currently existing methods of math-
ematical physics do not yield an exact solution to the
problem. The method of multiple Laplace transforms
developed herein gives an opportunity to get, at least
in principle, an analytically correct solution to the
problem studied. It is worthwhile to note that a
review of existing literature revealed a series of papers,
for example [2,3], where multidimensional Laplace
transforms have already been introduced. However,
in cited papers, there are a few disadvantages which
do not allow practical realization of the transforms.
Firstly, transforms used in [2,3] are discrete. Secondly,
the obtained solutions to the considered problems are
tentative and the degree of the accuracy rises by an
increase of R (R is the number of artificially introduced
variables). Thirdly, solved differential equations are
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sufficiently restricted by given conditions, so that the
value of the acquired results is, essentially, limited. In
this matter, the method developed by the authors in
the present article is universal, since the method does
not contain the above defects.

MATHEMATICAL FORMULATION OF
THE PROBLEM

In this method, the Laplace transform is consecutively
(two or more times) performed upon the required
function by various independent variables. In other
words, if each Laplace transform were marked by L.,
where z; are independent variables included into the
considered equation (i = 1,2---), then, the total
Laplace transform can be symbolically represented as:

Ltot = Ll‘leg = ﬁLwn
=1

in which the upper limit, n, is defined by conditions of a
concrete problem. As a result of such a procedure, the
number of variables in each partial differential equation
decreases by means of each Laplace transform.

Let one take f(z,t) as a function of two real
variables, z and ¢, when, 0 < z < +00,0 < t < +00,
that may be integrated within any intervals in the
Lebesgue meaning. Then, the expression:

F(ﬁ,s)://f(z,t)e_fze_“dzdt,
00

will be called the double Laplace integral and the func-
tion F'(&,s) is the double Laplace image (transform)
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of the function f(z,t). The magnitudes s and £ are
the time and coordinate parameters of the Laplace
transform, respectively. The function:

Gi(&t) = [ f(z,t)e”*dz, (1)

0\8

will be called an intermediate Laplace image of the
function f(z,t) by coordinate, but, the function:

= /f(z,t)e_“dt, (2)

is called an intermediate Laplace image of the function
f(z,t) by time. Generally speaking, the intermediate
images, G1(&,t) and Ga(z, s), by various variables, are
different. Omne can prove a very important theorem
for application of the theory of multiple Laplace trans-
forms.

Theorem

Independently, in the sequence of realizing integral
Laplace transforms by various variables in Equations 1
and 2, the final image, F'(&, s), should be the same.
The proof of this theorem is sufficiently simple.
Let two different transforms be formally introduced as:

1(1 (57 S)

and the final images be marked in the following way:

=e et Ko(s,6) = e %e™8,

F(gs) = f(z, t) K1 (&, s)dzdt

f(z,t)e e stdzdt,
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f(z,t)Kas, &)dtdz
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f(z,t)e e~ dtdz.
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The authors task is to prove the equivalence of the
functions F(£,s) and F(s,€). Certainly, due to the
permutation relations during integration, the next
formula should be valid:

o0 oo o0

/f(,?f,t)e*stdt/efgzdz:/f(z7 t)effldz/efstdt.
0 0 0 :
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Then, introducing the values of intermediate images
from Equations 1 and 2, one gets:

/GQ(Z,S)€_£ZdZ: /Gl(g,t)e_“dt.
0 0

i.e., the identity of the final image:
F(&,5) = F(s,£). (3)

In finding the function - original f(z,t) from the final
image F(&, s), one needs to use the next formula of the
inverse Laplace transforms, taken as a generalization
of the known relationship [4]:

¢+ico §+ico

1\ a9 o ef7est
f(Zat):<%> &a/ /F(§7 )—— £ dfd8(4)
¢$—100 § —i00

For inverse transformations, one can introduce the
concept of intermediate originals and consider their
connection with appropriate intermediate images. Un-
fortunately, these interesting questions of the theory of
multiple Laplace transforms are the subject of separate
investigations and cannot be completely elucidated in
the present paper. However, one important theorem
should be kept in mind. This is the theorem about
realization of the independence of the final original
on the sequence of the inverse Laplace transforms.
This property is important because it is necessary to
make sure, after integral transforms, that the required
function is univalently determined. If the function:

6+100

1 9 et
57195 / F(fvs)?d& (5)

b—io0

gl(Z,S) =

is called as the intermediate original of the image
F(&,s) by coordinate and:

¢+ico
1 0 et
gz(ﬁvt)—%a / F(§78)?d37 (6)
¢p—ioco

the appropriate intermediate original of the same image
by time, then, these originals are different, although the
final original, f(z,t), should be the same, independent
of the sequence of realizing these transforms. The last
statement is easily proved, as the above theorem, since,
due to the permutation relations of the considered
integrals, one has, from Equation 4, the following:

e eSt 1 0 §+iooegz
27 Ot / F(g,s) % oni 92 ng
¢-ico 5-ico
§4ico g Y
= 2mazé/ F&) fz—ma / PR
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In practice, the transition from the final image, F'(, s),
to the final original, f(z,t), is realized by the same
tables of the operational calculus. In some cases, the
transition may be realized by parameter s (another
parameter ¢ is accepted to be permanent), then, by £.
The choice of which transition should be firstly made
is not a question of principle, but of convenience, due
to Equation 7.

SOLUTION OF A DIFFUSION EQUATION
WITH DELAY

For the drilling process, the diffusion equation may be
represented as:

Ap(z,t —7) Ap(z,t — 1)
a7 o

Hereafter, v = velocity of liquid convection and A =
source function, which characterizes the entrance of
cuttings (any strange substance) into the well. As a
rule, values of v and A are estimated to be constant
under p(z,t — 7) and one means the increment of the
drilling mud density with dependence on coordinate
z and time ¢, with an account of delay 7. For
simplification, let one consider the case 7 = const. For
Equation 8, the time Laplace transform, L, will firstly
be realized and the equation in complex plane (z,s)
will be obtained as:
—57’ dp (Z S) A

—ST K — 9
e *Tsp (z,8) +e v T (9)

— A (8)

in deducing Equation 9, one uses the initial condition
p(z,t = 0) = 0. Taking into consideration that 7 =
z /v, after certain calculations, one obtains:

_ _. dp*(z,s) A
1z g p* v2g 2P %58 2 10
e sp*(z,8) +e = : (10)
Herein, 7 = s/v. The next step is to apply for

Equation 10, the coordinate Laplace transform L..
Subsequently:

Lp (E+7,8)+ v{fﬂ*"(ﬁ +7,8)

3
X A
e +x)} s§ (D

In obtaining Equation 11, the following basic relation-
ships of operational calculus:

p*o :p*o(§7s) — //p(z t)e .Ezefstdzdt7
0 0
pr(E+,8) = L/ p(z,t)e Fe P dzdt,
v
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have been used, as well as the boundary condition,
which is given in view:

p(z =0, t) = poo(]- - e_Xt)v (12)
and which corresponds to experimentally observed
law. The magnitudes p, and x are empirically
determinable. From a physics standpoint, the value
of y characterizes the relaxation of density at the point
z = 0 (bottom zone in the drilling process). In the
first approximation, for solving Equation 11, let one
take & >> 7, so that the image p*°(£ + 7, s) could be
substituted for:

CE T, 8) = (). (13)

Formally, the last relationship can be obtained in the
following way. First, expand the function p*°(¢ + v, s)
in a series, by degrees, of the parameter :

a *0
POE+,8) = p0( ) + L2 a(;’ )
+lwy'+..., (14)

21 9¢?

Under infinitesimal values of v (in the original, this
corresponds to t — 00), one can neglect all the compo-
nants containing any degree of parameter v and yield
Formula 13. Inserting Formula 13 into Equation 4, one
ultimately acquires:

_ X _A
sp (§7S)+v{£p (&) poois(SJrX)} 85.05)

From the last equation, function p*°({,s) may be
elementarily found as:

56 T VP S(S+x)

(6 =

(16)
According to the conclusions of the previous section,
returning the original p*°(&, s) from Equation 16 may
be realized via any method. For convenience, in this
case, let one firstly realize [L.]™!, assuming s to be
constant:

p*(s,2) = %(1 — e /) 4 %e*“/v. (17)
Now, for the intermediate original (Equation 17), it
is necessary to make the inverse Laplace transform by
time [L;]~!. For this reason, the basic operational rela-
tions should be used, as well as the Duhamel integral.
The ultimate result is written without intermediate
computations as:

plzt) = A (%) + poo(l — eXY), (18)
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which is in full accordance with the boundary condition
(Equation 12). An increase in the function p(z,t) by
the coordinate z, in the direct neighborhood of point
z = 0, may be explained by the convective transfer of
cuttings by liquid with velocity v.

The obtained solution (Equation 18) is justified
only if there is the inequality £ >> v. In an original
plane, the condition appropriate to this inequality
should be in the following form:

vty >> 2o, (19)

i.e., the mud density distribution (Equation 18) is valid
only for the pair of value (zo,%p), which obey the
Condition 19.

The solution of Equation 18 is a solution of the
zero order of the parameter y. Let a more general
case of the problem be considered, where one could
not neglect all degrees of v. Assuming that one should
take into account the componants with j = 1 in the
Expansion 14, then, one obtains:

dp*° (&, s) ,

5 (20)

P(E+7,8)=p"(Es) +
Having inserted the last formula into the basic Equa-
tion 11, one obtains an ordinary differential equation
of the first order relative to variable £, namely:

dp*° [ s ] vo { s ] A X
Y| ——+0|+p" | ——+v|=—2 + Vpoo
g L&+ £+v s¢ s(s+x)
After simple changes, the last equation may be reduced
to the following;:

do* 1
§—€+;p =m. (21)

E+y

Herein, the function K (&, s) has the following view:

. A X
K(¢s)= 5 +Upoom~
As known, ordinary differential equations relative to
imaginary variables £ (or s) in the Laplace transform,
should be resolved just like in cases of real vari-
ables [4,5]. Taking into account that during integration
by £ the parameter s is accepted to be permanent, one
can yield the following for the final image:

p*o _ e—f/'y / l{(gvs)
RS

eflde y (22)
e

E+y

Therefore, function K (¢, s) is analytic in the simply
connected region, D, of the imaginary plane (£, s) and
C is the curve laying within the region, D. Finding the
last integral is not a difficult task, since, according to
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the Cauchy theorem, there is a numerous set of curves
C;, which lays in the same region and possesses equal
end points (a — b, a + ib), Re§ > a > 0, so that :

%0 _ €/ K(¢,s)
p e C/g [giv +v]

ef/"’dg

a+i00

=e ¢/ / _E&s) et/de 3. (23)
a—100 5 [fi’)’ tv

After finding the integral in Equation 23, one has to
return to the final original by means of the inverse
transforms [L,]! and [L; ! in any sequence and
define p(z,t).

Hence, giving, beforehand, the degree of the
parameter v, one can find the image p*°(&,s) with
desired accuracy and define the function of the mud
density, p(z,t), corresponding to each case.

SOLVING THE PROBLEM WITH A
MOVING BOUNDARY

The condition 7 = const. is greatly idealized. In
practice, this magnitude depends upon time and such
a circumstance takes place due to the shift of the
boundary z = 0 (the well bottom) while drilling. Thus,
it is natural to accept 7 = 7(t). Let one elucidate
as to how this aspect effects the distribution p(z,t).
The velocity of the above boundary change is taken as
permanent and equal to w. In this case, the delay time,
7, is determined as:

+ wt
S (24)
v v v v

where 79 is the initial delay time described in the
previous section. Then, a new variable, 8, is introduced
and marked as 8 =t — 7 and, ultimately, the following
is obtained:

t:erff. (25)

v

In terms of the new variable, the normalization factor,

e s in the Laplace transform will be represented as:

—st —S(H%)

e —e — 6_57—;6_59/(1, (26)

where the following abbreviations are used:

T0 w
=" a=1-=
«

v

Taking into consideration the linear law (Equation 24)
of the delay 7(t) dependence, for the required function
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p(z,t — 7), one has the next operational relations:

oo 6737’{;
/ﬂ(z,t—f)e’“dt: o Pl

0

Ooa t_ —STg
/%e—stdt = eTsp*(sz/a)v

0
the initial condition will be the same as for the previous
problem. After realizing L, there will be the following
equation in view:

—erp W28/ A oy

* 8
—s7y 2 %
e 2P (z,8/a) +e P :

Formally, the obtained Equation 27 coincides with
Equation 9 for diffusion with a fixed boundary. In
other words, the algorithm of the diffusion equation
solution developed in the previous section will be valid
for this case also. However, now, the image p*(z,s/a)
has already been dealt with. So, in solving a problem
with a moving boundary by the following law:

z = wt,

one is able to, ultimately, find the function-image
p*°(&,s/a) and, then, by inverse Laplace transforms
[L.]7" and [L;]™!, return to the original p(z, at), taking
into account the well-known similarity theorem for the
transforms.

CONCLUSION

The method of multiple Laplace transforms developed
in this paper allows one to obtain an analytical solution
to a whole class of problems with the delay argument.
Except for the problem of cuttings distribution in the
drilling of mud, which has been developed herein, this
class contains, generally, all the problems of convective
diffusion with the right side different from zero that
characterizes the coming of the strange substance
into the volume involved. Moreover, this class of
problem is typical of the problems involved in the
theory of automatic control, burning in rocket engines,
economic and biophysical problems etc. As noted in [6],
differential equations, with the delay argument, may
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be exactly integrated in exceptional cases only. As a
rule, for their solution, one uses the numerical methods,
for example [7-9]. In the light of what has been
described, the method of multiple Laplace transforms
providing the principal opportunity for obtaining an
analytical solution to such a class of equations, acquires
a special meaning. Using it, one can obtain a correct
solution to the equations, which has been proved in
the current paper and, undoubtedly, the development
of this technique essentially expands the possibilities
for the mathematical modeling of various processes.
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