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A Convergent Genetic Algorithm
for Pipe Network Optimization

M.H. Afshar* and M.A. Marino’

A highly convergent Genetic Algorithm (GA) for pipe network optimization is presented in this
paper. An artificial genotype passing mechanism, an alternative penalty cost calculation method,
an iterative setting of the penalty parameters prior to the GA search and, more importantly, a
new selection operator, are introduced in the proposed GA. The genotype passing mechanism
leads to a monotonically decreasing convergence curve of the GA search and, therefore, paves
the way for introducing a logical convergence criterion for genetic algorithms. The use of an
alternative penalty cost calculation leads to a better distribution of the fitness function in the
search space, compared to conventional methods and, therefore, helps the GA to locate useful
genes. Penalty parameters used for the calculation of the penalty cost are determined prior
to a GA search, via use of a mathematical programming method, eliminating the possibility of
choosing too low or high parameter values. Finally, a new selection operator is designed in an
attempt to simulate the process of natural mating more closely, leading to an improvement in the
optimality and convergence characteristics of the method. The efficiency of the proposed GA is
shown by applying the method to the optimal design of three well-known benchmark networks,
namely two-loop, Hanoi and New York networks. The method produces results comparable to
the best results presented in the literature with much less computational effort.

INTRODUCTION network design problem. The computational efficiency
of mathematical programming methods is, of course,
limited to continuous solutions, which are not favored
from an engineering point of view [3-9]. Random search
methods have shown to logically balance between com-
putational efficiency and the capability of approaching
a global optimum. Among the random search methods,
the GA has gained more popularity for pipe network
optimization in recent years. The early research was
primarily concentrated on developing a methodology
for applying GA to pipe network optimization problems
using simple genetic algorithms [10-14]. More recent
investigations on the application of GA to pipe network
optimization have focused on the development of new
genetic algorithms to yield less costly solutions than
already existing algorithms. These improvements are
mostly achieved via modifications of the simple genetic
algorithm or by introducing new operators and features
to the basic algorithms [15-20]. This paper presents

The problem of network optimization requires the
determination of pipe sizes from a set of commer-
cially available diameters ensuring a feasible least-cost
solution. Various methods, with different degrees of
success, have been devised by different researchers to
solve this problem. These methods can be grouped
into three classes: Enumeration, mathematical pro-
gramming and random search methods. Enumeration
methods, capable of finding a global optimum solution
to a pipe network design problem, are very costly
and cannot be used for the optimization of real-world
networks [1,2]. On the other hand, mathematical
programming methods are very efficient from a compu-
tational point of view, but, are often trapped in saddle
points in their search for the global optimum of the pipe
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of an artificial genotype passing mechanism; (2) Pre-
determination of the penalty parameters; (3) Use of
an alternative method of penalty cost calculation and,
more importantly, (4) Introduction of a new selecting
operator. The proposed algorithm is shown to out-
perform the existing algorithm from a convergence
characteristics point of view, while producing results
comparable to the cheapest solutions available in the
literature.

PROBLEM FORMULATION

The optimal design of a pipe network with a pre-
specified layout in its standard form can be described
as:

min C = ZL[O[, (].)
1=1
subject to:

1. Hydraulic constraints:
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q = Kelyd (J;/Ly)?, (2)

with a = 2.63,3 = 0.54 and K = 0.06393160 for ¢
in cm/hr and d in inches.

2. Head and flow constraints:

Hy > Hyin k:1727"'7n7

qi Z Gmin l= 1727 s, M. (3)

3. Pipe size availability constraints:

dle[did]7 l:1,2,~-~,m, id:1,2,~~~,nd,
(4)
where:

L, length of the lth pipe,
C; per unit cost of the [th pipe,
d; diameter of the [th pipe,
[did] set of commercially available diameters,
q flow in the [th pipe,
Jp head loss in the Ith pipe,
Hy, nodal head at the kth node,
Hoin minimum allowable hydraulic head,
Gmin minimum allowable pipe flow,
Amin minimum allowable pipe diameter,
Amax maximum allowable pipe diameter,
n,p,m  total number of nodes, loops and

links in the network, respectively.
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The first set of constraints describes the flow continuity
at nodes, head loss balance in loops and the Hazen-
Williams equation. The second set refers to the mini-
mum nodal head and pipe flow requirements while the
last constraint requires that the optimal pipe diameters
should be chosen from a set of commercially available
diameters. Equation 1 describes the total cost of the
pipes in the network.

Here, as in all GA searches, the second set of
constraints is included in the objective function via
the use of an exterior penalty method, resulting in the
following penalized problem:

min Cp = Z ClLl + Z al(ql - qmin)2
=1 =1

+ ) o (Hy — Huin)?, (5)
k=1

where «o; and «aj are the pipe flow and nodal head
penalty parameters, respectively, with large values
when corresponding constraints are violated and zero
values otherwise.

A SIMPLE GA FORMULATION

The following steps are taken in a simple GA search for
the optimal design of the pipe networks:

1. Encoding the design variables. The genetic algo-
rithm requires that any trial solution of the design
problem be represented by a coded string of finite
length, similar to the structure of a chromosome of a
genetic code. This is usually achieved by defining a
selected mapping between the possible values of the
design variables and a set of coded sub-strings with
a required number of binary bits. For example, a
four-bit sub-string can be coded to represent any of
the 16 commercially available pipe diameters. Here,
a binary coding is used to represent the possible
values of the pipe diameters;

2. Generation of an initial population. The GA
randomly generates an initial population, of size IV,
of coded strings representing some trial solutions to
the pipe network design problem;

3. Computation of network cost. Each of the N
members of the population is considered in turn and
decoded to the corresponding pipe networks. The
cost of each trial solution of the current population
is then calculated;

4. Hydraulic analysis of the network. A steady-state
analysis is carried out for each network of the
current population to find the pressure and velocity
constraint violations. In this work, the hydraulic
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constraints are satisfied via the use of an element-
by-element simulation program, which explicitly
solves the set of hydraulic constraints for nodal
heads [21];

5. Computation of the total penalized cost. The
penalty cost of the networks in the population
is computed if the trial design does not satisfy
the pressure and velocity constraints. The total
penalized cost is considered as the sum of the
network and penalty cost;

6. Computation of the fitnesses. The fitness of a trial
design is taken as some function of the total network
cost. Investigators use different forms of the fitness
functions [15,22]. Here, the deficit of the total cost
from a big number and the sum of the maximum
and minimum total network cost of the current
generation, is used as the fitness of each network;

7. Generation of a new population. The GA generates
the members of the new generation by a roulette
wheel selection scheme. In this scheme, the prob-
ability of a string 7, p;, to be selected for the next
generation, is given by:

fi
N .
2 fi
i=1

pi = (6)

8. The crossover operation. Two off-springs are
formed via partial exchange of bits between two
selected parents by using a crossover operator.
Crossover occurs with some specified probability of
Crossover, p., for each pair of parents selected in the
previous step;

9. Mutation. A bit-wise mutation, with some specified
probability of mutation, p,,, is carried out for each
of the strings that have undergone crossover. The
bit-wise mutation changes the value of the selected
bit to the opposite value (i.e., 0 to 1 or 1 to 0);

10. Production of successive generations. The three
operators described above produce a new genera-
tion of pipe network trial designs. This procedure
is repeated to create successive generations. Typ-
ically, a GA will evaluate between 100 and 1000
generations, depending on the problem size.

A HIGHLY CONVERGENT GENETIC
ALGORITHM

The highly convergent GA formulation is achieved by
introducing the following features into the simple and
basic GA: (1) Alternative penalty cost calculation;
(2) Pre-determination of penalty parameters; (3) Best
genotype passing mechanism; and (4) New selection
operator.

M.H. Afshar and M.A. Marifio

Penalty Cost Calculation

It is a common practice to use the maximum constraint
violation for calculating the penalty cost [15,17,19,23].
In this method, the GA could not distinguish between
two different designs with the same maximum con-
straint violation but with a different number of con-
straint violations. Here, the penalty cost is calculated
according to Equation 5, in which all the constraint
violations are used for the penalty cost calculation.
This method ensures that non-proper networks would
have more penalty costs and, therefore, leads to a
better distribution of the fitness function in the search
space, compared to the conventional method, helping
the GA to locate useful genes.

Pre-Determination of the Penalty Parameters

The values of the penalty parameters used in the
GA formulation of the pipe network optimizations are
usually specified by the user [15,19,23]. This method
of specifying the penalty parameters requires a trial-
and-error procedure to get the proper range for the
parameter values before the final runs. The proper
setting of the penalty parameters is very important
in the GA solution to the pipe network optimization
problems, as a low value of the penalty parameters
could lead to a constraint-violating solution, while a
high value of the parameters would result in rejecting
some of the constraint-violating solutions with useful
genes from the evolution process [22]. Here, the
proper setting of the penalty parameters is achieved
before starting the genetic search by use of a math-
ematical programming method to solve the problem
for it’s continuous solution. For this, an iterative
setting of the penalty parameter is chosen, whereby
the minimization of the penalized cost function in
Equation 5 is substituted with a series of minimization
problems with different values of penalty parameter
values. The procedure starts with a value of unity for
penalty parameters and the design problem is solved.
The solution is then checked for constraints violation,
upon which the next design problem is defined by
an increased value in the penalty parameters, by an
order of magnitude, if corresponding constraints are
not satisfied. This procedure is continued until all
the constraints are satisfied, i.e., all the penalized
terms are equal to zero. The computational effort
required for the setting of the penalty parameters is
negligible compared to the one required by the genetic
search.

Best Genotype Passing Mechanism

One of the recognized problems of the GA is the
uncertainty about the termination of the search, since
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Table 1. GA parameter values.
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GA Parameter Test No.
1 2 3

Population size, N 100,200 250,500 250,500
Probability of crossover 1 1 1
Probability of mutation 0.5 0.5 0.5
Crossover operator One point One point One point
Mutation operator One bit One bit One bit
Pressure penalty parameter (automatically | 108 108 1010
determined prior to GA search)

the best solution of the generation could oscillate
during the evolution process. A too loose convergence
criterion could, therefore, lead to an early termina-
tion, while a too stringent termination criterion would
increase the computational cost. Here, the fittest
string of the current generation is directly copied into
a randomly chosen position of the next generation.
This mechanism has two advantages. First, useful
information in the fittest string is directly passed to
the next generation as a member, in addition to the
information carried by its off-springs. This ensures that
this information is never lost during the evolutionary
process. Second, the oscillatory nature of the best so-
lution of the generations is eliminated, paving the way
for the definition of a logical convergence criterion. In
this work, the GA search is assumed to have converged,
if the best solution of the generations remains constant
for a specified number of generations.

Selection Operator

The genetic algorithm owes its credit to the claim of
simulating the real-world evolutionary process engi-
neered by nature. Three basic GA operators, such as
selection (mating), crossover and mutation operators
used in the reproduction stage of any genetic search, are
designed to mimic nature as closely as possible. If this
is the case, then, the proportionate selection scheme
used in the simple GA is not simulating nature. This
method often leads to the dominance of a few good
solutions and, hence, premature convergence, which is
not seen in nature. What really happens in the natural
mating process is twofold. First, the genotypes will
have a tendency to look for a fitter mate or mates.
This means that genotypes of very low and very high
fitnesses are unlikely to mate. Second, the search for
the mate is often limited to a small community rather
than the whole population. The size of this community
is, of course, larger for a big size population and vice-
versa. In an effort to closely simulate this mating
procedure, a new selection operator is devised and

used in this work. A small community of random size
between 2 and N° is randomly generated out of the
current population and, then, the two fittest members
are chosen to mate. This operator is believed to be
the most responsible for the efficiency of the proposed
GA.

Here, only the results of the improved GA,
considering all the modifications, will be presented
and the effect of individual modifications will not be
discussed. The parameters used for the improved
GA are shown in Table 1. In all the examples,
the GA search is terminated if the cost of the best
generations remains constant for 50 subsequent gener-
ations.

TEST PROBLEMS

The first problem to be considered is a two-loop
network with 8 pipes, 7 nodes and one reservoir shown
in Figure 1 [23]. All the pipes are 1000 m long and the
Hazen-Williams coefficient is assumed to be 130 for all
the pipes. The minimum nodal head requirement for
all demand nodes is 30 m. There are 14 commercially
available pipe diameters, as listed in Table 2. Figure 2
shows the best generation cost against the number of
network analyses required for two different numbers
of population in each generation. The solution of
420,000 units is obtained at the expense of 3,400

O——

Figure 1. Two-loop network.
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Table 2. Cost data for the two-loop network.
Diameter (inch) | 1 | 2 | 3 4 6 8 10 | 12 | 14 | 16 18 20 22
Cost (units/m) 2 (58|11 |16 | 23 | 32| 50 | 60 | 9 | 130 | 170 | 300
Table 3. Optimal pipe diameters along with some of the available discrete results for two-loop network.
Pipe Present Work Abebe and Wu et al. Savic and
Solomatine [23] [25] Walters [17]*
P100 P200 FMGA GA2 GAl
1 18 18 18 18 20 18
2 14 10 14 10 10 10
3 14 16 14 16 16 16
4 1 4 1 4 1 4
5 14 16 14 16 14 16
6 6 10 1 10 10 10
7 14 10 14 10 10 10
8 10 1 12 1 1 1
Cost (units) | 420000 | 419000 424000 419000 420000 | 419000
* These solutions are obtained using different numerical conversion constant for the head loss equations.
0-90 T nodal head requirement at all demand nodes is 30
0] BB m. Table 4 shows the diameters of commercially
Z  0.80 available pipes and their cost calculated, based on
Z 075 the analytical cost function 1.1 D5 [9]. This is a
5 070 difficult problem amongst the three benchmark ex-
g 0.65. amples in the literature and has been considered by
2 0.60, only a few of the GA researchers [17,23,25]. Figure 4
g 0.55. shows the best generation cost against the number of
% 0.50. network analyses required for two different numbers
2 0.4l of population in each generation. The solution of
= 0.40 $6.31 million is obtained at the expense of 13,000

2000 4000 6000 8000 10000

No. of evaluation

Figure 2. Best of generation cost for two-loop network.

evaluations, while the best ever solution of 419,000
units is reached after 4,600 evaluations. This compares
favorably with ~ 250,000 evaluations required by the
method of Savic and Walters [17], ~ 53,000 evaluations
required by the method of Cuncha and Sousa [24],
9,201 evaluations required by the fast messy genetic
algorithm of Boulos et al. [19] and 7,467 evaluations
required by the fast messy genetic algorithm of Wu
et al. [25] to get the least cost solution of 419,000
units. Table 3 compares the results produced by
the presented method to some of the random search
results available in the literature [17,19,23,24]. These
solutions are obtained in less than 1 minute on a 366
HZ PC.

The second test problem is that of the Hanoi
network shown in Figure 3, with 34 pipes, 31 de-
mand nodes and one reservoir [23]. The minimum

evaluations, while the cheaper solution of $6.14 million
is reached after 23,000 evaluations. This compares
favorably with about 1,000,000 evaluations required
by the method of Savic and Walters [17] to obtain
the corresponding solutions of $6.19 million and $6.07
million and 113600 evaluations by the fast messy
genetic algorithm of Wu et. al [25] to produce
solutions of $6.182 million and $6.056 million. Ta-
ble 5 compares the results produced by the proposed
method with some of the available GA search solu-
tions [17,23]. It should be noted that these solutions
are obtained with 8 and 15 minutes of CPU time on a
366Hz PC.

The third test problem concerns the rehabilitation
of the New York City water supply network with
21 pipes, 20 demand nodes and one reservoir, as
shown in Figure 5 [15]. The commercially available
pipe diameters and their respective costs are listed in
Table 6, while the pipe and nodal data of the existing
network are shown in Table 7. Figure 6 shows the best
generation cost against the number of network analyses
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Table 4. Cost data for the Hanoi network.

Diameter (inch)

12

16

20

24

30

40

Cost (units/m)

45.73

70.40

98.39

129.33

180.75

278.28

Table 5. Optimal pipe diameters and nodal heads obtained by different methods for Hanoi network.

Abebe and .
Pipe Present Work Solomatine Savic and walters Wu et al. [25]*
[17]
23]

P250 P500 GAl GA2 fmGA1l fmGA2

1 40 40 40 40 40 40 40

2 40 40 40 40 40 40 40

3 40 40 40 40 40 40 40

4 40 40 40 40 40 40 40

) 40 40 30 40 40 40 40

6 40 40 40 40 40 40 40

7 40 40 40 40 40 40 40

8 30 40 30 40 40 40 40

9 40 40 30 40 30 40 40

10 24 24 30 30 30 30 30

11 30 30 30 24 30 24 24

12 30 24 30 24 24 24 24

13 16 16 16 20 16 16 20

14 16 16 24 16 16 12 16

15 12 12 30 12 12 12 12

16 12 12 30 12 16 12 12

17 20 20 30 16 20 20 16

18 24 20 40 20 24 24 20

19 20 30 40 20 24 24 20

20 40 40 40 40 40 40 40

21 20 20 20 20 20 20 20

22 12 12 20 12 12 12 12

23 40 40 30 40 40 40 40

24 30 30 16 30 30 30 30

25 30 30 20 30 30 30 30

26 30 20 12 20 20 24 20

27 12 12 24 12 12 12 12

28 12 12 20 12 12 12 12

29 16 16 24 16 16 16 16

30 12 12 30 16 16 16 12

31 12 12 30 12 12 12 12

32 20 30 30 12 12 16 16

33 20 16 30 16 16 16 16

34 24 24 12 20 20 24 24

Cost ($M) 6.31 6.14 7.0 6.07 6.19 6.182 6.056
* These solutions are obtained using different numerical conversion constant for the head loss equations.
Table 6. Pipe cost data for New-York network.

Diameter (inch) 0 36 48 60 72 84 96 108
Cost ($/ft) 0 93.5 134.0 176.0 221.0 267.0 316.0 365.0
Diameter (inch) 120 132 144 156 168 180 192 204
Cost (8/ft) 417.0 469.0 522.0 577.0 632.0 689.0 746.0 804.0
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Figure 3. Hanoi network.

Table 7. Pipe and nodal data for New York tunnel network.

Pipe Data Nodal Data
Pipe Start | End | Length | Existing Diameter Node Demand | Min Total Head

Node | Node (ft) (inch) (Cft/s) (ft)
1 1 2 11600 180 1 Reservoir 300
2 2 3 19800 180 2 92.4 255
3 3 4 7300 180 3 92.4 255
4 4 5 8300 180 4 88.2 255
5 5 6 8600 180 5 88.2 255
6 6 7 19100 180 6 88.2 255
7 7 8 9600 132 7 88.2 255
8 8 9 12500 132 8 88.2 255
9 9 10 9600 180 9 170 255
10 11 9 11200 204 10 1 255
11 12 11 14500 204 11 170 255
12 13 12 12200 204 12 117.1 255
13 14 13 24100 204 13 1171 255
14 15 14 21100 204 14 92.4 255
15 1 15 15500 204 15 92.4 255
16 10 17 26400 72 16 170 260
17 12 18 31200 72 17 57.5 272.8
18 18 19 24000 60 18 1171 255
19 11 20 14400 60 19 117.1 255
20 20 16 38400 60 20 170 255
21 9 16 26400 72
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Table 8. Optimal pipe diameters and nodal heads obtained by different methods for New York network.

Dandy| Boulos |Murphy .
Pipe |Present Work| et al. et al. et al. Savie a[r;d’?]:Valters Wu et al. [25]*
[15] [19]* [13]
P250| P500 GA1|GA2 GA1l GA2 fmGA1|fmGA2
1 96 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 84 0 0 124 | 108 0 108 0 124 108
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 108 120 0 0 120 0 144 0 0
16 96 96 84 96 96 84 96 84 96 96
17 120 96 96 96 96 96 96 96 96 96
18 72 84 84 84 84 84 84 84 84 84
19 72 72 72 72 72 72 72 72 72 72
20 0 0 0 0 0 0 0 0 0 0
21 72 72 72 72 72 72 72 72 72 72
Cost ($M)| 41.9 39.28 38.80 |37.83(37.13| 38.80 |37.13 40.42 37.83 37.13

* These solutions are obtained using different numerical conversion constant for the head loss equations.

required for two different numbers of population in
each generation. The solution of $41.9 million is
obtained at the expense of 10,500 evaluations, while
the less costly solution of $39.28 million is reached
after 20,500 evaluations. This compares favorably
with ~ 200,000 evaluations required by the method
of Murphy et al. [13] to get the solution of $38.80,
~ 46,000 evaluations required by Lippai et al. [26] to
get their solution of $37.83, ~ 1,000,000 evaluations
required by the method of Savic and Walters [17] to
get the solutions of $40.42 and $37.13 and, finally,
37,186 evaluations required by the fast messy genetic
algorithm of Boulos et al. [19] and Wu et al. [25] to get
the solutions of $37.83 million and $37.13 million. The
solution to this problem is shown in Table 8, along with

some of the available GA solutions. These solutions are
obtained with 154 and 300 seconds of CPU time on the
same machine used previously.

It should be noted that a criterion of ‘no solution
change for 50 consecutive generations’ is used as a
convergence criterion for all the examples presented.

CONCLUDING REMARKS

A highly convergent Genetic Algorithm (GA) for pipe
network optimization was presented in this paper. An
artificial genotype passing mechanism, an alternative
penalty cost calculation method, an iterative setting
of the penalty parameters prior to the GA search
and, more importantly, a new selecting operator were
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Figure 4. Best of generation cost for Hanoi network.
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Figure 5. New York tunnel network.

introduced in the proposed GA. The genotype pass-
ing mechanism leads to a monotonically decreasing
convergence curve and, therefore, paves the way for
introducing a logical convergence criterion for genetic
algorithms. The use of an alternative penalty cost leads
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Figure 6. Best of generation cost for New-York network.

to a better distribution of the fitness function compared
to the conventional method and, therefore, helps the
GA to locate useful genes. Penalty parameters used
for the calculation of the penalty cost were determined
prior to the GA search, via use of a mathematical
programming method, eliminating the possibility of
choosing too low or high values of the parameters.
Finally, a new selecting operator was designed in an
attempt to better simulate the process of natural
mating, leading to an improvement in the accuracy
and convergence characteristics of the method. The
efficiency of the proposed GA was shown by applying
the method to the optimal design of three well-known
benchmark networks, namely two-loop, Hanoi and
New York networks. The method produced results
comparable to the results presented in the literature
with much less computational effort.
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