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Axisymmetric Radial Stagnation-Point Flow
of a Viscous Fluid on a Rotating Cylinder
with Time-Dependent Angular Velocity

R. Saleh! and A.B. Rahimi*

The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinitely long
rotating circular cylinder is investigated, when the angular velocity varies arbitrarily with time.
The free stream is steady and with a constant strain rate of k. An exact solution of the Navier-
Stokes equations is derived in this problem. The general self-similar solution is obtained when the
angular velocity of the cylinder varies as certain functions. The cylinder may perform different
types of motion: It may rotate with constant speed, with exponentially increasing/decreasing
angular velocity, with harmonically varying rotation speed or with accelerating/decelerating
oscillatory angular speed. For completeness, some sample semi-similar solutions of the unsteady
Navier-Stokes equations have been obtained numerically using a finite-difference scheme. These
solutions are presented for special cases when the time-dependent is step-function, linear and
non-linear, with respect to time. All the solutions above are presented for Reynolds numbers,
Re = ka?/2v, ranging from 0.1 to 1000, where a is the cylinder radius and v is the kinematic
viscosity of the fluid. Shear stresses corresponding to all cases increase with the Reynolds number.
The maximum value of the shear-stress increases with an increase in oscillation frequency and
amplitude. An interesting result is obtained, in which a cylinder, spun up from rest with a certain
angular velocity function and at a particular value of Reynolds number, is azimuthally stress-free.

INTRODUCTION

The problem of finding exact solutions to Navier-Stokes
equations is a very difficult task. This is primarily
due to the fact that these equations are nonlinear.
However, it is possible to find exact solutions to Navier-
Stokes equations in certain particular cases. An exact
solution to these equations governing the problem of
a two-dimensional stagnation flow against a flat plate
has been given by Hiemenz [1]. Later, Homann [2]
derived an exact solution to Navier-Stokes equations
for the three-dimensional case of an axisymmetric
stagnation flow against a plate. Howarth [3] and
Davey [4] presented results to unsymmetrical cases of
the stagnation flow against a flat plate. The first
exact solution to the problem of an axisymmetric
stagnation flow on an infinite circular cylinder was
obtained by Wang [5]. Gorla [6-9], in a series of
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papers, studied the steady and unsteady flows over
a circular cylinder in the vicinity of the stagnation-
point for the cases of constant axial movement and
in the special case of the harmonic motion of a non-
rotating cylinder. In more recent years, Cunning, Davis
and Weidman [10] have considered the stagnation flow
problem on a rotating circular cylinder with constant
angular velocity, including, also, the effects of suction
and blowing in their study. Takhar, Chamkha and
Nath [11] have investigated unsteady viscous flow in
the vicinity of the axisymmetric stagnation point of an
infinite circular cylinder in the particular case when
both the cylinder and the free stream velocities vary
inversely with time. A study considered by Rahimi [12]
presents a systematic solution of Gorla’s results for high
Prandtl number fluids, using inner-outer expansion of
fluid properties.

The effects of cylinder rotation with time-
dependent angular velocity, perhaps of especial interest
in industrial cooling and centrifugal processes, have not
yet been investigated.

In the present analysis, unsteady viscous flow in
the vicinity of the axisymmetric stagnation point of
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an infinite rotating cylinder is considered, when the
angular velocity varies arbitrarily with time. An exact
solution to the Navier-Stokes equations is obtained.
The general self-similar solution is obtained when
the angular velocity of the cylinder varies due to
certain types of function. The cylinder may perform
different types of motion: It may rotate with constant
speed, with exponentially increasing/decreasing angu-
lar velocity, with harmonically varying rotation speed
or with accelerating/decelerating oscillatory angular
speed.

The results for different values of the azimuthal
component of velocity and shear stresses are pre-
sented for Reynolds numbers ranging from 0.1 to
1000. Particular cases of these results are compared
with the existing results of Wang [5] and Cunning,
Davis and Weidman [10], correspondingly. For com-
pleteness, some sample semi-similar solutions of the
Navier-Stokes equations are obtained and the results
for a few examples of cylinder rotation in the form
of step-function, linear and non-linear, with respect
to time, are presented for different values of flow
parameters.

PROBLEM FORMULATION

The laminar unsteady incompressible flow of a vis-
cous fluid in the neighborhood of an axisymmetric
stagnation-point of an infinite rotating circular cylinder
is considered. The flow configuration is shown in
Figure 1, with cylindrical coordinates (r, 6, z) and with
associate velocity components (u,v,w).

The cylinder rotates with time-dependent
angular velocity. A radial external flow of strain rate,
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Figure 1. Schematic diagram of a rotating cylinder under
radial stagnation flow in the fixed cylindrical coordinate
system (7,0, z).
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k, impinges on the cylinder of radius a and is centered
at r = 0. The unsteady Navier-Stokes equations,
with cylindrical polar coordinates governing the
axisymmetric flow, are given by [5,7,9]:
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where p, p and v are the thermodynamic pressure,
density and kinematic viscosity, respectively. The
boundary conditions for the velocity field are:

r—00: u:—k(r—7), Tlln;o rv=0, w=2kz. (6)
Here, Relations 5 represent no-slip boundary conditions
on the cylinder wall, where w(t) is the angular velocity
of the cylinder. Relations 6 result from the assumption
that the viscous flow solution approaches, in a manner
analogous to the Hiemenz flow, the potential stagnation
field as 7 — oo [10]. The presence of the stagnation flow
allows the condition of zero circulation at infinity to be
imposed on the swirl velocity.

A reduction of the Navier-Stokes equations is
obtained by applying the following transformations:

a

a
uw=—k—: , U= G(n,1),
\/ﬁf(n) NG (n,7)

w=2kf'(n)z,  p=pk’a®P, (7)

where 7 = 2kt and n = (r/a)?® are the dimension-

less time and radial variables. The transformations
(Equations 7) satisfy Equation 1 automatically and
their insertion into Equations 2 to 4 yields a system
of differential equations in terms of f(n) and G(n,7)
and an expression for the pressure:

nf" + f" +Rell = (f)* + ff"] =0, (8)
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In these equations, primes indicate differentiation with
respect to 1 and Re = ka?/2v is the Reynolds number.
From Relations 5 and 6, the boundary conditions for
Equations 8 and 9 are as follows:

n=1:f=0, f' =0,

G=0. (11)

G =w(r),
n—oo:fi=1,

Here, Equations 8 and 9 are for different forms of
w(7) functions and have been solved numerically with
Re as the parameter. In what follows, first, the
self-similar equations and the exact solutions of some
particular w(7) functions are presented and, then,
for completeness, the semi-similar equations and their
numerical solutions are presented for a few examples of
w(7) functions.

SELF-SIMILAR EQUATIONS

Equation 9 can be reduced to an ordinary differential
equation if one assumes that the function G(n,7) in
Equation 9 is separable as:

G(n, 1) = g(n).6(7). (12)

Substituting this separation of variables into Equa-
tion 9, gives:

(13)

In Equation 13, both sides must be equal to a constant,
hence, the general solution to the differential equation
in Equation 13, with 7 as an independent variable, is
as the following:

o(1) = b.exp[(a +iB3)1]. (14)

Here, i = /—1 and b, @ and (3 are constants. Boundary
conditions are:

G(1,7) =w(r) = ¢(7).9(1) — &(7) = w(7),
and for g(1) =1 gives:
w(T) = b.exp[(a +i6)1],
G(00,7) =0 =¢(7).9(0) — g(c0) =0. (15)

Substituting the solution in Equation 14 into the
differential equation in Equation 13, with 7 as an
independent variable, results in:

ng" + Re[fg' —ag —ifBg] =0. (16)
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Note that in Equations 15, b = 0 corresponds to the
case of a non-rotating cylinder, as in Wang [5]. If b # 0
and a = # = 0, Equations 15 give the case of a rotating
cylinder with a constant angular velocity, as in Cunning
et al. [10]. If b # 0,a # 0 and § = 0, Equations 15
give the case of a rotating cylinder with an exponential
angular velocity. b # 0,3 # 0 and a = 0 correspond
to the case of a pure harmonic rotation of the cylinder.
For non-zero b, « and 3, Equations 15 give the cases of
accelerating and decelerating oscillatory motions of the
cylinder.

To obtain solutions to Equation 16, it is assumed
that the function g(n) is a complex function, such as:

9(n) = g1(n) + ig2(n). (17)
Substituting Equation 17 into Equation 16, the follow-
ing coupled system of differential equations is obtained:

ngy + Re(fgy — agi + Bg2) =0
ngy + Re(fgy — ags + Bg1) =0

Considering the boundary conditions in Relations 5
and 6, the boundary conditions for functions f and
g become:

n=1:f=0, f =0,

(18)

g=1, (19)

n—oo:f'=1, ¢g=0. (20)

Hence, the boundary conditions on functions g;
and go are:

n=1:g1=1, ¢2=0, (21)

n—oo:g1 =0, g2=0. (22)

The coupled Equations 18, along with boundary condi-
tions in Relations 21 and 22, have been solved by using
the fourth-order Runge-Kutta method of numerical
integration along with a shooting method [13]. Using
this method, the initial values of ¢{(1) and g5(1)
were guessed and the integration was repeated until
convergence of the results was reached. The value of
g2(n) = 0 was assumed initially and, then, by repeating
the integration of these two equations, the final values
of g1(n) and g2(n) were obtained.
The angular velocity would be described as:

w(7) = bexp(art)|cos(B7) + isin(G87)]. (23)

Thus, the azimuthal component of velocity from Equa-
tions 7 becomes:

ab .
v(n, )= %exp(aﬂ[(m (1) cos(B7) —g2(n) sin(B7))

+i(g1(n) sin(B7) + g2(n) cos(B7))]. (24)

This component of velocity will be presented for some
sample angular velocities in later sections.
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PARTIALLY SIMILAR EQUATIONS

Equation 9 may be solved directly for any chosen
w(7) function. The solutions obtained this way are
called partially similar solutions. These equations,
along with boundary conditions in Relation 11, were
solved by using a finite difference method, which lead
to a tridiagonal matrix. Assuming steady-state for
7 < 0, the solution starts from w(0) and, marching
through time, time-dependent solutions for 7 > 0 were
obtained.

SHEAR-STRESS

The shear-stress at the cylinder surface is calculated
from [10]:
v ow

(;)é9 + Eez ) (25)

o= |r=—

where g is the fluid viscosity. Using the definitions in
Equations 7, the shear-stress at the cylinder surface for
semi-similar solutions becomes:

o=2u(G'(1,7) —w(r))éy + 4,u%f”(1)éz. (26)
1.0g
0.9} w(T) = b.exp(arT)

Re=1, =2kt
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o
=
T
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r/a
(c) Azimuthal velocity for o > 0
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Thus, the axial and azimuthal shear stress components
are proportional to f”(1), which has been presented
in [10] and (G'(1,7) — w(7)), respectively. Azimuthal
surface shear-stress for self-similar solutions is pre-
sented by the following relation:

o9 =09, + iU@Z
=2ubexp(ar)[cos(57)(g1(1)—1) —sin(57)g5(1)]

+i(sin(Br)(g1 (1) = 1) + cos(Br)g5 (1))}, (27)

some numerical values of gy, will be presented later for
a few examples of angular velocities.

PRESENTATION OF RESULTS

In this section, the solution results of self-similar
Equations 16 and semi- similar Equation 9, along with
surface shear stresses for different functions of angular
velocity, are presented. Also, the azimuthal component
of velocity, v(n, 7), for both cases mentioned above, are
given.

Figure 2 represents sample profiles of the g(n)
function and the azimuthal component of velocity for

w(T) = b.exp(arT)
Re=1,7 =2kt

(b) g(n) for a <0

2.0 w(7) = b.exp(aT)

Re=1,7 =2kt

'U(’(‘7 T)/au.)(‘f')

1.0 15 2.0 2.5 3.0

(d) Azimuthal velocity for a<0

Figure 2. Sample profiles of g(n) and their corresponding azimuthal velocity for cylinder with exponential angular

velocity.
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Figure 3. Sample profiles of g(n) and their corresponding azimuthal velocity for cylinder with accelerating and

decelerating oscillatory motion.

w(7) in exponential form, for Re = 1. Figures 2a and
2c exhibit the accelerating case and Figures 2b and 2d
show the decelerating case. It is interesting to note
that for a = 0, as «a increases, the depth of diffusion
of the fluid velocity field decreases and, for a < 0,
as the absolute value of « increases, the fluid velocity
in the vicinity of the cylinder cannot decrease at the
same rate as the cylinder rotation velocity. Therefore,
in this region, as the figure shows, fluid velocity is
greater than cylinder velocity. Also, & = 0 indicates
the case of a rotating cylinder with a constant angular
velocity [10].

Figure 3 presents sample profiles of the g(n)
function and the azimuthal component of the velocity
when w(7) represents the accelerating and decelerating
oscillatory motion of the cylinder for Re = 1000.
Here, the azimuthal velocity component is shown for
a complete period of oscillation. Figure 3b is for pure
harmonic motion and Figures 3c and 3d present the
state of accelerating and decelerating harmonic motion,
respectively. Here, as in the exponential angular
velocity case, the diffusion depth of the fluid velocity
field for a > 0 and a < 0 is less, but more than in the
case of a = 0, respectively.

Figure 4 represents a sample of the g(n) function
and the azimuthal component of velocity for the har-
monic motion of the cylinder in different frequencies
and for a complete period of oscillation. Here, the
case of 3 = 0 is the same as [10] and, as stated in
the previous discussion, as [ increases, the diffusion
depth of the fluid velocity field decreases.

Figure 5 represents the azimuthal shear-stress on
the surface of the cylinder with harmonic rotation and
with accelerating and decelerating oscillatory motion.
This shear-stress is for a complete period between 0 and
2m. From Figure 5a, as the frequency of the oscillation
increases, the maximum of the absolute value of the
shear-stress increases and 3 = 0 corresponds to the
case of constant angular velocity (see [10]). Comparing
Figures 4b and 5a indicates that shear-stress and
azimuthal velocity are in different phases. Figure 5b
is for @ = 0 and indicates the case of pure oscillation.
For a = 0 and a < 0, the maximum of the absolute
value of shear-stress is more, and less than that in
the case of pure oscillation, respectively. Also, the
phase-difference of shear-stress and azimuthal velocity
decreases as a increases.

Figure 6 exhibits the azimuthal shear-stress on
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Figure 4. Sample profiles of g(n) and their corresponding azimuthal velocity for cylinder with harmonic rotation.
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Figure 6. Azimuthal shear-stress component for cylinder
with exponential angular velocity.

the surface of the cylinder for an exponential angular
velocity with different acceleration. Also, it is seen that
the slope of this curve is decreasing as « increases,
meaning that the sensitivity of shear-stress, with re-
spect to the variation of a;, decreases as « increases and
a = 0 corresponds to the same shear-stress as the case
in [10]. It is interesting to note that for a particular
value of «a, shear-stress is zero.

Figures 7 to 9 represent the partially similar
solutions to different forms of time-dependent an-
gular velocity, including: Step-function, linear and
inverse functions, in which function G(n,7) is shown
in terms of 7, different time values and Reynolds
numbers.

Figure 10 shows the azimuthal shear-stress com-
ponent on the surface of the cylinder for different time-
dependent angular velocities. These angular velocity
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functions are numbered here, respectively, as in Fig-

ure 10:
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Figure 8. Sample profiles of G(n, 7) for different angular velocity functions.
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Figures 10a and 10b show shear-stress on the surface of
the cylinder at Re = 1 and Re = 100, respectively. It is
evident from these two figures that the surface shear-
stress increases as the Reynolds number increases.

CONCLUSIONS

An exact numerical solution to the Navier-Stokes equa-
tions is obtained for the problem of the stagnation-

Figure 10. Azimuthal shear-stress component for
cylinder with different angular velocity functions.

point flow on a circular cylinder. A general self-
similar solution is obtained when the cylinder has
different forms of rotational motion, including constant
angular velocity rotation, exponential angular velocity
rotation, pure harmonic rotation and both accelerating
and decelerating oscillatory rotations. Also, some
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sample partially similar solutions for the same problem
have been considered when the circular cylinder is
rotating with different types of time-dependent angular
velocity. The azimuthal component of the fluid velocity
and surface azimuthal shear-stress on the cylinder are
obtained in all the above situations for different values
of Reynolds number. The absolute value of azimuthal
shear stress, corresponding to all cases, increases with
an increase in the Reynolds number. Also, the max-
imum value of shear-stress increases with an increase
in oscillation frequency and acceleration and with the
decelerating parameter in the exponential amplitude
function. It is also shown that a cylinder spun up from
rest in an exponential manner is azimuthally stress-free
for certain combinations of Reynolds number and rate
of this exponential function.
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