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Research Note

Transient Laminar Convection Induced
by a Line Heat Source: A Numerical
Study with Primitive Variables

M.B. Ayani', J.A. Esfahani*, H. Niazmand' and A.C.M. Sousa’

The present work is addressed to the numerical study of transient laminar natural convection
in an open space and induced by a line heat source. The governing equations, full Navier-
Stokes and energy equations with primitive variables, are discretized in a staggered grid by a
control volume approach. The equations for the fluid and solid (line heat source) phases are
solved simultaneously using a segregated technique. Some of the physical and thermo-physical
properties of the fluid (air), such as density, thermal conductivity and viscosity, were considered
to vary with temperature. The results show that the energy equation reaches the steady state
condition more rapidly than the momentum equations. Hence, at that time, the distribution of
temperature does not show any change within the accuracy of the solution, while the distribution
of the velocity still varies. The steady-state results obtained via the time-marching solution show
good agreement with the published steady-state, self-similar results in the vicinity of the centerline
of the plume. Also, the steady-state streamlines compare well with the published experimental

results.

INTRODUCTION

Two-dimensional laminar natural convection from hor-
izontal cylinders and a line heat source in an infinite
fluid space has been extensively investigated analyti-
cally, numerically and experimentally.

The first analytical study of steady-state natural
convection plumes above a point and a horizontal line
heat source was conducted by Zeldovich [1], neglecting
the velocity component normal to the symmetry plane
of plume. Fujii [2] and Gebhart et al. [3] solved the two-
dimensional steady-state boundary layer equations by
using a similarity approach. It should be mentioned
that even some experimental work, e.g. [4], uses the
results of Fujii for comparison and validity assessment.

Brodowicz and Kierkus [4], Forstrom and Spar-
row [5], and Schorr and Gebhart [6], studied the steady-
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state laminar plume arising above electrically heated
wires by experimental methods. The steady-state,
laminar, free convection induced by a line heat source
at low Grashof number was studied by Linan and
Kurdymov [7]. The steady-state Navier-Stokes and
energy equations were numerically solved in a stream
function and vorticity (¢, w) form under the Boussinesq
assumption. A few numerical studies were conducted
to analyze the plume arising from heated horizontal
circular cylinders; however, most of the body of prior
work was concentrated on the steady-state situation.
In what follows, those studies dealing with numerical
transient free convection are succinctly reviewed.
Transient, laminar and natural convection from
heated wires or horizontal circular cylinders, was stud-
ied numerically by Katagiri and Pop [8], Sako et al. [9],
Shin and Chang [10] and Wang et al. [11]. In all
of these studies, the Navier-Stokes were solved in the
(1, w) form and the energy equations with appropriate
assumptions. Esfahani and Sousa [12], in a study
addressed to the ignition by radiation, used a primitive
variable segregated numerical method to analyze the
laminar thermal plume up to the ignition threshold.
To the authors’ best knowledge, the solution
of the full Navier-Stokes and energy equations for a
transient laminar plume arising over a heat line source,
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so far, has not been reported in the open literature. In
this study, the transient full Navier-Stokes, in the prim-
itive variables and energy equations, are solved by a
segregated numerical method [12-14]. The convective-
diffusive linkage in this study uses the second order
upwind, which, based on different numerical tests, was
found to be computationally efficient, also, its artificial
viscosity level is lower than that of the first order
upwind scheme [15]. The governing equations were
discretized for a non-uniform staggered grid and the
physical and thermo-physical properties of the fluid,
such as density, thermal conductivity and viscosity,
were considered to be dependent upon the temperature.

GOVERNING EQUATIONS

The natural convection midplane flow from a horizon-
tal line heat source, assuming the end-effects of the
source are negligible, is governed by the continuity
equation, two-dimensional Navier-Stokes equations and
the energy equation. For simplicity, the shape of the
line heat source considered here has a square cross-
section, because the size of the line heat source is chosen
relatively small and the shape of it has an effect only on
the flow adjacent to it. The pattern of the flow depends
on the properties of the fluid, the height away from the
heat source and the heat input rate. The transition
beginning of the flow is characterized by a local Grashof
number, based on the heat input rate. This occurred
at a flow Grashof number equal to 5 x 108 [16]. Based
on the physical configuration shown in Figure 1, the
governing equations for laminar flow in the Cartesian
coordinate system, take the following form:
Continuity equation:
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Figure 1. Schematic of the computational domain and
the Cartesian coordinate system.

where:
V =i +vJ. (2)
Momentum in z direction:
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Momentum in y direction:
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In Equation 3, X is the body force per unit volume
in the x direction. The energy equation, with the as-
sumption of constant specific heat at constant pressure
for the fluid is:
A(pvT 1
G

A(pT) O(pul) _ Jgen
T o o ch.(kVT)+ ¢ (6)

The flow is assumed to be incompressible, in what
concerns the variation of density with pressure. There-
fore, the variation of density of the fluid (air) with
temperature can be determined from the following
relation:

T = pocTo- (7)

The variation of the viscosity of air with temperature
is determined from Sutherland’s law [17] as follows:

T3/? (N.sec) . ®)

=1.458 x 107 :
# Y TTI104K \ m?

The variation of specific heat at constant pressure, ¢,
and the Prandtl number, Pr, of air with temperature,
is nearly negligible (the ¢, and Pr of air, when the
temperature varies between 300 K and 400 K, change
0.7% and 2.5%, respectively [18]). Therefore, ¢, and
Pr can be considered to have a constant value in
the range of temperatures (300-380 K) for which the
computations are carried out. Under this assumption,
the thermal conductivity for air with temperature can
be determined from the value of p through the following
relation:

_ SH
~ Pr’ )
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BOUNDARY AND INITIAL CONDITIONS

The flow is assumed to be symmetric about a vertical
plane passing through the axis of the heat source
(Figure 1), therefore, only one half plane will be
considered. The boundary conditions for the symmetry
plane (y = 0) are as follows:

ou 0T
v=0 and — =—=0. (10)
9y 9y
The other boundaries are located relatively far away
from the heat source and the pressure is assumed to
have a constant value. In this study, the relative
pressure is taken as zero (p = 0). Two types of
condition for the energy equation are used at the “far-
field” boundaries. For the inflow regions, it is assumed:
T =T, (inflow). (11)
For the outflow regions to reach higher accuracy, the
second-order and one sided finite difference approxima-
tion of the temperature derivative are used instead of
the first derivative, namely:

o’T

oz = 0 (outflow), (12)

where n is the direction perpendicular to the surface of
the boundaries [19]. This kind of boundary condition
allows the transfer of energy through the boundary by
advection and diffusion.

The initial conditions for the velocity components
and temperature are as follows:

u(z,y,0) =v(r,y,0) =0, T(r,y,0)=Ts. (13)

NUMERICAL METHOD

The governing equations are discretized by a control
volume method, and the resulting set of algebraic
equations is solved by the SIMPLE algorithm [12-14].
In the discretization of nonlinear convection terms, the
second-order upwind is used.

The governing equations were discretized for non-
uniform staggered grids, which reach their smallest
value at the fluid-solid interface. The discretized
equations for fluid and solid (line source) phases were
solved simultaneously. The values of the components
velocity in the solid phase are set to zero, by choice
of suitable source terms in the discretized momen-
tum equations [13]. To avoid eventual divergence
in the iterative solution, the under-relaxation factors
of 0.5,0.5,0.8 and 0.8 were used for w,v,p and T,
respectively.

The discretized governing equations are solved for
three different computational domain sizes (0.1 m X
0.05 m,0.13 m x 0.065 m and 0.15m x 0.075 m), in
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which the maximum Grashof number, based on the
heat input rate, is less than the critical Grashof number
in all of the testes.

The convergence criterion for every time step,
based on the maximum relative residual of the dis-
cretized equations, is chosen as 0.01. The maximum
relative residual of the discretized equations, at every
time step, is defined as the relative of the maximum
residual for every variable in the computational do-
main, at each iterate, to the same value in the second
iterate.

RESULTS AND DISCUSSION

The Grashof number, similarity parameters, stream
function and non-dimensional temperature, were de-
fined by Gebhart et al. as:

_ gBeN(Ty ~ )

Gr > , (14)
=4(5)

v=ail(5) rt6),

he) = 7 (15)

As a first step in the assessment of the accuracy of
the predictions, using the present numerical model,
the results of f, f’ and h, based on the definition of
Gebhart et al. [3], were calculated for a time of about
200 seconds (when the steady state is reached), which
are presented in Figure 2. In this figure, these results
are compared with the similarity solution of Gebhart
et al. [3] for the steady-state boundary layer equations.
In the vicinity of the centerline (£ < 2) of the plume,
the comparison is very good, however, in the region far
away from the centerline of the plume, the predicted
results deviate from the solution of Gebhart et al. [3],
especially for the f variable. This finding is not
unexpected, since in the far field, the boundary layer
equation assumptions do not apply and the similarity
solution of Gebhart et al. [3] is not valid in this region.
This is further corroborated by comparing the results
for the variables f, f' and h. They are plotted for
different heights away from the center of the heat
source (z equals 4, 7 and 10 cm). The similarity
solution of Gebhart et al. [3] is for the boundary layer
equations with constant fluid properties, while, in the
present numerical study, the momentum equation in
the y direction is not neglected and the fluid properties
are dependent upon the temperature, as described by
Equations 7 to 9.
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Figure 2. Comparison of the current computation with
the results of Gebhart et al. [3] based on the boundary
layer assumptions.

The distribution of the centerline temperature in
the x direction is an important variable characterizing
the plume, as extensively discussed in the literature.
Gebhart et al. [16] investigated the variation of the non-
dimensional steady-state laminar centerline tempera-
ture of the plume, with respect to the Grashof number,
for different experimental data. The non-dimensional
centerline temperature of the plume is defined as:

Ty = (Ty — Too)4V2(pe,p ) /g, (16)

where I depends only on the Prandtl number and is
equal to 1.245 for Pr = 0.7 [16].

The present predictions for this quantity are
compared in Figure 3 against the experimental results
of Brodowics and Kierkus [4], Forstrom and Sparrow [5]
and Schorr and Gebhart [6]. For all test cases, the
experimental results described by T are about 10%
lower than the present prediction. It should be
mentioned that one of the parameters that causes
major discrepancy between the experimental centerline
temperature of the plume and the current predicted
values, is the net radiation exchange between the
surface of the heat source and its surrounding. In
this study, it is assumed that the amount of this
exchange is negligible and all of the input energy to
the heat source is transferred through the fluid by
diffusion and advection, while, in the experimental
studies, part of the input energy to the heat source is
transferred by radiation and the rest of it is transferred
through the fluid by diffusion and advection, which is
less than the input energy. Hence, this assumption
causes the current computational results, to predict the
centerline temperature of the plume, to be higher than
the experimental ones.

The effect of computational domain size on the
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Figure 3. The variation of non-dimensional centerline
temperature of thermal plume with respect to Grashof
number.
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Figure 4. The effects of computational domain size on
the results of ©* and T™in the steady-state situation.

results of «* and 7™ are shown in Figure 4. For this
purpose, the size of the computational domain is chosen
to be 0.1 m x 0.05 m,0.13 m x 0.065 m and 0.15 m X
0.075 m, respectively, which imposed the maximum
Grashof number in all of the tests to be less than the
critical Grashof number. This figure shows that the
distribution of u*, for the steady-state situation in the
neighborhood of the centerline, is independent of the
computational domain size. For the size bigger than
0.13 mx0.065 m, this value is independent in the whole
domain. Also, the T distribution is less sensitive to
the computational domain size than the u*.

The mesh convergence of the results was also
carefully analyzed. The effect of mesh size on the
results of u* and T™ are shown in Figure 5. For this
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Figure 5. The effects of mesh size on the results of u*
and T™ in the steady-state situation.

purpose, the number of the meshes is chosen as being
153 x 68,190 x 100 and 234 x 133, respectively. This
figure shows that the distribution of «* and T for the
steady-state situation, with respect to non-dimensional
time in the computational domain, are, approximately,
independent of mesh size for mesh numbers higher than
190 x 100. Figure 5, also, shows that the distribution
of T in the computational domain is less sensitive to
the mesh size than the distribution of 4* on the same
region.

The variation of non-dimensional heat transfer
from the solid boundary to the surrounding fluid and
from the boundary of the computational domain, with
respect to non-dimensional time, is shown in Figure 6.
This figure shows that heat is transferred from the

1.2

Heat transfer from the solid
— — = Heat transfer through the
computational domain boundary

7" =q/qgen
t*=t(gBAL x)/?

(050 IPYSE (R NN R (U NV U (PR S, SO (SN SN (NG, WU SN N N DO M|
0 50 100 150 200

Figure 6. The variation of the non-dimensional heat
transfer from the solid boundary and from the boundary
of the computational domain versus non-dimensional time.
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solid to the fluid from the beginning of the process,
but there is no heat transfer from the boundary of the
computational domain up to t* equals about 5. The
energy that is transferred to the fluid during this time
is stored in the fluid, which causes its temperature
to increase. After this time, heat transfer by advec-
tion and conduction takes place across the boundary
of the computational domain and it progresses with
time.

A typical present prediction for the history of
streamlines and isotherms in the solid and fluid field,
from 0.2 s to 180 s, is reported in Figure 7. The energy
source has a volumetric generation of 10 W/m? and
its dimensions are 0.1 cm by 0.1 cm, which equals
the heat generation amount (10 W/m) that is used
by Brodowicz and Kierkus [4] in their experimental
studies. In the early stages of the transient process
(t < 2 sec), heat is transferred by pure conduction
through the fluid field. Hence, there are no obvious
changes in the streamlines and the isotherms around
the solid take a circular shape. Beyond 2 seconds,
however, a mode transition sets in by the convective
effects and the fluid around the solid starts rising.
The recirculating eddies that form around the solid
move upward and this motion causes the shape of
the isotherms to change from a circular to elliptic
shape. This process is continued until the eddies reach
the top boundary of the computational domain at a
time approximately equal to 8 seconds. During this
process, eddies do grow and the heat transfer front
progresses at a faster rate than that of early times.
From 50 seconds to 180 seconds, the shape of the
streamlines and the shape of the isotherms are similar
and present no obvious changes. This is an indication
that the process has reached steady state. Beyond
8 seconds, the streamlines near the centerline of the
plume get narrower as time evolves. This means that
the velocity in the vicinity of the centerline of the plume
is increasing with respect to time.

The results of the present study for the shape
of streamlines at about 180 seconds (steady-state) are
similar to the experimental results of Brodowicz and
Kierkus [4]. These authors measured velocity and
temperature in the free convection flow field above a
horizontal wire in air, with constant heat generation in
the wire under a steady-state condition.

Figure 8 shows the variation of the mnon-
dimensional maximum temperature in solid versus non-
dimensional time. In the early stages of the transient
development, heat is transferred from the solid to
the fluid by pure conduction and, since the thermal
conductivity of the air is low (k < 1 W/m.K), most
of the energy generated in the solid is to be stored
in it. Therefore, this condition yields a very rapid
increase of the solid temperature. Further on in the
transient development, the flow field is established and
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Figure 7. The variation of the streamlines (left side) and the isotherm (right side) (¢ = 10 W/m).

8 heat transfer by advection becomes dominant. This
o= (Tmax— Ti) /(4o L2) causes a reduction in the rate of change of the solid
i t*=at/L? temperature until steady-state is reached, when the

- solid temperature attains a constant value.

The distribution of non-dimensional temperature
in the fluid, for six different non-dimensional times
(t* =4.7,6.5,8,13,160 and 322), is shown in Figure 9.
This figure shows that there is not an obvious change
in the non-dimensional temperature of the fluid in the
computational domain beyond t* equals, about, 13.

The distribution of the non-dimensional ver-
tical component of velocity, (u*), in the fluid
field for six different non-dimensional times (t* =
0.002,1.26,4.7, 25,160 and 322), is shown in Figure 10.
The vertical components of velocity in the fluid field in

s
max

60 80 the vicinity of the center line of the plume reach steady-
t* state at t* equals, about, 25, but it varies beyond this
Figure 8. The variation of non-dimensional maximum time in the far field. With a comparison of Figures 9

temperature in the solid versus non-dimensional time. and 10, one concludes that temperature distribution
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Figure 9. The distribution of non-dimensional fluid
temperature at six different non-dimensional times.
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Figure 10. The distribution of v* (non-dimensional
vertical component of velocity) in the fluid at six
non-dimensional different times.

in the computational domain reaches to a steady-state
situation earlier than velocity distribution in the same
region.

CONCLUSION

In this study, the analysis of a transient, two-
dimensional, laminar thermal plume, induced by a hori-
zontal line heat source, is conducted by using numerical
techniques associated with the SIMPLE method. The
computational results are presented for a time range of
between 0 and 180 seconds.

The transient numerical procedure, over time,
yields a steady-state solution, which is in good agree-
ment with the steady-state, self-similar results of Geb-
hart et al. [3].
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In the early time stages, heat is transferred by
pure conduction, while the solid temperature increases
very rapidly and the isotherms in the fluid region
present a circular shape. But, beyond 2 seconds, flow
takes place and heat is, simultaneously, transferred by
advection and conduction through the fluid (air). As
time goes on, the contribution of the advection mode
increases, which causes the rate change of the solid
temperature to decrease.

The numerical results show that the temperature
distribution in the fluid reaches steady-state earlier
than the velocity distribution, in particular for the far
field region with respect to the solid.

The distribution of temperature in the compu-
tational domain is less sensitive to the mesh size
and the computational domain size than the velocity
distribution in the same region.

NOMENCLATURE

specific heat
dimensionless stream function

gravitational acceleration

Cp

f

g

Gr Grashof number
h dimensionless temperature

H height of computational domain

k thermal conductivity

pressure

Prandtl number

heat generation

heat transfer rate per unit length
temperature

time

velocity component in the x direction
velocity component in the y direction
velocity vector

coordinate along vertical direction
body force in the x direction
coordinate along horizontal direction

g@ka<e:wqac§:o~a

width of computational domain

Greek Symbols

thermal expansion coefficient
dynamic viscosity
kinematics viscosity

density

normal stress

shear stress

similarity variable

£ M3 93D X T ®

stream function
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Superscripts

*

non-dimensional variables

Subscripts

1
00

initial condition
ambient
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