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Research Note

Entropy Generation Analysis of a Flat Plate

Boundary Layer with Various Solution Methods

J.A. Esfahani* and M. Malek Jafarian!

Steady state boundary layer equations over a flat plate with a constant wall temperature can
be solved by an integral solution (with three profiles for velocity and temperature), a similarity
solution (exact) and a Blasius series solution. The analysis of entropy generation for each solution
is carried out. The results show that the exact solution (similarity) is the one that minimizes the
rate of total entropy generation in the boundary layer. Then, the Blasius solution has the least
entropy generation of all. The bell-shaped profile (sinus profile) in the integral solution generates
less entropy than the piecewise linear profile, consequently. So, with this method, if the exact
solution for a specified problem were not available, one could evaluate the approximate solutions
and recognize the best one among them. By introducing a new non-dimensional number (Ej
number), which is the ratio of thermal entropy to friction entropy generation, one can recognize
which of them is dominant in the boundary layer. Also, it is observed that variation of the
total entropy generation is the same as the variation of boundary layer thickness, so, the non-

dimensional total entropy generation for various solutions is constant.

INTRODUCTION

Heat transfer phenomena are always accompanied by
entropy generation, hence, by the one-way destruction
of available work. Therefore, it makes good engineering
sense to focus on the irreversibility of heat transfer
processes and try to understand the function of the
entropy generation mechanism. For example, good
heat exchanger design means, ultimately, an efficient
thermodynamic performance, which is the least gener-
ation of entropy or least destruction of available work
(exergy) in the power/refrigeration system incorporat-
ing the heat exchanger [1].

The art of adjusting the convection process so that
it destroys the least available work (subject to various
system counstraints) is the focus of the applied field of
entropy generation minimization. Fowler and Bejan
used a thermo-economic analysis to study the optimal
sizes of bodies with specified external forced convection
heat transfer [2]. Shuja and Zubair presented a thermo-
economic design and optimization of fins with a con-
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stant cross-sectional area. This includes capital costs
and irreversibility penalty costs [3]. Sahin investigated
entropy generation of a laminar flow, flowing in a tube
with a constant wall temperature [4]. Also, Esfahani
and Baghdar investigated the effect of tube diameter on
the optimum length, in the heat transfer process, with
constant wall temperature [5]. Walsh et al. developed
a quick, simple and, relatively, accurate method for
the prediction of entropy in steady, two-dimensional,
incompressible, adiabatic boundary layer flows of tur-
bomachines, which gives both the distribution and
magnitude of the entropy generation rate [6]. Also,
they presented a preliminary optimization analysis,
in the laminar region of a non film cooled turbine
blade, which demonstrates the concept of how the
entropy generation rate may be reduced by varying
the boundary layer edge velocity distribution along the
suction surface, whilst the work done by the blade is
kept constant [7]. Griffin et al. investigated the effect
of Reynolds number, compressibility and free stream
turbulence on a profile of the entropy generation rate.
Increased free stream turbulence had a greater effect
on the generated entropy. It was observed that the
amount of entropy generated in the turbulent boundary
layer was, approximately, equivalent for two turbulence
levels at a comparable Reynolds number [8]. Bejan
showed that the natural shape of the velocity and tem-
perature profiles of the two-dimensional turbulent jet
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is the one that minimizes the total entropy generation
rate [9].

In the present work, the objective is to draw
attention to the natural shape of velocity and temper-
ature profiles, which minimize the total entropy gener-
ation rate. Hence, boundary layer equations over a flat
plate with constant wall temperature were solved by
an integral solution (with three profiles for velocity and
temperature), a Blasius series solution and a similarity
solution (exact solution). Then, the rate of entropy
generation for each solution is calculated. The results
show that the exact velocity and temperature profile
(similarity solution) is the one that minimizes the rate
of total entropy generation. The bell-shaped profiles
(sinus profile) in the integral solution generates less
entropy than the piecewise linear profile, consequently,
being closer to the natural shape of the velocity and
thermal profiles. So, with this method, if the exact
solution for a specified problem were not available, one
could evaluate the approximate solutions and recognize
the best one among them.

GOVERNING EQUATIONS

Consider the flow over a horizontal flat plate (Figure 1).
The governing equations of this physical problem are
the steady state boundary layer equations:
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where the velocity changes from v = 0 to u = Uy
and the temperature changes from 7' = T}, to T =
T in a space situated relatively close to the solid
wall [10]. There are various methods for solving
boundary layer equations. Here, integral, Blasius and
similarity solution methods are investigated. In the
next section, these methods are briefly reviewed.
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Figure 1. Velocity, temperature and entropy generation
boundary layer along a flat plate parallel to a uniform
stream.
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SOLUTION METHODS
Similarity Solution

In this method, by introducing the similarity solution
parameter, the streamline function and the dimension-
less similarity temperature profile as [10]:

n= y\/g—j, (4)
Y = /UxvzF(n), (5)

T,-T

T T~ G(n), (6)

the similarity form of the boundary layer momentum
and energy equations are obtained as:

1
F" + S FF" =0, (7)
1 1
EG” + §FG’ = 0, (8)

with the following boundary conditions:

G=F=F'=0 at n=0
G, F'—1 as 1§ — oo.

Blasius Series Solution

The solution of Equation 7 is obtained by Blasius,
which satisfies the boundary conditions by the method
of matched asymptotic expansions [11]. Esfahani et al.
make use of a modal series with the aid of the following
dimensionless parameter [12]:

T,-T
_— = ! 710 =

f'(n), T T g9(n), (10)
where the closed form of f(n) is defined as:
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7 is as the same as Equation 4 and:
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By replacing f(n) into Equation 8 and integration, g(n)
and ¢'(n) are obtained as:
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Integral Solution

Integrating the conservative form of the boundary layer
equations from y = 0 to y = Y = max(4,dr) and
substituting boundary conditions, yields the integral
boundary layer equations [10]. Assuming that the
shape of the longitudinal velocity and temperature
profiles are described by:

po=£6) 1se<) 1)
=1 1<¢
ool = f(¢) 0<(¢<1
= .

f is an unspecified profile shape function that varies
from 0 to 1 and § = £,( = %, where 6 and 61 are
the velocity and thermal boundary layer thicknesses.
Substituting these definitions into an integral boundary
layer equation for momentum yields:

é = alRe;1/2. (16)
T

The numerical coefficient, a1, depends on the particular
guess made for the profile shape function, f [10].
Assuming that:

ot

i A, (17)
where A is a function of the Prandtl number only and
0 is given by Equation 16. Based on these definitions
and 67 < ¢ (Pr > 1) and substitution into the integral
form of the energy equation, one can determine 67 [10].
Assuming the simplest temperature profile, f(¢) = ¢,
one has:

A=Pr /3, (18)

Other choices of profile shape, f(¢), will change the
proportionality factor in Equation 18 only percentage
points. The results for other profile shapes, f(£) and
f(¢), are hinted at by Table 1.
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Table 1 shows that the boundary layer thickness
is varied with various profile shapes. It is observed
that there is a wide difference between the results. The
proper velocity and temperature profiles could be the
ones that minimize the total entropy generation rate
of a flat plate boundary layer. Thus, by calculation of
the total entropy generation for various solutions, the
more accurate solution and natural shape of profiles
can be recognized. In the next section, the methods of
entropy generation calculation for various solutions are
discussed.

ENTROPY GENERATION

It is easy to show that the rate of a one-way destruction
of useful work in an engineering system, Wi, is
directly proportional to the rate of entropy generation:

Wlost = Tngen7 (19)

where T; is the absolute temperature of the ambient
reservoir (T;= constant) [1]. Assuming a finite-size con-
trol volume at an arbitrary point in a two-dimensional
convection flow field and applying the second law of
thermodynamics, the mix entropy generation per unit

time and per unit volume (Sg¢,) is [10]:
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S en — 7o a.. + | 5
& T2 |\ Oz Ay

HpE G DT,

where k£ and p are the conductivity and viscosity of
the fluid. T represents the absolute temperature of
the point where Sg, is being evaluated. Equation 20
illustrates the cooperation between viscous dissipation
and imperfect thermal contact in the generation of
entropy via convective heat transfer. The entropy

generation (Equation 20) can be simplified by scale

Table 1. The impact of profile shape on various solutions of the laminar boundary layer including friction and heat

transfer.
Profile Shapes ay — SRel/? 4y — 57 Rel/2pyt/3 APpPyl/3
f(€) or f(C) A * T

f=¢ 3.46 3.46 1.000

f=5B-¢% 4.64 4.53 0.976

f = sin (%¢) 4.80 4.65 0.968

Blasius Solution (18 Terms) 4.90 6.10 1.244

Similarity Solution 5.00 5.60 1.120
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analysis for flow over a flat plate with length L:
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where AT = T, — T, is the scale of temperature

variation in the region 67 x L. Thus, entropy generation
can be simplified as:

2 2
Sgen = ﬁ <8—T> + L <@> : (22)
T2 \ 9y T \ dy
As seen, entropy generation depends on the deter-
mining of flow field velocity and temperature. The
first term on the right hand side of Equation 22
is called thermal entropy generation and the second
term is called friction entropy generation. On the
other hand, velocity and temperature profiles depend
on the method of solution, which is reviewed in the
previous section. In the next section, various methods
of solution are evaluated by entropy generation and the
accuracy of them is discussed.

Calculation of Entropy Generation with
Similarity Solution

Non-dimensional mix entropy generation (S,

o) 1S in-
gen
troduced as follows:
n n
=/ — Sgen _ Sgen (23)

& (k/x?)Re,  k(ar/6)?’

which is normalized of entropy generation by boundary
layer thickness. Using the definition of ¢’ in Equation 5
to express the derivative of velocity and temperature
as:

u = Uso\/ UﬁF", or = —AT4/ UﬁG,' (24)
Jy ve dy vx

then, by replacing them into Equation 22 and using
Equation 23, non-dimensional mix entropy generation
can be written in the following form:

o AT\ ,, (AT o
Sgen = (T) G + (T) ECPI'F y (25)

where Ec¢ is the Eckert number of the fluid and is
defined as below:

(26)
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T refers to local temperature as:
T =T, —AT.G(n). (27)

Now, one can define a non-dimensional parameter as
below:

Ej = (%) .Ec.Pr, (28)

where it is the ratio of non-dimensional friction entropy
generation per thermal entropy generation. To create
the Ej number, Equation 25 is rearranged as:

—=I AT -2 2 . 2
Sgen <T> = G’ + E].F” .

A large Ej number shows that friction entropy genera-
tion is more than the thermal entropy generation in the
boundary layer and vice versa for a small £j number.

Calculation of Entropy Generation with
Blasius Solution

By derivation from velocity and temperature profiles
defined in Equation 10, one has:

—mn AT 2 - Bnan+1 3n+3
Sgen = <T> Exp (—Prnz::o T3 n —2.44
2
AT -
+ <T> .Ec.Pr. <2(3n+1)(3n+2)Bna”“n3“> ,
n=0 (29)

where:

T =T, — AT.g(n). (30)

Calculation of Entropy Generation with
Integral Solution

Using the definition of the velocity and temperature
profiles in Equations 14 and 15, one has:

2
Em . £ 2 PI‘l/3 ﬂ
gen T ay aC

AT 10f\°
+ (T) Ec.Pr. <a_18_§> , (31)

T =T, - AT.f(C), (32)

where:

6 and 67 are obtained from Table 1 for various profile
shapes.
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It should be mentioned that all the results dis-
cussed here are for air over a flat plate with the follow-
ing characteristics, unless the characteristics expressed
are in the text:

2

N.
v=1589x 107 m—, p=184.6 x 10~7 _§7
S m?2

k=263x10"%

Pr=0.707
m.k g ’

T, = 320 K,

T =300K, Uy, =10 ?

where T,,To and U, are the wall temperature, the
free stream temperature and the free stream velocity,
respectively. Based on data mentioned above, the
value of the Ej number is 0.054, where it explains
that thermal entropy generation is higher than friction
entropy generation in the boundary layer at these
conditions.

RESULTS AND DISCUSSION

Figure 2 shows the distribution of friction, thermal and
mixed entropy generation functions in the boundary
layer (x = 0.5). The results are obtained by the
Blasius series solution. The value of the friction term
is very small (about one, near the wall), in contrast
to the thermal term (about eleven, near the wall) and
confirms the low Ej number described earlier. Also,
it is seen that the ratio of friction to thermal entropy
generation is about 0.1, which confirms the magnitude
of the Ej number. Low values of the Ej number
correspond to the low viscosity or low velocity of the
fluid. It is clear that by choosing a high viscosity
or a high velocity, the contribution of the friction
term will be significant. This is shown in Figure 3,
where the velocity of the fluid is 100 m/s and other
conditions are the same as earlier. At this condition,
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Figure 2. Distribution of entropy generation for Blasius
solution (7% = 320, Te = 300, Uss = 10, heating).
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Figure 3. Distribution of entropy generation for Blasius
solution (T = 320, Too = 300, Uss = 100, heating).

the Ej number is 5.44, which can be supported by
the ratio of % in Figure 3. Thus, friction entropy
generation is greater than thermal entropy generation.
It is seen that the Ej number is a suitable parameter
for evaluating the significance of entropy generation
components in the boundary layer. Also, three curves
in Figures 2 and 3 have a maximum value at a point
near the wall (not on the wall). This is observed for
the other solutions too. Whenever the wall is cooled
by the fluid, the maximum and minimum values of the
fluid temperature are on the wall and the edge of the
boundary layer, respectively. On the other hand, the
slope of the temperature curve reduces from the wall
to the edge of the boundary layer. Therefore, heat
diffusion decreases, so that the maximum value of the
heat diffusion will be on the wall (y = 0). Now, with
attention to the definition of the entropy generation

(dsl!, = %), marching in a y direction will have a

> el
redlglction in 6Q) and T. Therefore, the denominator
is trying to increase and the numerator is trying to
decrease entropy generation, so that, near the wall, the
difference between the denominator and the numerator
will have the least value. That will be the maximum
entropy generation point.

Figure 4 shows the total entropy generation
function, which is determined, as follows, for various
solutions:

max(8,6T) L
" _ 2 : 2 : "
gen total - Sgen' (33)
b y=0 =0

It is seen that the total entropy generation of the
similarity solution is smaller than the other solutions
and is the most for a linear profile (rough estimation)
in the integral solution. Third order and sinus profiles
in the integral solution method are very close, so their
profiles have overlapped. The non-dimensional total
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Figure 4. Total entropy generation for various solutions
(Tw = 320, Too = 300, Uss = 10, heating).

entropy generation function is defined as:

max (8,07

) L
— 11
o= > Fgen: (34)
z=0

y=0

—=I1

gen

and its distribution is shown in Figure 5. It is seen
that the distribution of this parameter is constant for
various solutions. This means that variation of total
entropy generation is the same as variation of the
boundary layer thickness. As observed in Figure 4, the
non-dimensional total entropy of the similarity (exact)
solution has the least value, then, the Blasius and
integral solutions, respectively. The most value is for
the linear profile in the integral solution.

Distribution of thermal entropy generation for
various solutions is compared in Figure 6 (z = 0.5).
Entropy generation of the linear profile has minimum
value on the wall in comparison to the other solutions.
The reason is related to the slope of the temperature
curves. The slope of the linear profile is less than the
slope of the other profiles (Table 1).

On the other hand, the value of Tk~ is constant for
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Figure 5. Non-dimensional total entropy generation for
various solutions (7%, = 320, T = 300, Us = 10, heating).
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Figure 6. Distribution of thermal entropy generation for
various solutions (T, = 320, T = 300, Us = 10, heating).

various solutions on the wall. Therefore, the thermal
entropy generation of a linear profile will be less than
the other solutions on the wall. But, moving from
the wall (y > 0.0018), this trend will be reversed.
At the edge of the boundary layer (y > 0.0042), a
similar trend that is observed near the wall will appear.
As seen from Table 1, the thermal boundary layer
thickness for a linear profile is less than the other
profiles of integral, similarity and Blasius solutions.
Therefore, the temperature gradient, as well as the
thermal entropy generation, will reach zero at a shorter
distance from the wall. Globally, thermal entropy
generation has the least value for a similarity solution
in the boundary layer thickness. Then, the Blasius
solution, the integral solution with sinus and third
order and linear profiles have the smallest entropy
generation, respectively.

Distribution of thermal entropy generation for
various solutions is shown in Figure 7 (z = 0.5),
where the wall temperature is less than the fluid

temperature (cooling conditions). It is seen that
the maximum entropy generation occurs on the wall
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Figure 7. Distribution of thermal entropy generation for
various solutions (7%, = 300, T = 320, Uss = 10, cooling).
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(y = 0). Marching in a y direction (toward the wall),
will have a reduction in 7" and an increase in 0Q).
Therefore, the denominator and the numerator are
trying to increase entropy generation, so that, on the
wall, maximum entropy generation is obtained. But,
in view of quantum, there is a similar trend to that of
the heating case, shown in Figure 6.

Figure 8 shows the friction entropy distribution
in the boundary layer at the heating condition, which
is similar to the thermal entropy generation shown
in Figure 6. The same trend is observed near the
wall and at the edge of the boundary layer, i.e., the
minimum value on the wall and the entropy generation
of the linear profile tends to zero faster than the other
solutions. This is because of the small slope and
small boundary layer thickness of the linear profile, in
comparison with other profiles, which reminds one that
£ is constant on the wall in Equation 22.

Friction entropy generation at the cooling phe-
nomena for various solutions is shown in Figure 9. The
same trend observed in the thermal entropy generation
of the cooling condition, is seen here. Globally, at the
cooling phenomena, the similarity solution has the least
value and, then, the Blasius solution.

The authors believe that because the similarity
solution is the exact solution, its entropy generation
is the least. Therefore, any profile, which produces
entropy generation closer to the result of the similarity
solution, is the most accurate estimation of all. Here,
it is observed that the Blasius solution, with 18 terms,
is a better estimation than the integral solutions.

CONCLUDING REMARKS

The entropy generation analysis of a flat plate bound-
ary layer with a constant wall temperature was carried
out using three solution methods. Based on this work,
the following conclusions can be drawn:
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Figure 8. Distribution of friction entropy generation for
various solutions (7', = 320, 7> = 300, Us, = 10, heating).
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Figure 9. Distribution of friction entropy generation for
various solutions (T3, = 300, T = 320, Us = 10, cooling).

e The exact solution (similarity) produced less total
entropy generation than the other solutions. Then,
the total entropy generation of the Blasius solution
and the sinus profile in the integral method was the
least, respectively;

e If there is not an exact solution for a problem, one
can recognize the best solution, among approximate
solutions, with an entropy generation analysis;

e The variation of total entropy generation is the same
as the variation of boundary layer thickness;

e The non-dimensional total entropy generation of all
solutions is constant;

e By introducing a non-dimensional number (Ej num-
ber), one can recognize that one of the thermal en-
tropy and friction entropy generation is dominated
in the boundary layer;

e For the heating phenomena (when the wall tem-
perature is higher than the fluid temperature), the
maximum entropy generation (thermal and friction)
occurs near the wall (not on the wall). But, for the
cooling phenomena, this maximum lies on the wall.

From this work, one can recommend the analy-
sis of entropy generation as procedure for evaluating
solution methods in the field of thermo-fluid problems.
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