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Research Note

Inviscid Compressible Flow

Computations on 3D Unstructured Grids

M.T. Manzari'

In this paper, an explicit finite element based numerical procedure is presented for simulating
three-dimensional inviscid compressible flow problems. The implementation of the first-order
upwind method and a higher-order artificial dissipation technique on unstructured grids, using
tetrahedral elements, is described. Both schemes use a multi-stage Runge-Kutta time-stepping
method for time integration. The use of an edge-based data structure in the finite element
formulation and its computational merits are also elaborated. Furthermore, the performance of
the two schemes in solving a benchmark problem involving transonic flow about an ONERA M6
wing is compared and detailed solutions are presented.

INTRODUCTION

The simulation of inviscid compressible flow over re-
alistic aerodynamic configurations is a fundamental
problem in aircraft industries. Despite many advance-
ments in this field, there is still need for more research
to achieve more efficient methodologies in terms of
generality, accuracy and speed.

Due to the fact that many practical low problems
are geometrically complex and possess a wide range of
length scales, the development of a robust and general-
ized solution methodology requires a strong ability to
deal with such features. The first efforts in CFD relied
on structured Cartesian methods. The non-adapted
Cartesian grids with stair-cased geometry, however,
could not represent the boundaries of the flow domain
properly. In the past three decades, the generalization
of the structured grid strategy to curvilinear coordi-
nates and the use of multi-block grids made two major
impacts on this field, but, the challenge of automatic
mesh generation remained an unsolved problem [1].
In the past decades, an alternative Unstructured
Grid (UG) method was developed, in which element
(cell) connectivities were stored explicitly [2,3]. The
UG approach is often employed to accomplish mesh
generation and adaptation almost automatically and
to resolve the governing partial differential equation
without requiring an excessive number of mesh points.
Naturally, this new strategy required modified equation
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solvers in order to overcome the complexity introduced
in the data structure, due to having more flexibility
in the geometry modeling. In recent years, several
CFD practitioners developed efficient and accurate flow
solvers, based on the UGs [2,4]. Many UG flow solvers
are based on the finite volume method. It is known,
however, that the Finite Element Method (FEM) can
provide other useful features, such as the use of higher-
order elements and a better coupling of the governing
equations.

A noticeable improvement in the computational
efficiency of the FEM was made by Peraire et al. [4],
following the ideas introduced by Barth [5]. They used
an edge-based data structure instead of the standard
element-based data structure used in the traditional
FEM approach. It has been shown that the use
of this data structure in 3D simulations results in
significantly lower CPU time and smaller memory
allocations. The edge-based FEM approach works
with edges (or sides) instead of elements. Here, an
edge is referred to a line connecting two nodes of
an element. The new approach keeps the original
FEM formulation intact but re-arranges the discretized
equations such that instead of an assembly of element
matrices, one is required to assemble the edge contri-
butions. In this way, the computational loops over
elements in a standard FEM program are replaced
by the loops over edges present in the mesh. This
change does not alter the computational properties
of the FEM method. It does, however, introduce
great flexibility in the method to incorporate many
available numerically efficient methods [6-8]. It should
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be mentioned that using an edge-based formulation
becomes troublesome when higher-order elements are
to be used. Another important feature of the edge-
based strategy is its suitability for parallel comput-
ing [9]. In fact, the edge-based formulations were
originally developed to provide better properties for
parallel processing.

This paper presents an unstructured grid FEM
algorithm for solving 3D inviscid compressible flows.
The algorithm is based on an edge-based form of the
so-called standard Galerkin formulation. In order to
achieve practical formulations suitable for solving real-
istic flows involving discontinuities such as shocks, the
method is stabilized in two different ways. First, the
first-order accurate upwind method of Roe [10] is used
in connection with a three-stage Runge-Kutta time
marching method. Second, an artificial dissipation
method, originally developed by Jameson, Schmidt
and Turkel [11], is employed to provide a higher-order
method. This method also uses a multi-stage Runge-
Kutta time-stepping algorithm.

Below, after introducing the governing equations
for a 3D compressible inviscid flow, the general FEM
formulation is described and the features of the edge-
based data structure are explained. Then, the details
of implementation of both the Roe’s first-order upwind
and the Jameson-Schmidt-Turkel (JST) methods in
an edge-based FEM context are given. A criterion
is given for the choice of time-step size to achieve
stable solutions. Finally, the performance of these
methods is compared by solving a transonic flow over
an ONERA M6 wing and the results are compared with
experimental data. The effect of mesh resolution is
also studied and the convergence history for the JST
method is provided.

GOVERNING EQUATIONS

The system of governing equations describing inviscid
compressible flow comprises the equations of mass,
momentum and energy. The complete system of
governing equations is written in the non-dimensional
conservative form:
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where the unknown vector, U, and the inviscid flux,
F’, are given by:
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for j = 1,2,3. Here, the dimensionless form employed
is based upon the density and velocity of the free-
stream and a characteristic length of the problem. In
the above equations, ¢ denotes time, x; the coordinate
relative to a Cartesian coordinate system, oz x2x3, u;
the velocity in direction z;, p density, p the pressure
and 6;; the Kronecker delta. The total energy per unit
mass is defined as E = e+u,u; /2, where e is the specific
internal energy. The fluid is assumed to be an ideal
gas with constant specific heat ratio, v, obeying the
equation of state:

p=ply=1T/y, (3)
where T is the temperature.

Let one consider a spatial domain, €2, which is
bounded by a closed surface, I, with unit outward
normal vector, u = (n1,ns,n3). To complete the
description of the problem governed by Equation 1,
the prescription of an initial condition and appropriate
boundary conditions are required. For the initial
condition, it will be assumed that free-stream values
are imposed everywhere in {2 at some time, t = t°.
At a wall boundary, the slip condition is imposed.
This means that the normal component of the velocity
vector is cancelled for the nodes on the wall. Far-
field boundary conditions are applied using a linearized
characteristic analysis in the direction normal to the
boundary to correct the computed nodal values ob-
tained at the far-field.

SOLUTION ALGORITHM

A weak variational formulation of the problem is
adopted as the starting point for the development of
an approximate solution procedure. This weak form
can be written as:

ou —WdQ = / F’ Z—Wdﬂ
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Q

for all suitable weighting functions, W, and for all
t > t° In this expression, an overbar represents
a prescribed boundary flux. Then, the region Q is
discretized into an unstructured assembly of tetra-
hedral elements, with the nodes numbered from 1
to p and the standard linear finite element shape
function, Nj, associated with node J, is employed
(U®) =3 U,(t)N,(x)). Due to the compact support
J

of the shape function, Ny, the Galerkin finite element
approximation of the problem can be written as:

Z/ NIdQ Z/FJ U(P)ZNI Q)

Eelg Eelg L
-3 / n;Nidl.  (5)
Felf,
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The left hand side of this equation can be evaluated
exactly to give:

ou@ dU,
Q E

Eel, Eel
E

dU,

= Mls—~ (6)
where Qg is the volume of element E which has nodes
I,J,K and L as shown in Figure 1, and I'p is the
area of the boundary face associated to nodes I, J and
K. Also, M denotes the finite element consistent mass
matrix, which, for the steady flow analysis of interest
here, is replaced by the lumped (diagonal) mass matrix,
M. For the integrals of the inviscid flux, the following
form is used:

F/ = FIN;(x), (7)

I=1

where FJI = F7(U;). Therefore:
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As mentioned before, the integrals appearing in the
Galerkin statement can be evaluated using an edge-
based data structure. Figure 1 depicts a typical four-
node tetrahedral element, along with its nodes, and a
typical edge. The resulting semi-discretized equation,

K

Element IJKL

Edge 1J

Figure 1. A typical 4-node tetrahedral element and edge.
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at node I of the mesh, is [4]:
dU A Clis (g7 g
iG] == T (v )
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where the summations extend over the m; edges, and
the [; boundary faces are connected to node I. The
term (- - - ) is only non-zero if node I is on the boundary.
C1;, and Dy are the weight functions associated with

edge IIg and face f, respectively. The weights C;IS
and Dy are computed as:
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Here, n; is the component in the x; direction of the
unit normal to the boundary face, f.
The inviscid flux contribution can be rewritten as:

A Clie (i L v o Urrs (i i i Qi
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S=1

= ZI: UrisFrrs,
et (11)
where:
Cirs = (Ch1,,CHr,. Ciry)
lrrs = |Crrsl,
S}Is - i (12)

lrrg

The formulation given in Equation 9 represents a
central difference type of approximation and is prone
to produce spurious numerical oscillations and/or nu-
merical instabilities when solving convection dominant
flow problems. In order to produce a practical scheme,
a consistent numerical flux is substituted for the actual
inviscid flux. Two alternatives are considered in this
work and are described below.

ROE’S FIRST-ORDER UPWIND METHOD

This is a popular scheme due to Roe [10] and is
widely used in both incompressible and compressible
flow solvers. Although only a first-order form of the
method is used here, various higher-order formulations
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are also available based on this scheme. The main
reason for using Roe’s method in this work is that it is a
highly robust and, computationally, fairly inexpensive
technique. Therefore, its performance is used for
comparison purposes to assess the performance of the
higher-order accurate (JST) method.

Roe’s first-order upwind flux-difference splitting
method can be implemented by replacing the actual
flux, Frr,, by a consistent numerical flux, Frr., as:

Fiis= 3 {F]IS}IS +F 51~ 1A (Ugs _UI)} ’

(13)
where the Jacobian matrix, Ary,, is defined by:
OF
A =A(U;,U = = 14
IIs (Ur,Ur) <8U>IIS ; (14)

and is evaluated in the direction of weight coefficient
vector, Crr., using Roe’s averaging procedure [10]. For
the Euler system in 3D, the Jacobian matrix along any
arbitrary direction (ni,n2,ns) can be diagonalized as
|A| = R7YAIR, where A = diag(\1, A2, A3, Ag, As), in
which \; = Aa = A3 =V, Ay =V +cand A\s =V —care
the eigen-values of the system. Here, V' = nju;+nqus+
nsus, w; being the velocity component in direction x;,
and c is the local speed of sound. The dissipation term
can be efficiently computed as [12]:
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where AV = n;Au; + naAus + n3Aus and the total
enthalpy is h = E 4+ p/p. The Roe average quantities
(denoted by ~) are defined as:

P =/PL-PR

Uy = (U1L + u1R-V/ PR/PL) / (1 + v PR/pL> ;
Uy = (uu + U2R~\/PR/PL) / (1 + \/PR/PL) :
us = (UBL + uzRr-/ PR/PL) / (1 + VPR/PL) ,

h= (hL + hR.\/,OR/PL) / (1 + v/ PR/PL) )

oy 1) (%—(u§+u§+u§)/2>. (16)

Here, R and L represent the state variables to the right
and left of the interface between the two nodes I and
Is. To construct a time marching method, a three-
stage time stepping Runge-Kutta scheme is employed.
This leads to:

v =uy
U = Uf — MM 'R for k=1,2,3,

where U7} denotes the solution at node I at time ¢ =
t", At = t"t! — ¢ and Ry is the right hand side of
Equation 9. The values a; = 0.6, a5 = 0.6 and az =1
are adopted for the Runge-Kutta coefficients [13]. A
local time stepping approach is used to accelerate the
convergence rate towards the steady-state.

It should be added that various techniques for
implementation of higher-order upwind methods in the
context of unstructured grids exist [7,8]. Most of these
techniques construct a compact stencil to approximate
the interface values to be used for higher-order inviscid
flux computations.

JST ARTIFICIAL DISSIPATION METHOD

As a second scheme, the artificial dissipation scheme,
due to Jameson et al., is used [11]. The flux function
associated with this method consists of a blend of
stabilization and discontinuity capturing operators,
with a pressure sensor controlling the magnitude of the
discontinuity capturing term. The solution is advanced
by an explicit three-stage Runge-Kutta scheme. In the
present context, the diffusion, Dj, added at a general
node, I, is constructed as a blend of approximations to



Inviscid Compressible Flow Computations

second order and fourth order operators as:

il 36min()\1,)\[ ) 2 U[ —U[
D[ = Z P — = (6(11)5 Sm
S—1 I Is I
— (VU - VRU))), (18)

where the second order operator is approximated ac-
cording to:

mi

1
ViU ~ — ;(UIS —Uj). (19)

Here, A is the maximum eigen-value of the Jacobian
matrix, [;0F7/0U, in absolute value, where I =
(I1,12,13) is the unit vector in the direction of the edge,

IIs. The parameters, 6([2[)5 and 6(14[)57 are defined by:

6(121)5 =r? max(Fr, Pfs)v
6(14[)5 = max(0, k™* — £ max(Pr, Py.), (20)

where x(?) and k(% are user specified parameters

(typically 0.4 and 0.2) and:

Pr= o o)) S (ore 1), (21)
S=1 S=1

is the nodal value of a pressure switch. A three stage
Runge-Kutta procedure is again employed to advance
the solution from time level t = t™ to time level t =
t"tl = ¢ + At. Within each time step, this scheme is
implemented in the form:

0 n
U(Ik) - U[ k—1
Ul = Uf —aanMy HRETD D)
for k=1,2,3 ’

U}L'H — U(IS)

Here, R}fl represents the right hand side of Equation 9
computed at the stage k — 1, while the added diffusion,
Dy, is held constant at the value computed at ¢™. The
values of ay, are the same as given previously.

An alternative form of adding artificial dissipation
is the matrix dissipation technique. Swanson and
Turkel [14] have shown that this form can improve the
accuracy of the solution at the expense of higher CPU
time.

TIME STEP SIZE

As mentioned before, in this work, a local time stepping
technique is used. The local time stepping accelerates
convergence by advancing the solution at each element
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in time at a CFL number near the local stability limit.
The expression for the local time step is derived with
the aid of a 2D stability analysis [15] and is given as:

(At); = 2CFL[M,]; [Z Crig IAHSI] ; (23)
S=1

where Arr. is the maximum eigen-value of the sys-
tem and CFL denotes the Courant number, which is
constant in the domain. A typical value, CFL = 2,
was used for the calculations presented in this paper.
Finally, it should be noted that the use of a local
time stepping technique is allowed only because the
correct modeling of the transient development of the
flow was not of interest here and for the steady-state
computations this technique is accurate.

NUMERICAL RESULTS

To demonstrate the performance of the solution al-
gorithms described above, the transonic inviscid flow
over an ONERA M6 wing is solved. This is a well
established benchmark problem and extensive exper-
imental [16] and numerical [12,17] data exist for it.
For the test case studied here, the Reynolds number
is Re = 11.72E06, the Mach number M = 0.8395 and
the angle of incidence a = 3.06. Since this is a high
Reynolds number flow problem, it is frequently used
for the assessment of inviscid flow solvers. The flow
exhibits interesting 3D flow features, including a A-
shape shock-shock interaction.

The geometry of the problem involves an
ONERA-M6 wing and a symmetry plane. In Figure 2,
a typical surface grid generated for this geometry is
shown. The wing span is b = 1.196 and its mean
aerodynamic cord is ¢ = 0.646. It should be noted here

Figure 2. Wing and symmetry plane surface grid.
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that all lengths are non-dimensional. In order to study
the effect of surface mesh resolution, two surface grids
shown in Figure 3 are used. The coarse grid has 20658
triangular surface elements, 309795 tetrahedral volume
elements and 56380 nodal points. The fine grid has
29982 triangular surface elements, 449637 tetrahedral
volume elements and 81830 nodal points.

Figure 4 shows two views of the surface pressure
contour plots obtained using the JST method. It
is seen that a A-shape shock is captured. Figure 5
shows pressure contour plots at various wing sections;
y/b = 0.2,0.65,0.8 and 0.9. Figure 6 shows the con-
vergence history of the solution for the first 2000 time
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Figure 5. Pressure contour plots obtained using JST method at different wing sections.
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steps of the computations, starting from a free-stream
condition. Each time step of the calculations takes
about six seconds on a Pentium III 600 processor. This
is typical convergence behavior for the JST method and
can be improved using multi-grid techniques. It should
be mentioned that the solution procedure was allowed
to continue up to 10000 time steps but no change in
the results was observed.

In Figure 7, the pressure coefficients obtained by
the JST method are compared with the experimental
data. It is seen that the results are in fairly close
agreement with the data in most sections. A better
shock representation can be achieved by a local mesh
refinement, which is outside the scope of this paper.

The problem was also solved using Roe’s first-
order upwind method and the pressure coefficients are
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Figure 7. Comparison of calculated pressure coefficient distribution at different wing sections with experimental data.

(o: JST, O: Experiment).
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Figure 8. Comparison of calculated pressure coefficient distribution at different wing sections using different methods.

(o: JST, O: First-order upwind).

compared with those of the JST method in Figure 8.
As expected from a first-order scheme, the results
are much more diffuse than the higher-order accurate
JST method and most of the shock-shock interaction
features of the problem are lost. The solution, however,
is obtained much faster with only two seconds taken
for each time-step. A valuable use of the first-order
method can be during the start-up of the solution from
the free-stream condition, where most of the higher-
order methods encounter difficulties and require ad hoc
treatments. For a comparison reason, the convergence
history of the solution, using Roe’s first order upwind
method, is also shown in Figure 6. The curve shows
that the solution has converged almost to machine zero
within 2000 iterations.

Finally, to assess the mesh dependence of the
solution, the problem was solved using the coarse
mesh shown in Figure 3. A comparison of the results
obtained on two meshes using the JST is shown in
Figure 9. Again, it is seen that the improvement in
the solution is restricted to the regions of high pressure
gradients.

CONCLUSIONS

It has been demonstrated that both the first-order
upwind and JST methods can be successfully incorpo-
rated in a finite element formulation for the simulation
of compressible inviscid flows. While the JST method
produces highly accurate results, both in the smooth
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Figure 9. Comparison of calculated pressure coefficient distribution at different wing sections for different meshes using

JST (o: fine, O: coarse).

and discontinuous flow regions for the problem studied
here, the first-order upwind method, as expected,
produces a more diffuse solution. It is proposed
that the latter may be used as a start-up scheme for
a higher-order scheme, in order to avoid numerical
difficulties encountered when solving highly complex
flow problems. Finally, it was shown that the JST
method is only sensitive to mesh resolution wherever
significant gradients are involved. In such cases, the
lack of enough mesh resolution results in a smeared
solution.
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