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Optimal Synthesis of Planar
and Spatial Mechanism for Path
Generation Using Regression Deviation

H. Zohoor* and H. Tavakoli Nia'

This method introduces the structural error of regression deviation, which is an effective method
for the path generation of a vast type of planar and spatial mechanism. The proposed method
avoids point-by-point comparison and requirement of timing and reflects the difference between
the two curves very effectively in the objective function. By decreasing the number of the design
variables, this method would help considerably in decreasing CPU time. The objective function
that is based on regression error would converge to a global minimum by a genetic algorithm.
At the end, the effectiveness of the method is shown by two numerical examples.

INTRODUCTION

In dimensional synthesis of a mechanism, it is required
to determine the linkage dimensions so that a point
on the coupler link traces the desired curve. This
type of synthesis is called path generation and there
are two different methods for this work. In the
first, a limited number of points are specified, then,
a mechanism is designed, so that the coupler point
can pass exactly through these points. For instance,
in a four-bar linkage, the number of design variables
is 9. So, the maximum number of points that could be
specified equals 9. Many attempts have been made
to increase this number. Jensen has increased this
number to even 12 points [1]. The other limitation
of this method is having no control over the path
between these points. This method leads to the exact
solving of a system of equations [2]. In the other
method, the whole path or many points on the path
are specified, so that the method is called continuous
path generation. Since the number of points is more
than the number of design variables, the problem
would lead to an optimization problem. There are
various methods of optimal synthesis to minimize the
difference between the desired and the generated paths.
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Constraints, such as full rotation of crank, proper links
dimension, pressure angle, etc. can be added to the
minimization problem. The objective function, that
is generally called structural error, equals the square
of the difference between the two paths. Usually, for
facilitating the selection of points, timing would be
imposed on the mechanism. That is, when the coupler
point moves from one point to another, the crank
should rotate through a specified angle. As can be seen
in the first view, the timing process would just impose
an excess constraint on the problem and, as a result, the
solution space would be limited. To avoid this limita-
tion, some methods without timing requirements have
been innovated. Fox and Willmert take the difference
between the y-coordinate of two points, which have
the same z-coordinate as the objective function [3].
Angeles compares each point on the desired path with
the nearest point on the generated path, so, he needs
an optimization procedure in order to find the nearest
points [4]. Watanabe uses the curvature of two curves
for comparing the difference between them [5]. In
this method, the curvature function is expressed as
an equation of the curve length. Firstly, changing
the comparison points would minimize the curvature
difference between the two curves, then, this difference
would be considered as the objective function. This
method is independent of the size and orientation of
the curve.

Another method that is independent of timing,
includes the work of Cheung and Zhou [6]. They have
introduced a simple and interesting way for expressing
the difference between two curves by introducing the
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concept of the orientation structural error of the fixed
link. In this method, the fixed link would be uncon-
strained and the coupler point is constrained to move
on the desired path. As the coupler point moves, the
fixed link would have some orientation. The objective
function is regarded as the difference of the maximum
and minimum orientation.

Structural error is a highly nonlinear function, so,
in addition to an efficient method, one needs a proper
optimization procedure. Ramstein and Chedmail used
a genetic algorithm to select a robot, which should
trace a given path among some obstacles [7]. Cheung
and Zhou also used a genetic algorithm to minimize the
structural error [6].

In this paper, a kind of continuous synthesis
method is proposed that is independent of timing
requirements. In this method, the structural error is
equal to the regression deviation for some specified
points. Depending on the type of mechanism, circular
or linear regression is used.

STRUCTURAL ERROR OF REGRESSION
DEVIATION

Crank-Rocker Linkage

A crank rocker linkage is shown in Figure 1. When
link AB rotates a full turn around point A, point M
traces a closed path, K. In the full rotation, link AB
would be collinear with link BM twice. These cases
are shown in Figure 2. It can be seen that in a case
where two links are collinear, point M is located at a
maximum distance from point A and, in the other case,
it is at a minimum distance from point A.

So, if curve K and point A are definite, the length
of links L; and Lo can be determined by the following

Figure 1. Crank-rocker linkage.
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Figure 2. Minimum and maximum distances.
equations:
Li+Ls= RmaX7 (1)
|L1 - L5| = Rminv (2)

where R .x and Ry, are the maximum and minimum
distances from point A to curve K, respectively. If
point A lies outside the curve K, L; < L5 and, if point
A lies inside the curve, then Ls < L;.

In the proposed method, the independent vari-
ables are the x and y coordinates of point A, the length
of link L, and the angle 3. If these variables are
definite, by moving point M on the specified points on
the curve, corresponding point, C, can be determined.
If the linkage is the one that has drawn the desired
curve, then points C; should lie on the circumference of
a circle whose center is point D and whose radius equals
L3. So, the deviation of points C from a circle obtained
by circular regression can be regarded as the objective
function. The corresponding necessary calculations for
determining point C, corresponding to point M, are as
follows:

f; = tan™? (LM —Ya >

Ty — T A

:i:C0571 L%_'_(xM_xA)Z_'_(yM_yA)Z_Lg , (3)
2L/ (e —wa)? + (yar — ya)?

1 (ym —ya — Lysin6,
65 = tan ! . 4

5 (xM—xA—L100591> (4)
The £+ in Equation 3 corresponds to the rotational
direction of link AB and, also, to the distance of point
A to point M that is increasing or decreasing.
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Obtaining the value of 65, one has:
0 =65 — . (5)

So, the coordinates of point C' can be obtained as
follows:

o = + L1 cosby + Ly cosbs, (6)

Yo = ya + Ly sinfy + Lo sin 6. (7)

Now, there are a number of points C' that are deter-
mined and it is necessary to obtain the best circle that
passes through them (circular regression). Assume that
the coordinate of the center of the desired circle is
(a,b) and the radius is R. By the best circle, it means
that the sum of the distances of the points from the
circle is minimum. So, the following function should
be minimized:

dist = z": (\/(xl —a)?+ (y; —b)2 — R)Z , (8)

=1

where x; and y; are the coordinates of the desired
points. There is no analytical method to obtain
the unknown a,b and R. So, one should use an
optimization procedure. After obtaining a,b and R for
the best circle, the value of the objective function is
equated to the value of function dist.

It is obvious that by finding an analytical method
for circular regression, the CPU time of the main
program should decrease considerably.

Four independent variables are needed to obtain a
mechanism, which are [z4,y4, 5, L2]. After obtaining
the mechanism, one should be confident that point B
rotates uniformly on a circle, so, if the crank rotates
clockwise, the following constraint should be satisfied:

gl(i)zel,i+1—91_i§0, 7;:].,"' ,TL—].. (9)
Otherwise, if the crank rotates counterclockwise, one
should have:

92(7;):91.1'_91.14-1 SO, 7;:].,"' ,n—l. (].0)
Another constraint is for the full turn of the crank, that

1S

93 =Li1+ Ly — Ly — L3 <0. (11)

Slider-Crank Linkage

A slider-crank linkage is shown in Figure 3. If the
points of curve K and point A are definite, as discussed
in the previous section, the length of the links, L; and
Lo, can be determined easily by Equations 1 and 2.
In this method, independent variables are x and
y coordinates of point A, angle 3 and the length of link
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Figure 3. Slider-crank linkage.

L. If these variables are known, by moving point M on
the specified points on the curve, K, the corresponding
points, C;, can be obtained. If the linkage is the one
that has drawn the desired curve, then points C; should
lie on a straight line, that is, line d. If the deviation of
C; from the curve is less, the curve that is generated
by the linkage is closer to the desired curve. So, the
objective function is defined as the deviation of points
C; from the best straight line that passes through
points C}.

In the previous section, it was illustrated how to
determine points C; that are correspondent to points
M;. These calculations are similar for slider-crank
linkage and are omitted. Now, it is necessary to find the
best straight line that passes through points C;. This
line can be obtained easily by an analytical method.
Suppose the equation of the best line is y = ax+0. The
best line means the line that minimizes the following
function dist:

n

dist = Y (az; +b—y,)°. (12)

=1

Since this line is supposed to be the best line, one
should have:

Odist -
P Z [2a(az; +b—y;)] =0, (13)

i=1

Odist -
5 = > 2(awi +b—y:)] = 0. (14)

i=1

Unknowns are a and b; solving the above equations,
they can be determined as follows:

22 — (7)2’
b==—— (16)
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Determining the unknown a and b, one can put them
in Equation 12 and, then, one can consider the value
of function dist as the objective function.

After obtaining the linkage, some constraints
should be checked. The main constraint is the full
rotation of the crank that can be obtained by satisfying
the following equation:

gr=e—L; + Ly <O0.

The other constraint is on the sequence of the obtained
angles, #;. Because of the similarity to Equations 9
and 10, the constraint is not expressed here. Some
upper and lower limits can also be considered for the
length of the links.

RSSP Spatial Mechanism

An RSSP spatial mechanism (R = revolute joint,
S = spherical joint, P = prismatic joint) is shown in
Figure 4. As point a rotates a full turn around ay and
perpendicular to the vector, u,, point c traces a closed
curve, K. In a full turn of point a, links aag,ac and
vector u,, lie in a plane. In these cases, the distance
of point ag from curve K reaches its maximum and
minimum. This can be used in order to obtain the
lengths of links L, and Lo as follows.

Two expressed cases are shown in Figure 5. In
one of the cases, the distance of point ag to point c is
maximum (dpyax) and, in the other case, the distance
is minimum (di,). Having points ag and vector u,
as the input independent variables, plane M can be
determined and, then, the distances h,,.x and h,,;, can
be obtained as follows.

hmax = (Cmax - aO)'ua7 (17)

Figure 4. RSSP mechanism.
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Figure 5. Two possible solutions for a;.
hmin = (Clnin - aO)-“av (]‘8)

where hpax and hy;n are the distances of ¢pax and Cpin
from the plane M, respectively. Then, @nax and Qmin
are obtained as follows:

Pmax = Cos_l(hnlax/dnlax)v (19)

$min = Cos_l (h/lnin/dlnin)~ (20)

Equation 15 can be used, when point ag lies inside
curve K’ (the projection of curve K on plane M),
otherwise, when point ag lies outside curve K', omin
should be obtained by Equation 16:

Pmin = T — cos_l(hmax/dmax). (21)
Now, Ly and L can be calculated:

.. —d>;
Ll — max min , (22)
2(dmax COS ¢max - dmin COS ¢min)

Ly

\/L% - d12uax - 2d1nax COos ¢1nax~ (23)

Having point ap, vector u, and length L3 as input
variables and obtaining length L; and Lo for each
point, cj, on curve K, the corresponding points, bj,
can be determined. If the input variables are so selected
that the obtained mechanism draws curve K exactly,
then, points b; should lie on a straight line, that is, line
d, otherwise, the deviation of the linear regression of
points by is regarded as the objective function. Points
b; that are corresponding to points ¢; on curve K are
determined as follows.

Before obtaining these points it can be seen in
Figure 6 that except for points cpax and cpj,, for
each point ¢y, there exist two possible solutions for a;.
For determining point a;j, both solutions are required
and, then, in comparison with point a;_;, the proper
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Figure 6. The positions of the minimum and maximum
distances.

solution is selected. So, it should be noted that both
solutions should be obtained.
a; should satisty the following equations [8]:

(a; —ap).ua =0, (24)
(ai — ao).(as — ag)" = L, (25)
(ai — ci).(ai - Ci)T = Lg (26)

Solving the above system of equations, a; would be
obtained. Then, by the following equation, points b;
are determined.

bi = [(Ll + Lg)Ci — L3ai]/L2. (27)

Up to now, for each point, c;j, the corresponding point,
bi, is obtained.

At this stage, one needs to determine the best
line passing through points b;i(z;,y;, 2;). The best line
meauns a line with the following equation:

T = at,
y=pt+0,
z=n"t+c, (28)

that minimizes the function dist that is defined as
follows:

dist = Z [(dai +b—y:)* + (ex; +c—y:)®],  (29)
where d and e can be obtained as follows:

d=f/a, e=r/a. (30)
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For the function dist being minimized, the following
equations should be satisfied:

agi;t —0, (31)
agi;t —0, (32)
agiCSt =0, (33)
agi;t —0 (34)

Solving the above system of equations, one has:

nTy — T

nx? — (7)?
__2 e

p= YL T (36)
nz? — (7)2’
nr? — (7)?’
__2 =

c= L T (38)
nx? — (T)2

Putting the values of b,d, e and ¢ in Equation 24, the
value of function dist, that is, the desired objective
function, can be obtained. Similar to the previous
section, after obtaining the mechanism, one should be
confident of the order of the obtained angles and the
full rotation of the crank. For satisfying the former,
Equations 9 and 10 can be used as constraints. But,
for the latter, it is still impossible to have a constraint
independent of time. So, a time-dependent constraint
was used as follows.

Point a should be rotated around vector u, and by
every small change in the angle of rotation, the distance
of point a from line d is calculated. This distance
should be always larger than Lo + L3. The changes
in angle of rotation should be selected so small that
they will cover all possible angles. If all the distances
are larger than Lo 4+ Ls, the condition of full rotation
is satisfied.

OPTIMIZATION PROCEDURE

Conventional search techniques, such as hill-climbing,
are often incapable of optimizing a non-linear function.
In such cases, a random search method might be
required. However, undirected search techniques are
extremely inefficient for large domains. A Genetic
Algorithm (GA) is a directed random search technique,
which can find the global optimal solution in search
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space [9]. A GA is modeled on natural evolution in that
the operators it employs are inspired by the natural
evolution process. These operators, known as genetic
operators, manipulate individuals in a population over
several generations to improve their fitness gradually.

There are three common genetic operators: Se-
lection, crossover and mutation. An additional repro-
duction operator, inversion, is sometimes also applied.
Some of these operators were inspired by nature of
which many versions can be found. Each operator
functions independently and it is not necessary to use
all of them in a GA.

There are two common representation methods
for individuals, a binary string and a vector of real
number representation. In this paper, the latter is
employed. In the following, the operators used in this
paper are briefly illustrated.

Selection

The aim of the selection procedure is to reproduce
more copies of individuals whose fitness values are
high, as compared to those whose fitness values are
low. This procedure has a significant influence on
driving the search toward a promising area and finding
a good solution in a short time. In this paper, a
normalized geometric ranking selection method is used.
The probability for an individual to be selected is:

P, -
P=————— —(1-PF)", 39
where P, is a constant and is proportional to the
probability of selecting the best individual; r is the
rank of individual, where 1 is the best and [V, is the
population size.

Crossover

This operation is considered the one that makes GA
different from other algorithms, such as dynamic pro-
gramming. It is used to create two new individu-
als (children) from two existing individuals (parents)
picked from the current population by a selection
operation. There are several ways of doing this. The
method used in this paper is as follows.

It is assumed that two individuals, X; and Xs,
are to be crossed and that X; is better than X» in
terms of fitness. The new individuals, X; and X, are
calculated as follows:

Xf =X+ nT(Xl - X2)7 (40)

where n,. is a random number in the range (0,1). if X7
is infeasible, then, it generates a new random number,
n,. If it were not successful for N, times, let the
children be equal to the parents and stop.
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Mutation

Unlike crossover, this is a monadic operation. That
is, a child string is produced from a single parent
string. The mutation operator forces the algorithm to
search new areas. Eventually, it helps the GA avoid
premature convergence and finds the global optimal
solution. Assume the individual to be mutated is
X = (21,22, ,xp). Generate a random integer, i,
here, 1 < ¢ < m. Then, the new value of the i,th
component after mutation is:

,_ {xi + (i — 2:) f(G)
|- (- W) F(G)

where u; and [; are the upper and lower bounds of the
i-th component, respectively. Moreover:

@) = [na (1 GG)] , (43)

where n; and ny are two random numbers in the range
(0,1) and G is the current generation number. G . is
the maximum generation number and by is the shape
parameters of mutation.

GA is generally innovated for applying on an
unconstrained function, but, the constrained function
can also be considered by defining a penalty function.

For example, if the following functions are the
desired constraints:

ifz; <0.5

, 42
if 2, > 0.5 (42)

g1 = 07 (44)
g2 < 0. (45)
one has
0 =0
F1 - g 9 (46)
cfi+lgl g1 #0
0 <0
F2 - g2 - 9 (47)
cfa+gs g2>0

where c¢f1 and cfs are two large constants and cf; <
cfy. Only when F; = 0, would F5 be calculated.

APPLYING THE PROPOSED METHOD ON
NUMERICAL EXAMPLES

Example 1

In this example, a curve is generated that is drawn
by a crank-rocker linkage whose design parameters are
given in Table 1. The coordinates of the specified
points on the curve are given in Table 2 and the
design parameters of the generated linkage are given
in Table 3.

For the generated linkage, the value of the func-
tion dist equals 0.003. The desired curve and the
generated curve are shown in Figure 7.
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Table 1. Design parameters of the desired linkage in Example 1.
A Yya L, L, Ls L, Ls B L
0.00 0.00 1.50 4.00 3.00 3.00 3.00 30.00° 30.00°
Table 2. Coordinates of points on the curve in Example 1.
7 1 2 3 4 5 6 7 8 9 10 11 12 13
M;, | 3.85| 411 | 3.75 | 2.89 | 2.21 | 1.73 | 1.84 | 1.50 | 1.82 | 2.35 | 2.95 | 3.45 | 3.72
M;, | 1.86 | 1.81 | 0.85 | 0.54 | 0.58 | 0.58 | 0.46 | 0.26 | 0.12 | 0.17 | 0.050 | 1.08 | 1.58
Table 3. Design parameters of the generated linkage in Example 1.
A Yya L, L, Ls Ly Ls B N
0.38 1.44 1.20 4.14 6.11 3.26 3.30 32.51° -52.91°
Table 4. Design parameters of the desired linkage in Example 2.
A Yya L, L, Ls Ly Ls B N
0.00 0.00 1.80 1.90 3.90 4.80 5.15 40.00° 00.00°
Table 5. Coordinates of points on the curve in Example 2.
7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M;, |-06|12|17|18|16|14|08|-02]-12|-16]-1.9|-21]|-19|-1.7|-1.5
M;, | 48 |64 |67 |64 |56|49|41]| 3.8 | 34 | 3.1 29 | 26 | 29 | 3.2 | 3.5
Example 2 tion dist equals 0.0365. The desired curve and the

In this example, a curve is generated that is drawn
by a crank-rocker linkage whose design parameters are
given in Table 4. The desired curve has a sudden
change in path and is more complicated in comparison
to Example 1.

The coordinates of the specified points on the
curve are given in Table 5 and the design parameters
of the generated linkage are given in Table 6.

For the generated linkage, the value of the func-

2.5

« Specified points

Desired curve
2.0t | - - - Generated curve
1.5¢
1.0}
0.5}
0.0 L A L A L .
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 7. Generated and desired curves in Example 1.

generated curve are shown in Figure 8.

Example 3

In this example, the coupler curve of a RSSP mech-
anism is generated. The specifications of the main
mechanism are given in Table 7. In Table 8, the
coordinates of the specified points on the desired curve
are given. Finally the specifications of the generated
mechanism are given in Table 9. For the generated

7.0

Specified points

6.5

—— Desired curve

- - - Generated curve

6.0

5.5

5.0

4.5}

4.0

3.5}

3.0F

2.5
-2.5

20 15 L0 05 0 05 10 15 2.0

Figure 8. Generated and desired curves in Example 2.
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Table 6. Design parameters of the generated linkage in Example 2.
TA | Ya L, Ly | Lz | Ls Ls B L
-0.2 | -1.5 | 1.97 | 3.92 | 6.7 | 8.03 | 6.48 | 43.86° | -9.68°

Table 7. Design parameters of the desired mechanism in Example 3.

aop,x o,y ap,z Qg Ay a b:c by bz U,z U,y U1,z U2, 2 U2,y U2, 2
3 0 0 0 0 0 -1 5 |10 | 0.31 | 0.31 0.9 0 0 1
Table 8. Coordinates of the points in Example 3.

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M;, | -05|-04]-02|015|0.61 | 1.07| 147 | 174|199 | 1.94| 1.64 | 1.26 | 0.74 | 0.28 | -0.1
M;, | 25| 181|113 | 0.70| 050 | 0.55 | 0.86 | 1.42 | 2.33 | 3.07 | 3.65 | 4.00 | 4.05 | 3.86 | 3.49
M;. | 5.0 | 470 | 430 | 3.91 | 3.55 | 3.20 | 3.01 | 3.10 | 3.61 | 4.16 | 4.66 | 5.04 | 5.27 | 5.34 | 5.3

Table 9. Design parameters of the generated mechanism in Example 3.
Ao,z | @o,y | @0,z ag ay a, b, by b, Ure | ULy | U1,z | U2,z | U2,y | U2,z
867 | -59 | -5.2 | 480 | -62|-62|-36 | 768 | 11.7 | 0.17 | 0.27 | 0.95 | -0.2 | 0.27 | 0.93

mechanism, the value of the function dist equals 0.047.
The desired curve and the generated curve are shown
in Figure 9.

CONCLUSION

The ordinary method of synthesis regards structural
error as the objective function, which equals the sum
of the difference between two curves in some spec-
ified points. For simplification, in the selection of
these points, a concept of timing is introduced that
has no practical value. Timing imposes unnecessary
constraints on the problem. So, it would cause some
limitation on solution space. In ordinary methods,

5.5
5.0
4.5
n 4.0
3.5
3.0
2.5 1
-1

w s~ 0o

M

—— Desired curve
. Specified points
- - Generated curve

Y

T
z 0

Figure 9. Generated and desired curves in Example 3.

some optimization procedures are used that lead to
a local optimal point and is highly dependent on the
starting solution.

In the proposed method, an effective way for opti-
mal synthesis is introduced that is applicable to a vast
type of planar and spatial mechanisms. The objective
function is based on the deviation of some specific
points from a curve that is obtained by regression. It
can be a circle in a plane for a crank-rocker mechanism,
a straight line in a plane for a slider-crank mechanism,
a line in space for RSSP mechanisms, a circle in space
for a mechanism where one end of its coupler link traces
a circle, such as a RSSR mechanism and a cylinder for
a mechanism where one end of its coupler link traces a
cylinder, such as a RRSC mechanism, etc. So, as can
be seen, the method is easily applicable to most well
known mechanisms.

This method is independent of timing and reflects,
effectively, the difference between two curves as the
objective function. The dominant characteristics of
this method are the decrease in the number of input
design variables and the applicability to different types
of planar and spatial mechanisms. For example, for the
crank-rocker linkage, four design variables are needed
and for the RSSP mechanism, six design variables are
needed. So, it would result in a decrease in the number
of the input variables of the optimization procedure
and, so, a considerable decrease in CPU time of the
program. For optimization, a genetic algorithm is
used that leads to a global optimal solution. The
objective function is somehow defined so that, at
the end, one is confident of the satisfied constraints.
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Numerical examples for a crank-rocker linkage, a slider-
crank linkage and a RSSP mechanism illustrate the
effectiveness of the method.
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