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Navier�Stokes Calculations Using

a Finite Point Meshless Method

S�K� Hannani� and M�M� Sadeghi�

The objective of this research is to study the ability of a meshless method� called �nite point

method� in solving incompressible �uid �ow problems using two stabilization schemes� The

main goal of meshless methods is to reduce or remove the cost of grid generation� This

issue is implemented using the satisfaction of governing di�erential equations on a regular or

irregular set of nodes by interpolation functions� based on special least�squares approximations�

In this research� the �nite point method is used to solve the Stokes and the Navier�Stokes

equations by employing two di�erent stabilization schemes� In addition� the e�ects of least�

squares approximations are studied�

INTRODUCTION

During the past three decades� numerical methods have
been used extensively to simulate various engineering
problems� The basis of existing numerical techniques
depends on domain meshing� Grid generators pro�
duce e�cient grids in two�dimensional and smooth
domains� but� in complicated domains� producing an
e�cient grid is di�cult and very time�consuming ����
This problem is serious and� in complicated three�
dimensional domains� this part of the solution process
requires more time and cost ���� On the other hand� in
moving�boundary problems� ordinary methods require
an updated grid that coincides with the new boundary
at each time step� The cost of these problems� using
ordinary numerical methods� will be very high� In
addition� these methods that require a large number of
remeshings� introduce numerous di�culties� such as the
need to project between meshes at successive stages of
the problem� which leads to a degradation of accuracy
and more complexity in computer programming �	��

The objective of meshless methods is to eliminate
the above di�culties� using a method that needs only
the spatial position of some distributed nodes in the
domain of the problem� Thus� it becomes possible to
solve large classes of problems� which are sometimes
very awkward with mesh�based methods�
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The 
rst attempts made using meshless methods
were reported by a few Finite Di�erence �FD prac�
titioners deriving FD schemes in arbitrary irregular
grids using the Taylor series ������ Smooth Particle
Hydrodynamics �SPH is an alternative class of mesh�
less methods that requires only a set of irregular nodes�
This method� which was introduced by Lucy and com�
plemented by Gingold and Moraghan ���� works well
in problems without boundaries� However� it is not as
accurate as regular 
nite element methods ���� Nayroles
et al� ��� proposed a technique� namely� the Di�use
Element Method �DEM� where only a collection of
nodes and a boundary description is needed to for�
mulate the Galerkin equations� Although this method
works without any 
nite element mesh� still� some
kind of auxiliary grid is necessary in order to compute�
numerically� the integral expressions derived from the
Galerkin approach� Belytschko et al� ������� proposed
an extension of the DEM approach� namely� Element�
Free Galerkin �EFG� In this method� a regular cell
structure is needed to compute the integrals by means
of high order quadratures� Duarte and Oden ����
represented a new approximation scheme that is a
subdomain of Partition of Unity �PU methods and�
then� introduced a meshless method with this new
approximation� Liu et al� ��	���� introduced another
meshless method� based on wavelet analysis� which is
called Reproducing Kernel Particle �RKP�

Onate et al� introduced the Finite Point Method
�FPM ��������� that uses some kind of approximations
similar to DEM and EFG approximations� After rep�
resenting the FIC stabilization method by Onate �����
this method was complemented and its evolution has
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continued up to now �������� Recently� Meshless Local
Boundary Integral Equation �MLBIE and Meshless
Local Petrov�Galerkin �MLPG methods were rep�
resented based on integral equations ����� These
methods work without any grid and integrations are
implemented in speci
c subdomains� The Least�Square
Collocation Method �LSCM is a kind of FPM method
that uses some auxiliary nodes� in addition to basic
distributed nodes� This method satis
es discretized
equations in the least�squares sense by applying auxil�
iary nodes to improve accuracy �����

Among the mentioned meshless methods� only
FPM� LSCM� MLBIE and MLPG do not use any
auxiliary or background grid� In this paper� the FPM
method is used to solve classical problems such as
heat conduction� the Stokes problem and Navier�Stokes
equations for incompressible �uid �ow in di�erent
domains� The accuracy of this method is validated�
compared with some analytical� numerical and experi�
mental solutions and its advantages and disadvantages
are elucidated�

FPM FORMULATION

Generally� one of the most important parts of each
numerical method is the discretization method� This
part is very important and determines the governing
relation in each element or set of nodes� The weighted
residual method is the 
rst step of many discretization
methods�

Weighted Residual Method

Let one assume a scalar problem governed by a di�er�
ential equation�

A�u � b in �� ��

and with the following Neumann and Dirichlet bound�
ary conditions�

B�u � t in �t� ��a

u� up � � in �u� ��b

In the above� A and B are appropriate di�erential
operators� u is the problem unknown and b and t
represent sources and external forces acting over the
domain� �� and along the boundary� �t� respectively�
Finally� up is the prescribed value of u on the boundary�
�u�

The weighted residual method is the most general
procedure for solving� numerically� the above system of
di�erential equations� According to this method� the
unknown function� u� is approximated by some trial

approximation� �u� and the following equation is yielded�Z
�

Wi�A��u� b�d� �

Z
�t

W i�B��u� t�d�

�

Z
�u

W i��u� up�d� � �� �	

Selecting weighting functions� Wi�W i and W i in di�er�
ent ways results in di�erent numerical methods� such
as FDM� FVM and FEM �����

In order to keep the local character of the
problem� function u should be approximated by a
combination of locally de
ned functions as�

u�x �� �u�x �

npX
i��

Ni�xuhi � NT �xuh� ��

with np being the total number of points in the domain
and the interpolation functions� Ni�x� satisfying the
following conditions�

Ni�x �� � x � �i� ��a

Ni�x � � x �� �i� ��b

where �i is a subdomain of � containing n points and
n � np�

Point Collocation

In the FPM� discretized equations are derived by point
collocation ���� Therefore� in the weighted residual form
of the governing equations� one has�

Wi � W i � W i � �i� ��

where �i is the Dirac delta function� This is necessary
in order to preserve the meshfree character of the
method� because� with this weight function no surface
or volume integration is needed�

Finally� the weighted residual form of the govern�
ing equations yields the following equations�

�A��u�i � bi � � in �� ��a

�B��u�i � ti � � in �� ��b

�ui � up � � in �u� ��c

The above equations may be written in the matrix form
as�

Kuh � F� ��

where K is a np�np matrix� u is the unknown vector�
consisting of uhi �i � �� �� � � � � np and f is a vector
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containing the contributions from the force terms b and
t and the prescribed values� up�

Meshless methods based on point collocation are
true meshless schemes and are very e�cient� However�
in collocation�based methods� equilibrium conditions
are only satis
ed at n� collocation points within the
domain� �� If collocated points are not su�cient� sig�
ni
cant error may result� In Galerkin�based methods�
equilibrium conditions are satis
ed within the domain
in an integral sense� so that information at Gauss
quadrature points is included� Usually� the accuracy
of Galerkin�based methods is better than collocation�
based methods� but the computational e�ort required
for Galerkin�based methods is also much more� This
point is important� especially in meshless methods�
Meshless methods that use integral equations lose
some important properties of a real meshless method�
Generally� these methods need an auxiliary grid named
background grid �����

INTERPOLATION IN THE FPM

In meshless methods� there are no elements to interpo�
late variables on them like FEM� Therefore� this part of
meshless methods is the most di�erent compared with
ordinary methods�

Let �i be the interpolation domain �cloud of a
function� u�x� and let sj with j � �� �� � � � � n be a
collection of n points with coordinates xj � �j � The
unknown function� u� may be approximated within �i

by the following equation�

u�x �� �u�x �

mX
L��

pL�x�L � p�xT�� ��

where � � ���� ��� � � � � �m�T and vector p�x contains
typically monomials� hereafter termed �basis interpo�
lating functions�� in the space coordinates ensuring
that the basis is complete� For a �D problem one can
specify�

p � ��� x� y�T � m � 	� ���a

p � ��� x� y� x�� xy� y��T � m � �� ���b

Function u�x can now be sampled at the n points
belonging to �i� giving�

uh �

�����
����
uh�
uh�
���
uhn

�����
����
��

�����
����

�u�
�u�
���

�un

�����
����

�

�����
����
pT�
pTn
���
pTn

�����
����
� � C�� ���

where uhj � u�xj are the unknown but sought for
values of function u at point j� �uj � �u�xj are the
approximate values and pj � p�xj�

In 
nite element approximation� the number of
points is chosen so that m � n� In this case� C is a
square matrix� � can be obtained readily and� 
nally�
the approximation is completed�

� � C��uh� ���

u �� �u � pTC��uh � NTuh �

mX
j��

N i
ju

h
j � ��	

NT �
�
N i
�� � � � � N

i
n

	
� pTC���

N i
j �

mX
i��

pi�xC��ij � ���

Obtained shape functions� N i
j � satisfy the standard

condition�

N i
j�xi � � �i � j� ���a

N i
j�xi � � �i �� j� ���b

In this part� interpolation schemes for meshless meth�
ods are introduced concisely� This context is one of
the important bases in meshless methods� Complete
discussions are mentioned in ����

Standard Least�Squares �LSQ� Approximation

If n � m�C is no longer a square matrix and the
approximation cannot 
t all the uhj values� This
problem can simply be overcome by minimizing the
sum of the squared distances of the error at each point
with respect to �i parameters� The following equation
expresses this summation�

J �

nX
j��

�uhj � �u�xj
� �

nX
j��

�uhj � p
T
j ��� ���

Standard minimization leads to�

� � C��uh with C�� � A��B� ���

where�

A �

nX
j��

��xjp�xjp
T �xj� ���a

B � ���x�p�x�� ��x�p�x�� � � � � ��xnp�xn��
���b

The 
nal approximation is still given by Equation �	�
The shape functions are� therefore�

N i
j�x �

mX
L��

pL�xC��Lj � pT �xC��� ���
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where superindex i emphasizes that shape functions�
N i
j � can now be de
ned di�erently for each cloud� �i�

It must be noted that� according to the least�squares
character of the approximation�

u�xj �� �u�xj �� uhj � ���

i�e�� the local values of approximating function do not

t the nodal unknown values�

Indeed� the approximate function� �u� is the
function that must satisfy the discretized form of
the governing di�erential equation and its boundary
conditions and uhj are simply the unknown parameters
sought �������

The main drawback of the LSQ approach is that
the approximation rapidly deteriorates if the number of
used points largely exceeds the polynomial terms ����

Weighted Least�Squares �WLS� Approximation

The LSQ approximation can be enhanced near a
desired point by weighting the squared distances using
the function � with the following characteristics�

���
��
�i�xi � �

�i�x �� � x � �i

�i�x � � x �� �i

� ���

This function usually takes unit value �or its maximum
value near the point called the star point where
the derivatives of the unknown function are to be
evaluated� In WLS� the following summation should
be minimized�

J �
nX

j��

�i�xj�u
h
j � �u�xj

�� ���

So� A and B are obtained in the following equations�

A �

nX
j��

�i�xjp�xjp
T �xj� ��	a

B���i�x�p�x�� �i�x�p�x�� � � � � �i�xnp�xn��
��	b

Moving Least�Squares �MLS� Approximation

In the MLS approximation� the weighting function
takes its maximum value over each point that the
unknown function should be evaluated� In the WLS
approach� the peak of the weighting function is placed
only on distributed nodes� but in the MLS approach�
the peak of the weighting function can be placed on
each desired point in the domain�

For every point� the following summation should
be minimized�

J�xk �
nX

j��

�k�xj�u
h
j � p

T
j ��� ���

Now� A�B and �i parameters are functions of xk �

A �
nX

j��

�k�xjp�xjp
T �xj� ���a

B���k�x�p�x�� �k�x�p�x�� � � � � �k�xnp�xn��
���b

In LSQ and WLS methods� � parameters are constant
in each subdomain� �i� and the approximation order is�
directly� the order included in the set of basis functions�
On the other hand� in the MLS approach� � parameters
are functions of position and the resultant unknown
function may include higher order functions�

There is an important characteristic in the MLS
approach� The shape functions of this method are
global and can be used all over the domain� Of course�
this property is not so important in the FPM method
from a computational point of view� because only the
values of the unknown function on distributed nodes
are needed�

Least�Squares Approximations Properties

Like the 
nite element approximation� the least�
squares approximation is exact for any function consist�
ing of a linear combination of the basis functions �������
This property is called shape functions consistency�

Another important property is that� if the weight�
ing function is continuous and the matrix A is regular�
then the approximate function and the estimates of its
derivatives are continuous ����

In a good least�squares approximation� there is
a possibility to introduce new points independently of
the distance between existing points ���� In the 
nite
element approximation� two nodes that are very close
together cause numerical error� therefore� this adds
severe limitations in the mesh generator and adaptivity
criteria�

The above properties are general characteristics of
each least�squares approximation� In addition� a good
least�squares approximation for FPM is insensitive
to the number of points chosen within each cloud�
This condition is necessary to preserve the freedom of
adding� moving or removing points for a given order of
interpolation�

Although all least�squares approximations have
the 
rst three properties� the fourth one is the most
important for an applicable method in FPM� Of the
above mentioned schemes� the following are unsuitable
for application to the FPM method ����
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�� LSQ approximations�

�� WLS with linear basis functions�

	� MLS with linear basis functions�

Indeed� the remaining approximation methods can
work properly�

Shape Functions Derivatives

Let one assume a least�squares approximation for
function u in the following equation�

u �� �u�x � pTA��Buh � NTuh� ���

In LSQ and WLS methods� A and B are constant over
each cloud of interpolation and� therefore� derivatives
can be computed readily� for example�

	NT

	x
�

	pT

	x
A��B� ���

However� in the MLS method� A and B are functions
of position and derivatives of shape functions are
in�uenced by the derivatives of these matrices �����
Nayroles et al�� in DEM� neglected this e�ect and
assumed it dispensable ���� On the other hand�
Belytschko et al�� in EFG� considers this e�ect and
computes the derivatives of A and B ��������

Weight Functions

The weight function a�ects the approximation func�
tion� As an illustration� consider the three cases
depicted in Figure � where function u�x in one
dimension is approximated using 
ve data points at
x � �� �� �� 	� �� The least�squares approximation
function is constructed using a linear polynomial basis�
pT � ��� x�� In the 
rst� second and third examples�
approximation methods are LSQ over the entire do�
main �constant weight over the entire domain� MLS
with constant weight function and compact support
on two nodes and MLS with smooth weight function
and compact support� respectively� Di�erences be�
tween the results of these approximation methods are
obvious� Figure � reveals that e�cient approximation
is obtained by smooth weight function with compact
support�

Some examples of weight functions are mentioned
in the following equations�

Gaussian�

w�s �



e�s�c�

�
�e��smax�c�

�

��e��smax�c��
s � smax

� s � smax
� ���a

Figure �� E�ect of weight function on resulting
approximation function�

exponential�

w�s �



e��s���

�

s � �

� s � �
� ���b

cubic spline�

w�s �

���
��

��	� �s� � �s� s � ���

��	� �s� �s� � ��	s� ��� � s � �

� s � �

�
���c

fourth order spline�

w�s �



�� �s� � �s� � 	s	 s � �

� s � �
� ���d

where s is the distance from the center of the weight
function� s � s�smax and smax is the radius of support�
Parameter c in the Gaussian weight function deter�
mines the sharpness of the weight function� Parameter
� in the exponential weight function is usually assumed
as ���� Another parameter for weight functions is
dmax� After determining the radius of support� smax
is considered as this radius multiplied by dmax�

STABILIZED GOVERNING EQUATIONS

The reliable numerical analysis of non�self�adjoint dif�
ferential equations� such as governing equations for
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�uid �ow problems� requires some additional oper�
ations� namely� stabilization ��	�� In FDM� FVM
and FEM� in order to study �uid �ow problems�
the governing equations should be stabilized and the
FPM method cannot be excluded from this drawback�
Generally� equations are stabilized in various ways
by adding balancing di�usion or arti
cial di�usion�
The instability of numerical results has two resources�
convective terms at high Reynolds numbers and an
inconvenient combination of pressure and velocity in�
terpolation�

In recent years� various methods were presented
in the 
eld of stabilization� such as arti
cial dif�
fusion� Petrov�Galerkin� streamline upwind Petrov�
Galerkin� subgrid scale� Galerkin least�squares� Lax�
Wendro� schemes and characteristic approximation
methods �����

Stabilization methods� which are based on inte�
gral equations� are not applicable for FPM� Among the
remaining methods� some of them cannot work well
and a method is needed that modi
es errors caused by
the local satisfaction of di�erential equations� In this
paper� SSUPG and FIC methods are used to stabilize
governing equations�

Simpli�ed SUPG �SSUPG� Formulation

Assume the governing equations of incompressible �uid
�ow problems�


u�ru � �rp � �r�u� 
F� ���a

r�u � �� ���b

In Streamline Upwind�Petrov Galerkin �SUPG for�
mulation� weighted residual equations are the follow�
ing �����Z

�

W �
u�ru�rp� �r�u� 
Fd� � �� �	�a

Z
Wp�r�ud� �

Z
�rWp�
u�ru�rp

� �r�u� 
Fd� � �� �	�b

In the above� Wp is the shape function of pressure and

� is the stabilization parameter�
�

W is considered as�

�

W � W � �u�rW� �	�

where W is the shape function of velocity� Final
integral equations for SUPG are obtained after imple�
menting integration� by part� on Equations 	�a and
	�b�

In SSUPG� momentum equations remain un�
changed and for the continuity equation� a simpli
ed

form of Equation 	�b is used� Therefore� the 
nal
equations of SSUPG are�


u�ru � �rp � �r�u� 
F� �	�a

r�u � �r�p � �� �	�b

With this set of equations� instability potentials are
circumvented�

Finite Increment Calculus �FIC� Formulation

Indeed� it is widely accepted that the origins and
precise de
nition of the stabilization parameters used
in numerical computations are� in most cases� unsolved
mysteries ����� In a quite recent work� Onate ���� has
shown that the stabilization terms emerge naturally
in the governing di�erential equations of the problem�
once the concept of balance over a 
nite domain is
accepted� This allows reinterpreting the stabilization
terms as an intrinsic and natural contribution to the
original di�erential equations� instead of an extrinsic
correction term introduced at the discretization level�
as usually understood by most FDM� FVM and FEM
practitioners�

In FIC formulation� the stabilized governing
equations for incompressible viscous �ows are obtained
by applying the standard conservation laws expressing
balance of momentum and mass over a control
domain� Assuming that the control domain has 
nite
dimensions and representing the variation of mass
and momentum over the domain� using Taylor series
expansions of one order higher than those used in the
standard in
nitesimal theory� the following expressions
are found ��������

Momentum balance�

rmi �
�

�
hmj

	rmi

	xj
� � in �� �		

Mass balance�

rd �
�

�
hdj

	rd
	xj

� � in �� �	�

where for a steady state case�

rmi � 

	�uiuj

	xj
�

	p

	xi
�
	�ij
	xj

� bi� �	�

rd �
	ui
	xi

� �	�

with i� j � �� � for a two�dimensional �ow� In the
above� 
 is the �uid density �here assumed to be
constant� ui is the velocity component in the ith
direction� p the pressure� bi the body forces and �ij
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the viscous stress components related to the velocity
gradients through the �uid viscosity� �� by�

�ij � �

�
	ui
	xj

�
	uj
	xi

�
�

	

	uk
	xk

�ij

�
� �	�

Equations 		 and 	� are the stabilized forms of the
governing di�erential equations for an incompressible
�uid �ow� In these equations� the second terms
introduce� naturally� the necessary stabilization at the
discretization level� The so�called characteristic length
vectors� hm and hd� for two�dimensional problems� are
de
ned as�

hm �


hm�

hm�

�
� hd �


hd�
hd�

�
� �	�

where hm� and hm� are the dimensions of the 
nite con�
trol domain� where balance of momentum is enforced�
Similarly� hd� and hd� represent the dimensions of the
domain where mass conservation is expressed� The
components of vectors hm and hd introduce the neces�
sary stabilization along the streamline and transverse
directions to the �ow in the discrete problem�

Equations 		 and 	� are complemented by the
boundary conditions� Balance of momentum at the
boundary is expressed by Equation 	�� This equation
is derived using a similar method to the one used for
governing equations�

njij � ti �
�

�
hmjnjrmi � � on �t� �	�

where ni is the ith component of the unit normal vector
to the boundary and ti are the prescribed tractions at
the Neumann boundary� �t� of the analysis domain� ��

Prescribed velocity at the boundaries is imposed
by the following equations�

ut � upt on �ut � ���a

un �
�

�
hdinird � upn on �un � ���b

ut and upt denote the tangential velocity to the bound�
ary and its prescribed value� respectively�

Equation ��b expresses the balance of mass on
an arbitrary domain next to the boundary� un and
upn denote the velocity normal to the boundary and its
prescribed value� respectively� The value of upn is zero
on solid walls and stationary free surfaces� Considering
the 
nite domain leads to additional terms in Equations
	� and ��b� These terms introduce the necessary
stabilization at the boundaries�

Alternative Form of Stabilized Equations

Components of the characteristic vector� hd� can be
expressed as�

hdi � �
�diui� ���

where �di parameters are termed intrinsic times per
unit mass� After substituting the above equation in
the stabilized form of the continuity equation and
some operations and neglecting higher order terms� it
changes to another applicable form of the stabilized
continuity equation �������� represented in the following
equation�

rd � �di
	rmi

	xi
� �� ���

where� in Equation ��� one has�

rmi � 
uj
	ui
	xj

�
	p

	xi
�
	�ij
	xj

� bi� ��	

This form of continuity equation can be used for incom�
pressible �uid �ow calculations� as well as Equation 	��

FRACTIONAL STEP �FS� ALGORITHM

A fractional step algorithm is proposed by Zienkiewicz
et al� ������� for transient calculations of Navier�Stokes
equations� This time�marching algorithm can work
in three features� Explicit� semi�implicit and implicit�
The semi�implicit form is applicable for incompressible
�uid �ow problems and reduces the 	n� 	n system of
equations to n� n�

FS Algorithm for Stabilized FIC Equations

Assume Navier�Stokes equations are stabilized by FIC�
One can write�

un
�i � uni �
�t




�


	�uiuj

n

	xj
�
	pn
�

	xi
�
	�nij
	xj

�

�
�t




�
�bni �

�

�

�
hTrrmi

�n�
� ���

Equation �� can be separated into the following equa�
tions�

u�i � uni �
�t




�


	�uiuj

	xj
�
	�ij
	xj

� bi

�n

�
�t




�
�

�

�

�
hTrrmi

��n
� ���a

un
�i � u�i �
�t




	pn
�

	xi
� ���b

Substitution of Equation ��b in the stabilized form of
the continuity equation yields�

r�d �
�t




	�pn
�

	xi	xi
�

�
�i
	rmi

	xi

�n
�
� �� ���
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where� in the above equation� one has�

r�d �
	u�i
	xi

� ���

�
�i
	rmi

	xi

�n
�
�

�



�
	ui
	t

�
	�uiuj

	xj

�
�
	�ij
	xj

�bi

�n

� �n
�i

	�pn
�

	xi	xi
� ���

Therefore� the solution comprises the following three
steps�

�� Solve explicitly for the so�called fractional veloci�
ties� u�i � using Equation ��a 

�� Compute the pressure 
eld� pn
�� by solving the
equation for the Laplacian of pressure derived from
Equation �� 

	� Compute the velocities� un
�j � using Equation ��b�

Obviously� other forms of transient solution schemes�
including the implicit computation of un
�i � are also
possible�

Numerical Solution Using the FPM

The implementation of the three�step scheme described
in the previous section� in the context of FPM� is
straightforward� This scheme is introduced by Onate
et al� ������� for the 
rst time�

Assume approximations for velocity components
and pressure�

�um �
nX

j��

Nju
h
mj � �p �

nX
j��

Njp
h
j � ���

In the 
rst step� fractional velocities� �u�� are computed�

�u�i � uni �
�t




�


	��ui�uj

	xj
�
	��ij
	xj

� bi

�n

�
�t




�
�

�

�

�
hTr�rmi

��n
� ���

Then� parameters of fractional velocities� uhmj � are
computed from the system of the following equation�

�u�m �

nX
j��

Njumj � ���

These parameters are necessary to compute the deriva�
tives of the velocity functions in the next steps�

In the second step� pressure distribution is ob�
tained on the domain with the following equations�

K�phn
� � �r�d� ���a

Kkj �

�
�t



� �n
�i

��
	�Nk

j

	xi	xi

�
� ���b

�r�dk �rnd��
n
i

	

	xi

�



�
	�ui
	t

�
	 ��ui�uj

	xj

�
�
	��ij
	xj

�n
k

�
���c

where ��kn represents the value of point k in the nth
time step�

The last step is the computation of velocities in
the �n � �th time step explicitly�

�un
�i � �u�i �
�t




	�pn
�

	xi
� ��	

In the above equations� derivatives of approximation
functions �ui and �pi are obtained from the following
equations�

	�um
	xL

�

nX
j��

	N i
j

	xL
uhmj � ���a

	�p

	xL
�

nX
j��

	N i
j

	xL
phj � ���b

For each time step� these three steps should be imple�
mented� The local time step for each node is di

�juij
�

where di is the minimum distance from the star node
to its neighbors� The local time step can be used for
steady state results� but� the transient solution requires
the use of a global time step that is equal to the
minimum value of the local time steps�

Boundary Conditions

In a fractional step algorithm� the 
rst step is im�
plemented without any boundary conditions� For the
second step� two kinds of boundary conditions should
be enforced� In the case of boundaries which have a
prescribed normal velocity� one has�

upn � u�ini �
�t




	pn
�

	xi
ni �

�

�
hdinird� ���

or� in other words 

upn�u�ini�
�t




	pn
�

	xi
ni�

�

�
hdini ���t���pn�r�d� �

���

Equations �� and �� are stabilized boundary conditions
for the pressure equation�

On out�ow boundaries with njij � �� the
pressure is imposed to a constant value� In the FPM�
essential boundary conditions� such as p � �� are
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imposed using the de
nition of the function itself as
the following equation�

�pi �

nX
j��

N i
jp

h
j � ���

In the third step of the fractional step algorithm�
un
� is computed via an explicit relation� This time�
essential boundary conditions of velocity are imposed�
For points on the Neumann boundaries� the following
equation is applicable�

njij �
�

�
hmjnjrmi � �� ���

NUMERICAL EXPERIMENTS

This part includes analyses of some partial di�erential
equations by FPM� Heat conduction problems� Stokes
equations and Navier�Stokes equations are analyzed in
di�erent domains and the results are compared with
FDM or FEM results by solving benchmark problems�

Heat Conduction

The heat conduction equation is a well�posed partial
di�erential equation� so it is useful to study the general
properties of each method� In non�well�posed partial
di�erential equations� such as non�self�adjoint prob�
lems� other phenomena appear and a�ect the results�
so� the basis of a method for general problems cannot
be examined�

Assume the two�dimensional heat conduction
problem mentioned in the following equations�

	�T

	x�
�
	�T

	y�
� ��

� � x � �� � � y � �� ���a

T �x� � � T ��� y � T ��� y � ��

� � x � �� � � y � �� ���b

T �x� � � ����

� � x � �� ���c

The analytical solution of the above problem is ob�
tained by the separation of variables method� This
solution is expressed in the following equation�

T �x� y �
�

�

�X
n��

���n
� � �

n
sin�n�x

sinh�n�y

sinh�n�
�
���

As mentioned before� one of the good properties of
each approximation is the insensitivity to the number of

Figure �� Type of approximation e�ect�

nodes� Figure � represents the average error variations
versus cloud factor for three types of approximations�
Average error is de
ned as the summation of the
absolute values of errors in nodes divided by the
number of distributed nodes in the domain and cloud
factor is a coe�cient that the size of clouds dilates� if
this factor increases�

Figure � manifests that LSQ approximation can�
not achieve reliable results in large cloud factors� In
contrast� MLS can work well and will be better with
quadratic basis functions�

FPM satis
es equations locally and� from this
viewpoint� is similar to FDM� so their comparison can
be good for validating FPM accuracy� Again� consider
the problem mentioned in Equations ��� This problem
was solved by FPM and FDM on similar node distri�
butions� Figure 	 represents the average error of these
methods versus the number of nodes� In this 
gure� the
grid independency of FDM and FPM is observed� In
addition� it manifests that the convergence rate in FPM
is similar to FDM and� furthermore� the results of FPM
with quadratic based functions are more accurate than

Figure �� Comparison of FPM and FDM�
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FDM results� These results are interesting� because
the complicated mathematics of least�squares problems
prevents them from being interpreted mathematically�

Heat conduction problems with di�erent bound�
ary conditions and variable sources can be handled
by FPM readily and accurate solutions are resulted if
relevant approximation is adapted�

Stokes Problem

Generally� the Stokes problem is one of the 
rst
challenging problems to be solved in testing methods�
The solution has symmetric pressure contours and the
positions of the maximum and minimum values of
pressure are speci
ed theoretically� In addition� these
values should tend to extreme values� if the number of
nodes is increased� The Stokes problem has been solved
before in ����� but in this paper� other methods are also
experimented�

This problem is expressed as the following equa�
tions�

�rp � �r�u � ��

� � x � �� � � y � �� ���a

ui�x� � � ui��� y � ui��� y � ��

� � x � �� � � y � �� ���b

u��x� � � �� � � x � �� ���c

u��x� � � �� � � x � �� ���d

The above problem has been solved by the SSUPG and
FIC methods using the FS algorithm� It is important
to denote that in the SSUPG method� the stabiliza�
tion parameter is computed according to the method
represented by Franca and Frey ���� for determining
the SUPG stabilization parameter� This method of
calculating the stabilization parameter works well for
the SSUPG method in FPM�

Both of these methods result in satisfactory so�
lutions� Figure � represents one of these results on
��� sets of regular distributed nodes� One of the
important results is the e�ect of the number of nodes
on the maximum �or minimum pressure� This e�ect
is depicted in Figure ��

Navier�Stokes Calculations

The 
nal objective of this paper is the Navier�Stokes
calculations� Navier�Stokes equations are non�self�
adjoint coupled partial di�erential equations for which
many ordinary numerical methods are not applicable�

In this paper� Navier�Stokes equations are solved
by FPM using the following schemes�

Figure �� Stokes solution on cavity by FPM�

Figure �� E�ect of number of nodes�

�� The SSUPG stabilization method using Franca and
Frey stabilization parameter calculation ���� 

�� The FIC stabilization method and the FS time
marching algorithm�

Applying SSUPG for FPM was 
rst proposed by
Hannani and Parsinejad ����� The second scheme was

rst represented by Onate et al� �������� Onate� in �����
introduced the FIC stabilization scheme and the FS
algorithm was introduced by Zienkiewicz et al� ��������
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FPM and FEM in Parallel Plates

One of the classical problems for validating the accu�
racy of numerical methods is the incompressible �uid
�ow between parallel plates� This problem has an
analytical solution far from the entry� as below�

u �
	

�

q

h

�
��

�y
h

���
� ���a

dp

dx
� �

	

�
h��q�� ���b

where� in the above equations� u is the velocity along
the plates direction� q is the �ow per unit width� h is
the half distance between plates� y is the distance from
the symmetry line and � is the viscosity of the �uid�

The numerical solution is implemented on the
domain represented in Figure �� This problem was
solved for Reynolds number ��� with various node
distributions by the SSUPG stabilization method� The
minimum number of nodes in each cloud is nine� the
basis functions are quadratic and the approximation
method is MLS�

The mentioned problem has two analytical values
that are useful for the validation of the numerical
method� The 
rst one is the variation of the horizontal
velocity on the symmetry line� This value should tend
to ���� asymptotically� The second value is the slope of
the pressure graph far from the �ow entry� The value
for this domain and boundary conditions is obtained as
�����

Figure � represents horizontal velocity variations
along the symmetry line using �	�� irregular dis�
tributed nodes on the domain� From Figure �� the
asymptotic tendency of the horizontal velocity on the
symmetry line is obvious� but� there are two uncer�
tainties in this result� The horizontal velocity on the
symmetry line oscillates and its asymptotic value is less
than ����

The reason for this situation is that the distri�
bution of nodes is irregular and� therefore� there are
not any nodes exactly on the symmetry line� On the
other hand� maximum velocity occurs on the symmetry
line and when the value of the horizontal velocity on
the symmetry line is calculated by interpolation from

Figure �� Parallel plates problem con�guration�

Figure �� Velocity on symmetry line� ���	 irregular
nodes�

neighboring nodes� its value is obtained less than the
correct value� Likewise� when there are any nodes
near the symmetry line� the value of the interpolated
velocity is obtained higher and vice versa and this
condition causes oscillation� It has to be mentioned
that FEM su�ers from the same drawback�

If nodes are distributed in the domain such that
one has some nodes exactly on the symmetry line�
oscillations will be suppressed� In the represented
result in Figure �� node distribution includes ����
nodes and there are some points on the symmetry line�
It is obvious that there are not any oscillations and the
asymptotic value is ���� accurately�

The second analytical value is the pressure gradi�
ent in the fully developed region� Table � includes some
values of pressure gradients that have been obtained
by FPM and FEM on di�erent node distributions�
Regular node distribution means that there are some
nodes on the symmetry line� In order to compare these
results� node distributions for an equal number of nodes
are similar for FPM and FEM� From this table� FPM
results are more accurate than FEM results�

Figure 	� Velocity on symmetry line� �
�� regular nodes�
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Table �� Validation of FPM results for parallel plates
problem�

Solution Method dp�dx Error�

Exact ����� ����

FPM Using ��	

Irregular Nodes
������� ����

FPM Using 
��

Irregular Nodes
������� ����

FPM Using 	
�

Regular Nodes
�����	� 	���

FPM Using 
�
�

Regular Nodes
������	 ����

FEM Using ��	

Irregular Nodes
������� ����

FEM Using 
��

Irregular Nodes
�����	� ����

The accuracy of the applied method was com�
pared with other existing results� In Figure �� pres�
sure variations on the symmetry line are represented�
This 
gure includes Shah!s experimental results �	���
Schmidt!s numerical results �	�� using FDM and the
result of FPM� which shows its reliability�

FPM and FEM in Backward Facing Step

Incompressible �uid �ow over a backward�facing step
is another classical problem that� due to the existence
of reliable experimental and numerical results� can be a
good criterion for validation of a numerical technique�
Figure �� represents the assumed con
guration and
boundary conditions�

Both of the mentioned stabilization schemes�
SSUPG and FIC� using the FS algorithm� can solve this
problem� In addition� with the FIC method� transient
solutions can be achieved�

Figure 
� Comparison of FPM and validated results
based on pressure variations on the symmetry line�

Figure ��� Backward�facing step con�guration�

In the SSUPG method� the stabilization parame�
ter is calculated from Franca and Freys suggestion� In
computing stabilization parameters for FIC� the SUPG
assumption is applied and the value of h is considered
as half the distance between the star node and the
closest neighboring node� In each cloud� the minimum
number of nodes is nine and the basis functions are
quadratic� As in the previous problem� the MLS
approximation method is applied�

Calculations are done for Reynolds numbers ���
and ���� The Reynolds number is based on bulk
velocity at the inlet boundary and the cross section
width of the whole domain and fully developed �ow is
assumed at the inlet� Figures �� and �� include these
results� Distributed nodes on the domain are ��� for
both results and this node distribution is depicted in
Figure ���

In addition� the transient solution of incompress�
ible �uid �ow over a backward�facing step is resulted
from the FIC stabilization and the FS time marching
algorithm� Figure �	 represents some of these results�
These results are similar to the FEM solution of this

Figure ��� FPM results� � nodes� Re � ���� SSUPG
stabilization�
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Figure ��� FPM results� � nodes� Re � ���� SSUPG
stabilization�

problem on the same node distribution with triangular
elements� using the SUPG stabilization scheme �	���

In Figure �� the results of FEM using SUPG�
FPM using the SSUPG stabilization scheme and FPM
using the FIC stabilization method and the FS time
marching algorithm are compared� This 
gure repre�
sents pressure variations on the bottom wall�

The FPM solution� using FIC and FS methods�
results in a satisfactory solution� compared with the
FEM solution� and their maximum di�erence in this

gure is about three percent� On the other hand� the
FPM solution using SSUPG obtains good results� but
not as good as FPM using FIC and FS methods� The
maximum di�erence between FPM using SSUPG and
FEM is about seven percent� Generally� all of the above
methods have almost similar results� but� in the region
near to the �ow inlet� because of the presence of a
vortex region and the existence of two singular points�

Figure ��� FPM transient solution� � nodes� Re����� FIC stabilization� FS algorithm�



��� S�K� Hannani and M�M� Sadeghi

Figure ��� Comparison of FPM and FEM based on
pressure variation on bottom wall�

the mesh independent solution is not obtained and the
solutions di�er from each other�

One of the important properties of the FIC
stabilization scheme is that the stabilized equations are
consistent� so� the real solution satis
es the stabilized
form of the governing equations� Nevertheless� the
SSUPG stabilization scheme has not this characteristic�
Instead� the SSUPG method converges better than
the FIC method and convergence in FIC occurs under
harder conditions�

Another criterion for studying FPM accuracy is
to compare it with the experimental results of Armaly
et al� �		� or the numerical results of Hannani et
al� �	��� Both of these reliable results pointed out
that in Reynolds number ���� the horizontal distance
between �ow inlet to �ow attachment on the bottom
wall is ��� times the cross section width of the whole
domain� Table � includes the position of this point�
based on various FPM and FEM solutions�

Table � emphasizes the accuracy of the FIC stabi�
lized FPM scheme in comparison with the SSUPG sta�
bilized FPM method and shows the agreement between
FPM using FIC and FEM� However� for Reynolds
number ���� all of the results have an indispensable
di�erence with the correct value� the result of FPM
using FIC is better�

The most important problem that produces this
di�erence is that there are not enough nodes in the
domain of solution� especially near the boundary� As
can be observed� the result of the FEM solution with
the SUPG stabilization scheme is similar to the FPM

Table �� Comparison of FPM and FEM�

Solution Method Re � 
�� Re � ���

FPM and SSUPG ��	 	��

FPM and FIC and FS ��� 	��

FEM and SUPG ��� 	��

solution using FIC and this proves that the source
of the mentioned di�erence is the lack of enough
distributed nodes in the domain� In FEM� this dilemma
is solved by applying rectangular elements that are
stretched along the �ow direction and this causes better
results� This method cannot be applied in the case of
complicated �ows�

In FPM� another method can be used that works
for general problems� Because nodes are not limited by
any elements� one can consider their interaction similar
to reality�

One of the important properties of each numerical
method is the required time versus their accuracy�
The required time for FPM is in the order of other
unstructured methods and its accuracy is almost equal
to regular FEM� This is very interesting for any method
that does not use any grid and� therefore� it has
great potential in many applications� such as adaptive
numerical techniques or moving�boundary problems�

CONCLUSIONS

In this paper� the 
nite point method was studied and
its stabilization was reviewed� This method is a truly
meshless method that requires only the spatial position
of distributed nodes in the domain�

The approximation method is the basis of each
meshless method� On this subject� the results con
rm
the conclusions mentioned in �������

FPM and FDM results were compared for a heat
conduction problem and it was shown that FPM can
produce reliable results� Furthermore� with an e�cient
approximation scheme� FPM accuracy is better than
FDM accuracy�

The main goal of this paper was to solve the
incompressible Navier�Stokes equations� This issue
was implemented after solving a Stokes problem in a
cavity for incompressible �uid and� then� �ows between
parallel plates and over backward�facing steps were
analyzed� The FPM method can solve non�self�adjoint
di�erential equations such as Navier�Stokes equations�
if an e�cient stabilization scheme is applied� In this

eld� the following results were obtained�

�� SSUPG and FIC methods can be used for stabiliza�
tion of governing equations 

�� Results of FPM are as good as FEM 

	� Neumann boundary conditions should be stabilized 

�� Essential boundary conditions can be enforced di�
rectly according to the approximation 

�� Fractional step algorithms are applicable for tran�
sient solutions�

The general advantages of the FPM method in com�
parison with other numerical methods are�
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�� Satisfactory accuracy is obtained 

�� The method is applicable in three�dimensional and
complicated domains 

	� The approximation method used in FPM has some
parameters that can be tuned� depending on the
type of problem� such as weighting function prop�
erties� criteria for selecting passive nodes� basis
functions etc 

�� The possibility of introducing new nodes indepen�
dent of the position of existing ones�

Meshless methods are a new 
eld in numerical methods
and have unsolved problems� which need further stud�
ies� The following 
elds are suggested as interesting
subjects to be investigated�

�� Time�consuming� Meshless method is interesting
from many view points� but the time�consuming
issue should be studied rigorously by suitable �D
and 	D benchmark problems 

�� Applying goal oriented approximation parameters�
These parameters can be tuned such that they in�
ject special characteristics� for example� using basis
functions that have any relation with governing
physics results in better solutions 

	� Using adaptive clouds� In the FPM� nodes are
not limited by any elements� so one can consider
their interaction similar to reality� For example� if
elliptical clouds are used instead of circular clouds�
such that the clouds contain upwind nodes of the
star nodes� the results improve� Furthermore� the
slenderness of the ellipse of cloud can be adapted
as a function of velocity at the star node� These
modi
cations improve the accuracy of FPM 

�� Discretization based on integral equations� Local
satisfaction of equations increases errors and insta�
bility resources� Satisfaction of the integral form of
governing equations may result in more stable and
more accurate solutions�
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