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Navier-Stokes Calculations Using
a Finite Point Meshless Method

S.K. Hannani* and M.M. Sadeghi'

The objective of this research is to study the ability of a meshless method, called finite point
method, in solving incompressible fluid flow problems using two stabilization schemes. The
main goal of meshless methods is to reduce or remove the cost of grid generation. This
issue is implemented using the satisfaction of governing differential equations on a regular or
irregular set of nodes by interpolation functions, based on special least-squares approximations.
In this research, the finite point method is used to solve the Stokes and the Navier-Stokes
equations by employing two different stabilization schemes. In addition, the effects of least-

squares approximations are studied.

INTRODUCTION

During the past three decades, numerical methods have
been used extensively to simulate various engineering
problems. The basis of existing numerical techniques
depends on domain meshing. Grid generators pro-
duce efficient grids in two-dimensional and smooth
domains, but, in complicated domains, producing an
efficient grid is difficult and very time-consuming [1].
This problem is serious and, in complicated three-
dimensional domains, this part of the solution process
requires more time and cost [2]. On the other hand, in
moving-boundary problems, ordinary methods require
an updated grid that coincides with the new boundary
at each time step. The cost of these problems, using
ordinary numerical methods, will be very high. In
addition, these methods that require a large number of
remeshings, introduce numerous difficulties, such as the
need to project between meshes at successive stages of
the problem, which leads to a degradation of accuracy
and more complexity in computer programming [3].

The objective of meshless methods is to eliminate
the above difficulties, using a method that needs only
the spatial position of some distributed nodes in the
domain of the problem. Thus, it becomes possible to
solve large classes of problems, which are sometimes
very awkward with mesh-based methods.
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The first attempts made using meshless methods
were reported by a few Finite Difference (FD) prac-
titioners deriving FD schemes in arbitrary irregular
grids using the Taylor series [4-7]. Smooth Particle
Hydrodynamics (SPH) is an alternative class of mesh-
less methods that requires only a set of irregular nodes.
This method, which was introduced by Lucy and com-
plemented by Gingold and Moraghan [8], works well
in problems without boundaries. However, it is not as
accurate as regular finite element methods [1]. Nayroles
et al. [9] proposed a technique, namely, the Diffuse
Element Method (DEM), where only a collection of
nodes and a boundary description is needed to for-
mulate the Galerkin equations. Although this method
works without any finite element mesh, still, some
kind of auxiliary grid is necessary in order to compute,
numerically, the integral expressions derived from the
Galerkin approach. Belytschko et al. [10,11] proposed
an extension of the DEM approach, namely, Element-
Free Galerkin (EFG). In this method, a regular cell
structure is needed to compute the integrals by means
of high order quadratures. Duarte and Oden [12]
represented a new approximation scheme that is a
subdomain of Partition of Unity (PU) methods and,
then, introduced a meshless method with this new
approximation. Liu et al. [13,14] introduced another
meshless method, based on wavelet analysis, which is
called Reproducing Kernel Particle (RKP).

Onate et al. introduced the Finite Point Method
(FPM) [1,15,16] that uses some kind of approximations
similar to DEM and EFG approximations. After rep-
resenting the FIC stabilization method by Onate [17],
this method was complemented and its evolution has



152

continued up to now [18,19]. Recently, Meshless Local
Boundary Integral Equation (MLBIE) and Meshless
Local Petrov-Galerkin (MLPG) methods were rep-
resented based on integral equations [20]. These
methods work without any grid and integrations are
implemented in specific subdomains. The Least-Square
Collocation Method (LSCM) is a kind of FPM method
that uses some auxiliary nodes, in addition to basic
distributed nodes. This method satisfies discretized
equations in the least-squares sense by applying auxil-
iary nodes to improve accuracy [21].

Among the mentioned meshless methods, only
FPM, LSCM, MLBIE and MLPG do not use any
auxiliary or background grid. In this paper, the FPM
method is used to solve classical problems such as
heat conduction, the Stokes problem and Navier-Stokes
equations for incompressible fluid flow in different
domains. The accuracy of this method is validated,
compared with some analytical, numerical and experi-
mental solutions and its advantages and disadvantages
are elucidated.

FPM FORMULATION

Generally, one of the most important parts of each
numerical method is the discretization method. This
part is very important and determines the governing
relation in each element or set of nodes. The weighted
residual method is the first step of many discretization
methods.

Weighted Residual Method

Let one assume a scalar problem governed by a differ-
ential equation:

A(u) =0 in Q, (1)

and with the following Neumann and Dirichlet bound-
ary conditions:

B(u) =t  in Ty, (2a)

w—up, =0 in [',,. (2b)

In the above, A and B are appropriate differential
operators, w is the problem unknown and b and t
represent sources and external forces acting over the
domain, 2, and along the boundary, I';, respectively.
Finally, u, is the prescribed value of u on the boundary,
Ty.

The weighted residual method is the most general
procedure for solving, numerically, the above system of
differential equations. According to this method, the
unknown function, u, is approximated by some trial
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approximation, @, and the following equation is yielded:

/ Wi[A(4) — BdS + / W.[B(i) — dr
Q Iy

+ /F Wila — u,)dl = 0. (3)

Selecting weighting functions, W;, W; and W; in differ-
ent ways results in different numerical methods, such
as FDM, FVM and FEM [22].

In order to keep the local character of the
problem, function u should be approximated by a
combination of locally defined functions as:

with n, being the total number of points in the domain
and the interpolation functions, N;(z), satisfying the
following conditions:

NZ(SU) #0 x €, (5&)

N;(z) =0 x ¢ Q. (5b)
where 2; is a subdomain of {2 containing n points and
n < fyp.

Point Collocation

In the FPM, discretized equations are derived by point
collocation [1]. Therefore, in the weighted residual form
of the governing equations, one has:

W, =W, =W, = 0i, (6)

where §; is the Dirac delta function. This is necessary
in order to preserve the meshfree character of the
method, because, with this weight function no surface
or volume integration is needed.

Finally, the weighted residual form of the govern-
ing equations yields the following equations:

[B(@)]; —t;=0 inT, (7b)
U; —up =0 in T',. (7¢)

The above equations may be written in the matrix form
as:

Ku" =F, (8)

where K is a n, X n, matrix, u is the unknown vector,
consisting of ul(i = 1,2,--- ,n,) and f is a vector
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containing the contributions from the force terms b and
t and the prescribed values, u,.

Meshless methods based on point collocation are
true meshless schemes and are very efficient. However,
in collocation-based methods, equilibrium conditions
are only satisfied at ng collocation points within the
domain, Q. If collocated points are not sufficient, sig-
nificant error may result. In Galerkin-based methods,
equilibrium conditions are satisfied within the domain
in an integral semse, so that information at Gauss
quadrature points is included. Usually, the accuracy
of Galerkin-based methods is better than collocation-
based methods, but the computational effort required
for Galerkin-based methods is also much more. This
point is important, especially in meshless methods.
Meshless methods that use integral equations lose
some important properties of a real meshless method.
Generally, these methods need an auxiliary grid named
background grid [21].

INTERPOLATION IN THE FPM

In meshless methods, there are no elements to interpo-
late variables on them like FEM. Therefore, this part of
meshless methods is the most different compared with
ordinary methods.

Let Q; be the interpolation domain (cloud) of a
function, u(z), and let s; with j = 1,2,--- ,n be a
collection of n points with coordinates z; € 2;. The
unknown function, u, may be approximated within €,
by the following equation:

1%

u(x) Ziae) = Yy pr(e)ar = pa) e, (9)
L=1

where o = [a1, @9, -+ ,a,,]T and vector p(x) contains
typically monomials, hereafter termed “basis interpo-
lating functions”, in the space coordinates ensuring
that the basis is complete. For a 2D problem one can
specify:

p=[Lay", m =3, (10a)

p=[1,z,ya%zy,y*]", m=6. (10b)

Function u(z) can now be sampled at the n points
belonging to €2;, giving:

D Ll GV e S L G (11)
uﬁ U, p.Z
where u;‘ = u(z;) are the unknown but sought for

values of function u at point j,@; = a(z;) are the
approximate values and p; = p(z;).
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In finite element approximation, the number of
points is chosen so that m = n. In this case, C is a
square matrix, « can be obtained readily and, finally,
the approximation is completed:

a=Clu", (12)

NT: [Nll7 7Ni] :pT0717

N]l = Zpi(x)cizl. (14)
i=1

Obtained shape functions, N}, satisfy the standard
condition:

j (t=7), (15a)

(i # j)- (15b)

In this part, interpolation schemes for meshless meth-
ods are introduced concisely. This context is one of
the important bases in meshless methods. Complete
discussions are mentioned in [1].

Standard Least-Squares (LSQ) Approximation

If n > m,C is no longer a square matrix and the
approximation cannot fit all the u;‘ values.  This
problem can simply be overcome by minimizing the
sum of the squared distances of the error at each point
with respect to a; parameters. The following equation

expresses this summation:

J=
J

(uf —a(w))* =) (uf —pf )’ (16)

1 j=1

n n

Standard minimization leads to:

a=C lu" with C™'=A"'B, (17)
where:
A=) o(z;)p(e;)p’ (z;), (18a)
j=1

B = [p(z1)p(21), p(x2)p(22), - -+, p(wn)P(@n)].
(18b)

The final approximation is still given by Equation 13.
The shape functions are, therefore:

Nj(z) =Y p(x)Cp} =p"(x)C7, (19)
L=1
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where superindex ¢ emphasizes that shape functions,
N]’f, can now be defined differently for each cloud, ;.
It must be noted that, according to the least-squares
character of the approximation,

u(z;) = a(z;) # u, (20)

i.e., the local values of approximating function do not
fit the nodal unknown values.

Indeed, the approximate function, «, is the
function that must satisfy the discretized form of
the governing differential equation and its boundary
conditions and u;‘ are simply the unknown parameters
sought [1,15].

The main drawback of the LSQ approach is that
the approximation rapidly deteriorates if the number of
used points largely exceeds the polynomial terms [1].

Weighted Least-Squares (WLS) Approximation

The LSQ approximation can be enhanced near a
desired point by weighting the squared distances using
the function ¢ with the following characteristics:

pi(zi) =1
pi(x) #0 x€Q;. (21)
vi(z) =0 x¢Q,;

This function usually takes unit value (or its maximum
value) near the point called the star point where
the derivatives of the unknown function are to be
evaluated. In WLS, the following summation should
be minimized:

— ). (22)

So, A and B are obtained in the following equations:

A= Z @i(z;)p(x;)p" (7;), (23a)
B=[pi(z1)p(z1), pi(z2)P(22), - -+, pi(@n)P(2n)].
(23b)

Moving Least-Squares (MLS) Approximation

In the MLS approximation, the weighting function
takes its maximum value over each point that the
unknown function should be evaluated. In the WLS
approach, the peak of the weighting function is placed
only on distributed nodes, but in the MLS approach,
the peak of the weighting function can be placed on
each desired point in the domain.
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For every point, the following summation should
be minimized:

T(we) =Y orla;)(u) —p) o). (24)
j=1
Now, A, B and a; parameters are functions of xy.

A= Z%(x]—)p(%)PT(x]‘)v (25a)

B=[pi(z1)p(21), pr(z2)p(22), -, pr(@n)p(2n)]-
(25b)

In LSQ and WLS methods, a parameters are constant
in each subdomain, ;, and the approximation order is,
directly, the order included in the set of basis functions.
On the other hand, in the MLS approach, a parameters
are functions of position and the resultant unknown
function may include higher order functions.

There is an important characteristic in the MLS
approach. The shape functions of this method are
global and can be used all over the domain. Of course,
this property is not so important in the FPM method
from a computational point of view, because only the
values of the unknown function on distributed nodes
are needed.

Least-Squares Approximations Properties

Like the finite element approximation, the least-
squares approximation is exact for any function consist-
ing of a linear combination of the basis functions [9,15].
This property is called shape functions consistency.

Another important property is that, if the weight-
ing function is continuous and the matrix A is regular,
then the approximate function and the estimates of its
derivatives are continuous [9].

In a good least-squares approximation, there is
a possibility to introduce new points independently of
the distance between existing points [1]. In the finite
element approximation, two nodes that are very close
together cause numerical error, therefore, this adds
severe limitations in the mesh generator and adaptivity
criteria.

The above properties are general characteristics of
each least-squares approximation. In addition, a good
least-squares approximation for FPM is insensitive
to the number of points chosen within each cloud.
This condition is necessary to preserve the freedom of
adding, moving or removing points for a given order of
interpolation.

Although all least-squares approximations have
the first three properties, the fourth one is the most
important for an applicable method in FPM. Of the
above mentioned schemes, the following are unsuitable
for application to the FPM method [1]:
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1. LSQ approximations,
2. WLS with linear basis functions,

3. MLS with linear basis functions.

Indeed, the remaining approximation methods can
work properly.

Shape Functions Derivatives

Let one assume a least-squares approximation for
function w in the following equation:

w2 i(z) = p’ AT'Bu" = NTu". (26)

In LSQ and WLS methods, A and B are constant over
each cloud of interpolation and, therefore, derivatives
can be computed readily, for example:

ONT  opt |
= —A"B. 27
ox ox (27)

However, in the MLS method, A and B are functions
of position and derivatives of shape functions are
influenced by the derivatives of these matrices [15].
Nayroles et al., in DEM, neglected this effect and
assumed it dispensable [9]. On the other hand,
Belytschko et al., in EFG, considers this effect and
computes the derivatives of A and B [10,11].

Weight Functions

The weight function affects the approximation func-
tion. As an illustration, consider the three cases
depicted in Figure 1 where function w(z) in one
dimension is approximated using five data points at
r = 0,1,2,3,4. The least-squares approximation
function is constructed using a linear polynomial basis,
pl = [1,2]. In the first, second and third examples,
approximation methods are LSQ over the entire do-
main (constant weight over the entire domain), MLS
with constant weight function and compact support
on two nodes and MLS with smooth weight function
and compact support, respectively. Differences be-
tween the results of these approximation methods are
obvious. Figure 1 reveals that efficient approximation
is obtained by smooth weight function with compact
support.

Some examples of weight functions are mentioned
in the following equations:

Gaussian:

(s/0)% _ o= (smax/<)?

€ —€

_ S D—— $ < Sma

w(3) = I—e— Gmax/o) max (28a)
0 8§ > Smax
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Figure 1. Effect of weight function on resulting
approximation function.
exponential:
=G/’ 5«
w(s) = _ (28b)
0 5>1
cubic spline:
2/3 — 435% + 435° 5<1/2
w(3) =44/3 —45+45* —4/35° 1/2<35<1,
0 3>1 (28¢)
fourth order spline:
1-65°+835° -35" 5<1
w(s) = = (284)
0 s>1

where s is the distance from the center of the weight
function, 3 = $/Smax and spmay is the radius of support.
Parameter ¢ in the Gaussian weight function deter-
mines the sharpness of the weight function. Parameter
a in the exponential weight function is usually assumed
as 0.4. Another parameter for weight functions is
Amax- After determining the radius of support, smax
is considered as this radius multiplied by dpax-

STABILIZED GOVERNING EQUATIONS

The reliable numerical analysis of non-self-adjoint dif-
ferential equations, such as governing equations for
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fluid flow problems, requires some additional oper-
ations, namely, stabilization [23]. In FDM, FVM
and FEM, in order to study fluid flow problems,
the governing equations should be stabilized and the
FPM method cannot be excluded from this drawback.
Generally, equations are stabilized in various ways
by adding balancing diffusion or artificial diffusion.
The instability of numerical results has two resources,
convective terms at high Reynolds numbers and an
inconvenient combination of pressure and velocity in-
terpolation.

In recent years, various methods were presented
in the field of stabilization, such as artificial dif-
fusion, Petrov-Galerkin, streamline upwind Petrov-
Galerkin, subgrid scale, Galerkin least-squares, Lax-
Wendroff schemes and characteristic approximation
methods [17].

Stabilization methods, which are based on inte-
gral equations, are not applicable for FPM. Among the
remaining methods, some of them cannot work well
and a method is needed that modifies errors caused by
the local satisfaction of differential equations. In this
paper, SSUPG and FIC methods are used to stabilize
governing equations.

Simplified SUPG (SSUPG) Formulation

Assume the governing equations of incompressible fluid
flow problems:

pu.Vu = —Vp+ uV?u + pF, (29a)
V.u=0. (29b)

In Streamline Upwind/Petrov Galerkin (SUPG) for-
mulation, weighted residual equations are the follow-
ing [24]:

/ﬁ/(pu.Vu + Vp — uV?u — pF)dQ = 0, (30a)

/WP(V.u)dQ + /aVWp(pu.Vu +Vp

— uV?u — pF)dQ = 0. (30b)

In the above, W, is the shape function of pressure and

a is the stabilization parameter. W is considered as:

W =W +aw.VW, (31)

where W is the shape function of velocity. Final
integral equations for SUPG are obtained after imple-
menting integration, by part, on Equations 30a and
30b.

In SSUPG, momentum equations remain un-
changed and for the continuity equation, a simplified
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form of Equation 30b is used. Therefore, the final
equations of SSUPG are:

pu.Vu = —Vp+ uVZu + pF, (32a)
V.au+aVip=0. (32Dh)

With this set of equations, instability potentials are
circumvented.

Finite Increment Calculus (FIC) Formulation

Indeed, it is widely accepted that the origins and
precise definition of the stabilization parameters used
in numerical computations are, in most cases, unsolved
mysteries [16]. In a quite recent work, Onate [17] has
shown that the stabilization terms emerge naturally
in the governing differential equations of the problem,
once the concept of balance over a finite domain is
accepted. This allows reinterpreting the stabilization
terms as an intrinsic and natural contribution to the
original differential equations, instead of an extrinsic
correction term introduced at the discretization level,
as usually understood by most FDM, FVM and FEM
practitioners.

In FIC formulation, the stabilized governing
equations for incompressible viscous flows are obtained
by applying the standard conservation laws expressing
balance of momentum and mass over a control
domain. Assuming that the control domain has finite
dimensions and representing the variation of mass
and momentum over the domain, using Taylor series
expansions of one order higher than those used in the
standard infinitesimal theory, the following expressions
are found [17,25]:

Momentum balance:

1 Orm,

Ep—— =0 1in Q. 33
! ¢ 2 J (9.’,17]' n ( )
Mass balance:
1 org
— —hg, =0 inQ 34
"d 2 i 8xj s ( )

where for a steady state case:

8(uiuj) E)p aTij
= - — by, 35
Tm; P (9.’,17]' + 83:1 (9.’,17]' ( )

8ui
= 36
Td 8Ii7 ( )
with 2,5 = 1,2 for a two-dimensional flow. In the

above, p is the fluid density (here assumed to be
constant), wu; is the velocity component in the ith
direction, p the pressure, b; the body forces and 7;;
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the viscous stress components related to the velocity
gradients through the fluid viscosity, u, by:

o E)ui 8uj 2811,;c )
Tig =M (83:]- + Ox; 30wy 6”) ’ (37)

Equations 33 and 34 are the stabilized forms of the
governing differential equations for an incompressible
fluid flow. In these equations, the second terms
introduce, naturally, the necessary stabilization at the
discretization level. The so-called characteristic length

vectors, h,, and hy, for two-dimensional problems, are
defined as:

_ hml _ hdl
hm_{hmg}7 hd_{hd2}7 (38)

where h,,, and h,,, are the dimensions of the finite con-
trol domain, where balance of momentum is enforced.
Similarly, hgq, and hg, represent the dimensions of the
domain where mass conservation is expressed. The
components of vectors h,, and hy introduce the neces-
sary stabilization along the streamline and transverse
directions to the flow in the discrete problem.

Equations 33 and 34 are complemented by the
boundary conditions. Balance of momentum at the
boundary is expressed by Equation 39. This equation
is derived using a similar method to the one used for
governing equations.

1
n;o;; —t; + thj’anmi =0 on Iy, (39)

where n; is the ith component of the unit normal vector
to the boundary and ¢; are the prescribed tractions at
the Neumann boundary, I'y, of the analysis domain, Q2.

Prescribed velocity at the boundaries is imposed
by the following equations:

ug=ul onTy,, (40a)

1
Up — ihdinird =u? onl,,, (40Db)

u; and vl denote the tangential velocity to the bound-
ary and its prescribed value, respectively.

Equation 40b expresses the balance of mass on
an arbitrary domain next to the boundary. wu, and
uP denote the velocity normal to the boundary and its
prescribed value, respectively. The value of u? is zero
on solid walls and stationary free surfaces. Considering
the finite domain leads to additional terms in Equations
39 and 40b. These terms introduce the necessary
stabilization at the boundaries.

Alternative Form of Stabilized Equations

Components of the characteristic vector, hg, can be
expressed as:

hdi = 2pTdiui7 (41)
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where 74, parameters are termed intrinsic times per
unit mass. After substituting the above equation in
the stabilized form of the continuity equation and
some operations and neglecting higher order terms, it
changes to another applicable form of the stabilized
continuity equation [18,19], represented in the following
equation:

rq — Td; ax‘j =0, (42)

where, in Equation 42, one has:

_ . 8%1 8p aTi]'
T = P T

— — b;. 43

iz 8xj ( )
This form of continuity equation can be used for incom-
pressible fluid flow calculations, as well as Equation 34.

FRACTIONAL STEP (FS) ALGORITHM

A fractional step algorithm is proposed by Zienkiewicz
et al. [26,27] for transient calculations of Navier-Stokes
equations. This time-marching algorithm can work
in three features: Explicit, semi-implicit and implicit.
The semi-implicit form is applicable for incompressible
fluid flow problems and reduces the 3n x 3n system of
equations to n X n.

FS Algorithm for Stabilized FIC Equations

Assume Navier-Stokes equations are stabilized by FIC.
One can write:

wtt =y — At pa(ui“j)n n opm*t1  9m
¢ oop 0x; Oz, 0x;
At s n

Equation 44 can be separated into the following equa-
tions:

« n At 8(u1uj) 87'1-]- ) "
“ P {p ox; O0x; b

n

-= [—% (hTV’I“mi)] : (45a)

At gpn Tt
urtt = ol — = gx_ . (45b)

Substitution of Equation 45b in the stabilized form of
the continuity equation yields:

s

Tq

2 ntl n+1
_Atap [_81",,”] _o, (46)

7 c%cif)xi R 8xi
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where, in the above equation, one has:

. o

rq = 9.’ (47)
81",,” ntt 8u1 a(ulu]) aTi]' "

[Ti A ] - [p < ot " O, >_5—%‘_bi]

2, n+1
T.n“L P
¢ 8xi8xi

- (48)
Therefore, the solution comprises the following three
steps:

1. Solve explicitly for the so-called fractional veloci-
ties, u}, using Equation 45a;

2. Compute the pressure field, p"t!, by solving the
equation for the Laplacian of pressure derived from
Equation 46;

3. Compute the velocities, v

777, using Equation 45b.

Obviously, other forms of transient solution schemes,
including the implicit computation of u?“, are also
possible.

Numerical Solution Using the FPM

The implementation of the three-step scheme described
in the previous section, in the context of FPM, is
straightforward. This scheme is introduced by Onate
et al. [18,19] for the first time.

Agsume approximations for velocity components
and pressure:

i =Y Nyul,, p=> Nyl (49)
j=1 Jj=1
In the first step, fractional velocities, @*, are computed:

A ;i Tij "
= n__t[ M_aT]_bi]

)

P ox; ox;
At [ 1 "
- — |—= (h''Vvs,)| .
; { 5 (007 L)] (50)

Then, parameters of fractional velocities, ufn]-, are

computed from the system of the following equation:

n

iy =D Ny, (51)

i=1

These parameters are necessary to compute the deriva-
tives of the velocity functions in the next steps.

In the second step, pressure distribution is ob-
tained on the domain with the following equations:

K(p")"* =7, (52a)
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At 92Nk

Koi — At _TL+1 J 2
i (3 () o

LT (ou o)) 07"

Fa, =Td =T G {p < o o, ) 925 11 (500)

where (.)* represents the value of point k in the nth
time step.
The last step is the computation of velocities in

the (n + 1)th time step explicitly.

it g Atapt

7 7

P (53)

In the above equations, derivatives of approximation
functions #; and p; are obtained from the following
equations:

Qi _ ~ ON]
ox Z Oz, o (542)
j=1
p "\ ON; ,
- —— I 4
Be, ; ) (54b)

For each time step, these three steps should be imple-
mented. The local time step for each node is 2|dTi,¢\7
where d; is the minimum distance from the star node
to its neighbors. The local time step can be used for
steady state results, but, the transient solution requires
the use of a global time step that is equal to the
minimum value of the local time steps.

Boundary Conditions

In a fractional step algorithm, the first step is im-
plemented without any boundary conditions. For the
second step, two kinds of boundary conditions should
be enforced. In the case of boundaries which have a
prescribed normal velocity, one has:

At gpn Tt 1
P =uin; — ———ni — sha,nira, 95
Uy, = U; N » or, n 5 d;iTd (55)

or, in other words;

o . Atoprt!
un:uini—7 (9.’,171

n; — %hdini [(At+T1)Ap"—T}] .
(56)

Equations 55 and 56 are stabilized boundary conditions
for the pressure equation.

On outflow boundaries with njo;; = 0, the
pressure is imposed to a constant value. In the FPM,
essential boundary conditions, such as p = 0, are
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imposed using the definition of the function itself as
the following equation:

pi = ZN;Z’? (57)
Jj=1

In the third step of the fractional step algorithm,
u™t! is computed via an explicit relation. This time,
essential boundary conditions of velocity are imposed.
For points on the Neumann boundaries, the following
equation is applicable:

1
N0 + §hm,-nj7°mi =0. (58)

NUMERICAL EXPERIMENTS

This part includes analyses of some partial differential
equations by FPM. Heat conduction problems, Stokes
equations and Navier-Stokes equations are analyzed in
different domains and the results are compared with
FDM or FEM results by solving benchmark problems.

Heat Conduction

The heat conduction equation is a well-posed partial
differential equation, so it is useful to study the general
properties of each method. In non-well-posed partial
differential equations, such as non-self-adjoint prob-
lems, other phenomena appear and affect the results,
so, the basis of a method for general problems cannot
be examined.

Assume the two-dimensional heat conduction
problem mentioned in the following equations:

o*T 9T

—_—t — = 07

dz?  Oy?

0<z<1,0<y<l, (59a)

0<zr<1,0<y<l, (59b)
T(x,1) = 100,
0<z<l (59c¢)

The analytical solution of the above problem is ob-
tained by the separation of variables method. This
solution is expressed in the following equation:

2= (-1 sinh(nry)
T(z,y) = p T; — sm(nm;)m@o)

As mentioned before, one of the good properties of
each approximation is the insensitivity to the number of
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MLS and LSQ sensitivity
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Figure 2. Type of approximation effect.

nodes. Figure 2 represents the average error variations
versus cloud factor for three types of approximations.
Average error is defined as the summation of the
absolute values of errors in nodes divided by the
number of distributed nodes in the domain and cloud
factor is a coefficient that the size of clouds dilates, if
this factor increases.

Figure 2 manifests that LSQ approximation can-
not achieve reliable results in large cloud factors. In
contrast, MLS can work well and will be better with
quadratic basis functions.

FPM satisfies equations locally and, from this
viewpoint, is similar to FDM, so their comparison can
be good for validating FPM accuracy. Again, consider
the problem mentioned in Equations 59. This problem
was solved by FPM and FDM on similar node distri-
butions. Figure 3 represents the average error of these
methods versus the number of nodes. In this figure, the
grid independency of FDM and FPM is observed. In
addition, it manifests that the convergence rate in FPM
is similar to FDM and, furthermore, the results of FPM
with quadratic based functions are more accurate than

0.12 FPII\/[ VeI'Sl:lS FDI\/{

—e— FDM
—+— FPM-linear
0.10 —e— FPM-quadratic|1

0.08¢

0.06 }

Average error

0.00

0 500 1000 1500 2000 2500 3000 3500 4000
Nodes

Figure 3. Comparison of FPM and FDM.
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FDM results. These results are interesting, because
the complicated mathematics of least-squares problems
prevents them from being interpreted mathematically.

Heat conduction problems with different bound-
ary conditions and variable sources can be handled
by FPM readily and accurate solutions are resulted if
relevant approximation is adapted.

Stokes Problem

Generally, the Stokes problem is one of the first
challenging problems to be solved in testing methods.
The solution has symmetric pressure contours and the
positions of the maximum and minimum values of
pressure are specified theoretically. In addition, these
values should tend to extreme values, if the number of
nodes is increased. The Stokes problem has been solved
before in [28], but in this paper, other methods are also
experimented.

This problem is expressed as the following equa-
tions:

0<z<1, 0<y<L, (61a)

0<z<I1, 0<y<, (61b)
wi(x,1) =1, 0<z<1l, (61c)
us(z,1) =0, 0<z<l (61d)

The above problem has been solved by the SSUPG and
FIC methods using the F'S algorithm. It is important
to denote that in the SSUPG method, the stabiliza-
tion parameter is computed according to the method
represented by Franca and Frey [29] for determining
the SUPG stabilization parameter. This method of
calculating the stabilization parameter works well for
the SSUPG method in FPM.

Both of these methods result in satisfactory so-
lutions. Figure 4 represents one of these results on
961 sets of regular distributed nodes. One of the
important results is the effect of the number of nodes
on the maximum (or minimum) pressure. This effect
is depicted in Figure 5.

Navier-Stokes Calculations

The final objective of this paper is the Navier-Stokes
calculations. Navier-Stokes equations are non-self-
adjoint coupled partial differential equations for which
many ordinary numerical methods are not applicable.

In this paper, Navier-Stokes equations are solved
by FPM using the following schemes:

S.K. Hannani and M.M. Sadeghi
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Figure 4. Stokes solution on cavity by FPM.
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Figure 5. Effect of number of nodes.

1. The SSUPG stabilization method using Franca and
Frey stabilization parameter calculation [29];

2. The FIC stabilization method and the FS time
marching algorithm.

Applying SSUPG for FPM was first proposed by
Hannani and Parsinejad [28]. The second scheme was
first represented by Onate et al. [18,19]. Onate, in [17],
introduced the FIC stabilization scheme and the FS
algorithm was introduced by Zienkiewicz et al. [26,27].
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FPM and FEM wn Parallel Plates

One of the classical problems for validating the accu-
racy of numerical methods is the incompressible fluid
flow between parallel plates. This problem has an
analytical solution far from the entry, as below:

_34q y\?
Sy [1— () ] (622)
dp 3, _3
ar 2h qan, (62D)

where, in the above equations, w is the velocity along
the plates direction, ¢ is the flow per unit width, h is
the half distance between plates, y is the distance from
the symmetry line and g is the viscosity of the fluid.

The numerical solution is implemented on the
domain represented in Figure 6. This problem was
solved for Reynolds number 100 with various node
distributions by the SSUPG stabilization method. The
minimum number of nodes in each cloud is nine, the
basis functions are quadratic and the approximation
method is MLS.

The mentioned problem has two analytical values
that are useful for the validation of the numerical
method. The first one is the variation of the horizontal
velocity on the symmetry line. This value should tend
to 1.5, asymptotically. The second value is the slope of
the pressure graph far from the flow entry. The value
for this domain and boundary conditions is obtained as
0.12.

Figure 7 represents horizontal velocity variations
along the symmetry line using 1346 irregular dis-
tributed nodes on the domain. From Figure 7, the
asymptotic tendency of the horizontal velocity on the
symmetry line is obvious, but, there are two uncer-
tainties in this result. The horizontal velocity on the
symimetry line oscillates and its asymptotic value is less
than 1.5.

The reason for this situation is that the distri-
bution of nodes is irregular and, therefore, there are
not any nodes exactly on the symmetry line. On the
other hand, maximum velocity occurs on the symmetry
line and when the value of the horizontal velocity on
the symmetry line is calculated by interpolation from

u=0 v=0

u=0 v=0

Figure 6. Parallel plates problem configuration.
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Figure 7. Velocity on symmetry line, 1346 irregular
nodes.

neighboring nodes, its value is obtained less than the
correct value. Likewise, when there are any nodes
near the symmetry line, the value of the interpolated
velocity is obtained higher and vice versa and this
condition causes oscillation. It has to be mentioned
that FEM suffers from the same drawback.

If nodes are distributed in the domain such that
one has some nodes exactly on the symmetry line,
oscillations will be suppressed. In the represented
result in Figure 8, node distribution includes 1210
nodes and there are some points on the symmetry line.
It is obvious that there are not any oscillations and the
asymptotic value is 1.5, accurately.

The second analytical value is the pressure gradi-
ent in the fully developed region. Table 1 includes some
values of pressure gradients that have been obtained
by FPM and FEM on different node distributions.
Regular node distribution means that there are some
nodes on the symmetry line. In order to compare these
results, node distributions for an equal number of nodes
are similar for FPM and FEM. From this table, FPM
results are more accurate than FEM results.

1.5

1.4

1.3

1.2

1.1

1.0 . . . 1 1
0 5 10

Figure 8. Velocity on symmetry line, 1210 regular nodes.
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Table 1. Validation of FPM results for parallel plates
problem.

Solution Method dp/dx Error%
Exact -0.12 0.00
FPM Using 958 -0.1128 6.00
Irregular Nodes
FPM Using 1346 _0.1180 167
Irregular Nodes
FPM Using 810 0.1237 3.09
Regular Nodes
FPM Using 1210 L0.1203 0.94
Regular Nodes
FEM Using 958 01091 9.04
Irregular Nodes
FEM Using 1346 0.1139 519
Irregular Nodes

The accuracy of the applied method was com-
pared with other existing results. In Figure 9, pres-
sure variations on the symmetry line are represented.
This figure includes Shah’s experimental results [30],
Schmidt’s numerical results [31] using FDM and the
result of FPM, which shows its reliability.

FPM and FEM in Backward Facing Step

Incompressible fluid flow over a backward-facing step
is another classical problem that, due to the existence
of reliable experimental and numerical results, can be a
good criterion for validation of a numerical technique.
Figure 10 represents the assumed configuration and
boundary conditions.

Both of the mentioned stabilization schemes,
SSUPG and FIC, using the F'S algorithm, can solve this
problem. In addition, with the FIC method, transient
solutions can be achieved.

1.6

-0+ Experiment [30]
3 ~@- Finite difference [31]
1.4} o —e— Finite point method

1.2¢

1.0}

& 0.8}

0.6f

0.4t

0.2}

0.0
0

Figure 9. Comparison of FPM and validated results
based on pressure variations on the symmetry line.
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Qg
11

u=0 wv=0

Figure 10. Backward-facing step configuration.

In the SSUPG method, the stabilization parame-
ter is calculated from Franca and Freys suggestion. In
computing stabilization parameters for FIC, the SUPG
assumption is applied and the value of h is considered
as half the distance between the star node and the
closest neighboring node. In each cloud, the minimum
number of nodes is nine and the basis functions are
quadratic. As in the previous problem, the MLS
approximation method is applied.

Calculations are done for Reynolds numbers 100
and 400. The Reynolds number is based on bulk
velocity at the inlet boundary and the cross section
width of the whole domain and fully developed flow is
assumed at the inlet. Figures 11 and 12 include these
results. Distributed nodes on the domain are 989 for
both results and this node distribution is depicted in
Figure 11.

In addition, the transient solution of incompress-
ible fluid flow over a backward-facing step is resulted
from the FIC stabilization and the FS time marching
algorithm. Figure 13 represents some of these results.
These results are similar to the FEM solution of this

p: 0.033 0.067 0.100 0.134 0.167 0.200 0.234 0.267 0.301 0.334 0.367 0.401 0.434 0.468 0.501

1.0
0.0 1 1 1 |

Figure 11. FPM results, 989 nodes, Re = 100, SSUPG

stabilization.
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problem on the same node distribution with triangular

P mﬂ?-}]i% -04!)83 -0.|070 -0.|058 -0|4046 -[]|,034 -0|.021 -0|.009 0‘003—0% elements7 USing the SUPG Stabilization SCheme [32]'
In Figure 14 the results of FEM using SUPG,
1o 1 [ FPM using the SSUPG stabilization scheme and FPM
> 05 f using the FIC stabilization method and the FS time
0.0 i marching algorithm are compared. This figure repre-

sents pressure variations on the bottom wall.

The FPM solution, using FIC and FS methods,
results in a satisfactory solution, compared with the
FEM solution, and their maximum difference in this
figure is about three percent. On the other hand, the
FPM solution using SSUPG obtains good results, but
not as good as FPM using FIC and FS methods. The
maximum difference between FPM using SSUPG and

(b) FEM is about seven percent. Generally, all of the above
methods have almost similar results, but, in the region
Figure 12. FPM results, 989 nodes, Re = 400, SSUPG near to the flow inlet, because of the presence of a
stabilization. vortex region and the existence of two singular points,
t=0.178s t=0.178 s
[ Y
p: 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.37 0.42 0.46 0.50 0.54 0.58 0.62
>
>
I 1 1 L L 1 | Y |
2 3
T
t=0.411s ” t=0.411s
» —
I o
p: 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.37 0.42 0.46 0.50 0.54 0.58 0.62
>
7
)
9 10 11 12 L L L 1 f L i L ]
2 3
T
t=1.05s 1.00 t=1.05s
BT T T T T T 711
p: 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.37 0.42 0.46 0.50 0.54 0.58 0.62
=
T | PRI T
78 9 10 11 12
t=2.80s
M T [ [ [T 7 77
p: 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.37 0.42 0.46 0.50 0.54 0.58 0.62
>
=
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T xT

Figure 13. FPM transient solution, 989 nodes, Re=100, FIC stabilization, FS algorithm.
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Figure 14. Comparison of FPM and FEM based on
pressure variation on bottom wall.

the mesh independent solution is not obtained and the
solutions differ from each other.

One of the important properties of the FIC
stabilization scheme is that the stabilized equations are
consistent, so, the real solution satisfies the stabilized
form of the governing equations. Nevertheless, the
SSUPG stabilization scheme has not this characteristic.
Instead, the SSUPG method converges better than
the FIC method and convergence in FIC occurs under
harder conditions.

Another criterion for studying FPM accuracy is
to compare it with the experimental results of Armaly
et al. [33] or the numerical results of Hannani et
al. [34]. Both of these reliable results pointed out
that in Reynolds number 400, the horizontal distance
between flow inlet to flow attachment on the bottom
wall is 4.2 times the cross section width of the whole
domain. Table 2 includes the position of this point,
based on various FPM and FEM solutions.

Table 2 emphasizes the accuracy of the FIC stabi-
lized FPM scheme in comparison with the SSUPG sta-
bilized FPM method and shows the agreement between
FPM using FIC and FEM. However, for Reynolds
number 400, all of the results have an indispensable
difference with the correct value, the result of FPM
using FIC is better.

The most important problem that produces this
difference is that there are not enough nodes in the
domain of solution, especially near the boundary. As
can be observed, the result of the FEM solution with
the SUPG stabilization scheme is similar to the FPM

Table 2. Comparison of FPM and FEM.

Solution Method Re = 100 | Re = 400

FPM and SSUPG 1.3 3.0
FPM and FIC and FS 14 3.8

FEM and SUPG 14 3.7

S.K. Hannani and M.M. Sadeghi

solution using FIC and this proves that the source
of the mentioned difference is the lack of enough
distributed nodes in the domain. In FEM, this dilemma
is solved by applying rectangular elements that are
stretched along the flow direction and this causes better
results. This method cannot be applied in the case of
complicated flows.

In FPM, another method can be used that works
for general problems. Because nodes are not limited by
any elements, one can consider their interaction similar
to reality.

One of the important properties of each numerical
method is the required time versus their accuracy.
The required time for FPM is in the order of other
unstructured methods and its accuracy is almost equal
to regular FEM. This is very interesting for any method
that does not use any grid and, therefore, it has
great potential in many applications, such as adaptive
numerical techniques or moving-boundary problems.

CONCLUSIONS

In this paper, the finite point method was studied and
its stabilization was reviewed. This method is a truly
meshless method that requires only the spatial position
of distributed nodes in the domain.

The approximation method is the basis of each
meshless method. On this subject, the results confirm
the conclusions mentioned in [1,15].

FPM and FDM results were compared for a heat
conduction problem and it was shown that FPM can
produce reliable results. Furthermore, with an efficient
approximation scheme, FPM accuracy is better than
FDM accuracy.

The main goal of this paper was to solve the
incompressible Navier-Stokes equations. This issue
was implemented after solving a Stokes problem in a
cavity for incompressible fluid and, then, flows between
parallel plates and over backward-facing steps were
analyzed. The FPM method can solve non-self-adjoint
differential equations such as Navier-Stokes equations,
if an efficient stabilization scheme is applied. In this
field, the following results were obtained:

1. SSUPG and FIC methods can be used for stabiliza-
tion of governing equations;

2. Results of FPM are as good as FEM;
Neumann boundary conditions should be stabilized;

4. Essential boundary conditions can be enforced di-
rectly according to the approximation;

5. Fractional step algorithms are applicable for tran-
sient solutions.

The general advantages of the FPM method in com-
parison with other numerical methods are:
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Satisfactory accuracy is obtained;

The method is applicable in three-dimensional and
complicated domains;

The approximation method used in FPM has some
parameters that can be tuned, depending on the
type of problem, such as weighting function prop-
erties, criteria for selecting passive nodes, basis
functions etc;

The possibility of introducing new nodes indepen-
dent of the position of existing ones.

Meshless methods are a new field in numerical methods
and have unsolved problems, which need further stud-

ies.

The following fields are suggested as interesting

subjects to be investigated:

1.

Time-consuming: Meshless method is interesting
from many view points, but the time-consuming
issue should be studied rigorously by suitable 2D
and 3D benchmark problems;

Applying goal oriented approximation parameters:
These parameters can be tuned such that they in-
ject special characteristics, for example, using basis
functions that have any relation with governing
physics results in better solutions;

Using adaptive clouds: In the FPM, nodes are
not limited by any elements, so one can consider
their interaction similar to reality. For example, if
elliptical clouds are used instead of circular clouds,
such that the clouds contain upwind nodes of the
star nodes, the results improve. Furthermore, the
slenderness of the ellipse of cloud can be adapted
as a function of velocity at the star node. These
modifications improve the accuracy of FPM,;

Discretization based on integral equations: Local
satisfaction of equations increases errors and insta-
bility resources. Satisfaction of the integral form of
governing equations may result in more stable and
more accurate solutions.
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