Scientia Iranica, Vol. 12, No. 2, pp 141-150 S
(© Sharif University of Technology, April 2005 I

Adaptive Nonlinear Observer Design
Using Feedforward Neural Networks

M.R. Dehghan Nayeri' and A. Alasty*

This paper concerns the design of a neural state observer for nonlinear dynamic systems with
noisy measurement channels and in the presence of small model errors. The proposed observer
consists of three feedforward neural parts, two of which are MLP universal approximators, which
are being trained off-line and the last one being a Linearly Parameterized Neural Network (LPNN),
which is being updated on-line. The off-line trained parts are able to generate state estimations
instantly and almost accurately, if there are not catastrophic errors in the mathematical model
used. The contribution of the on-line adapting part is to compensate the remainder estimation
error due to uncertain parameters and/or unmodeled dynamics. A time delay term is also added
to compensate the arising differential effects in the observer. The proposed observer can learn
the noise cancellation property by using noise corrupted data sets in the MLP's off-line training.
Simulation results in two case studies show the high effectiveness of the proposed state observing

method.

INTRODUCTION

The state observation problem is one of the most
essential problems in modern control theory. In lin-
ear systems, the solution is well known and can be
expressed by the Kalman filter (for stochastic noise)
and Luenberger’s observer (for noises of a determin-
istic nature) [1]. Since early 1980, many published
papers have been devoted to the theory and practice
of nonlinear observers [2-4]. Based on linearization
techniques, the extended Luenberger observers were
proposed for nonlinear systems [5]. Nonlinear observer
analysis and synthesis, using the Lie-algebra approach
and Lyapunov based methods, can be found in [2,6].
The sliding mode observers for linear systems were
considered and studied in [7].

On the other hand, the growing need of industry
for tackling complex systems and the capability of
Neural Networks (NNs) for approximating functions
and dynamical systems [8,9], have motivated NN-based
identification and control approaches [10]. The main
reason for this is the fact that NN-based approaches

1. Department of Aerospace Engineering, Sharif University
of Technology, Tehran, I.R. Iran.

. Corresponding Author, Center of Excellence in Design,
Robotics and Automation (CEDRA), Department of Me-
chanical Engineering, Sharif Unwersity of Technology,
Tehran, P.O. Box 11365-9567, I.R. Iran.

*

allow the modeling and control of highly uncertain
dynamical systems with unknown nonlinearities, un-
modeled dynamics and disturbances.

In [11], Zhu et al. focused on the application
of Dynamic Recurrent Neural Networks (DRNN), as
observers for nonlinear systems. They considered a
class of Single-Input-Single-Output (SISO) nonlinear
time-varying systems, where they proved the bound-
edness of the observer error and the DRNN weights
during adaptation using the Lyapunov stability theory
and the well-known universal approximation theorem
for neural networks [9,11]. With an alternative ap-
proach, Wang and Wu [12] exploited the multilayer
recurrent neural networks as matrix equation solvers
and utilized this scheme to synthesize linear state
observers in real time by solving Sylvester’s equation
for pole placement. There are, also, examples of static
feedforward neural network applications in observer
and controller designs. For example, Ahmed and
Riyaz [13] considered an off-line training scheme for
a Multilayer Perceptron (MLP) based observer design
for nonlinear systems. They noted that although the
NN observer requires more computation in the training
phase, it is more computation-efficient compared to the
Extended Kalman Filter (EKF) in the implementation
phase.

An interesting approach was presented in [14] by
Vargas and Hemerly, where they employed Linearly
Parameterized Neural Networks (LPNN) for the design

142

of an adaptive observer for general nonlinear systems.
LPNN include a wide class of networks, including
Radial-Basis-Function (RBF) networks, adaptive fuzzy
systems and wavelet networks. They used the Lya-
punov stability theory to prove the stability of the
observer and the NN weights. In [15], the Luenberger
observer was suggested for extension in two ways; first,
the unknown nonlinear dynamics were estimated by a
dynamic NN; second, the time delay term was added
to compensate the arising differential effects in the
Luenberger observer.

Besides all the theoretical approaches to the
subject matter, there are also a number of application-
oriented studies on the use of neural networks. Most
commonly investigated applications are observer and
controller designs for robot manipulators [16], induc-
tion motors [17], synchronous generators [18] and the
air-fuel ratio in gasoline engines [19]. Most of the
referred studies followed a conservative approach to
the NN based observer design, wherein they mostly
extended a classical approach, such as EKF or Lu-
enberger, by using the NNs. In this study, a design
approach, which uses only NNs, is suggested for ob-
serving the states of nonlinear dynamic systems with
noisy measurement channels.

The structure of the proposed observer consists
of three parts, which are being trained separately.
The first two parts are off-line trained MLP networks
and the last part is a Linearly Parameterized Neural
Network (LPNN) that is being trained on-line.

Two different off-line schemes are proposed for
training of the first two MLP networks. The first
one is trained, based on an error Backpropagation
(BP) algorithm and, then, the other is trained, based
on a Backpropagation Through Time (BTT) algo-
rithm [20,21]. Finally, a recursive steepest descent
on-line algorithm is used to train the third part (the
LPNN). It is pointed out that the off-line trained
parts (without an on-line training part) would be
able to generate state estimates instantly and almost
accurately, if there were not catastrophic errors in the
mathematical model used. The contribution of the
on-line part is to compensate the remainder of the
estimation error, due to uncertain parameters and/or
unmodeled dynamics, from instantaneous output error
feedback (measured output minus estimated output).

DEVELOPMENT OF THE NEURAL
OBSERVER DESIGN

Consider the class of nonlinear dynamic systems given
by:

X(t) = f(X(t)v ll(t), t)v (1)

y(t) = Cx(t) + &, (D), (2)

M.R. Dehghan Nayeri and A. Alasty

where x(t) € R™ is the state vector of the system (the
initial state, x¢, is unknown); u(t) € R? is a given
control action; y(t) € R™ is the output vector (u(t) and
y(t) are assumed to be measurable at each time t); C €
R™X" ig a known output matrix; f : RPFatl - R1 s a
nonlinear function describing the system dynamics and
€, (t) € R™ is an unknown random vector representing
additive measurement noises.

One can utilize the following scheme for an ob-
server mathematical model:

x(t) = F(x(t),u(t),t) + H([y(t) = y (1)), (3)

where x(t) is the observed state vector at time ¢, g(t) =
Ci(t),F can be regarded as an approximation of the
described state space mapping and H is an unknown
nonlinear function that can be approximated. The
second term on the right-hand side of Equation 3
intends to correct the estimated trajectory, based on
the current residual values [y(t) — y(¢)].

The application of such observers to a class of me-
chanical systems when only the position measurements
are available, turns out to be not so good. To describe
this, consider an original dynamic mechanical system
that is given as a second-order ODE:

Z(t) = G (Z(0), 2(), u(t), 1), (4)

y(t) = Z(t), (5)

%o(t) = G (x(t), u(t), 1), (6)

y(t) = x1(t). (7)

So, the corresponding nonlinear observer (Equation 3)
has the form:

<>i<1(t)>_ LX) +<H1([Y(t)—f<1(t)])>

x2(t)) \ G(x(t),u(t),t) Hy ([y(t)—%1(t)]) (8)
In such systems, if only the position estimation er-
ror [y(t) — %1 (t)] is fedback, any current information,
containing the output (y = x1(¢)), has no influence
on the velocity estimates, #o(t), that leads to their
bad estimates. To improve the rate estimation error
[x2(t) — %2(t)], it has been suggested in [15] to add a

time delay term to the observer model (Equation 3) as
follows:

+H ([y(t) —y@)], [yt =h) =y =n)]), (9)

Adaptive Nonlinear Observer Design

where h is a positive constant corresponding to a
selected time delay. If h is small enough, the following
interpretation can be utilized:

y(t) = h™H (3(t) = y(t = h)). (10)

In this section, it is assumed that the mathematical
model described by Equation 1 is known to be accurate
enough and almost certain. The arising problems,
due to uncertain parameters and unmodeled dynamics,
are addressed in the following section. Considering
the above mentioned assumption, the proposed neural
observer consists of two off-line trained networks with
the following discrete form:

K1 =NI (X, we, W)

+ NFT ([yr — ¥, [yre—1 — Yr—1], Wnrr)
(11)

where NI (Neural-Identifier) and NFT (Neural-
Feedback-Tuning) are separately trained MLP net-
works, which are used to approximate the nonlinear
mapping functions, F' and H (in Equation 9), respec-
tively and Wyt and Wypr are their corresponding
weight and bias parameters. The architecture for the
proposed observer is shown in Figure 1.

The training procedures of the NI and NFT,
which are done off-line, are quite different. First, the
NI is trained by the well-known backpropagation (BP)
algorithm and, then, using the trained NI, the NFT is
trained, based on the Backpropagation Through Time
(BTT) algorithm. Detailed descriptions of training
procedures are addressed in the next section.

OFF-LINE TRAINING FOR THE NEURAL
OBSERVER

Both the NI and NFT are two-layer tansig/pureline
MLP networks, as shown in Figure 2. Such MLP
networks are universal approximators, because they

k= Uk NFT
[:‘/ Y] XI.-,+1

NFT network

[yk-1—Fr-1]

NI network

Figure 1. Neural observer architecture.

143

can learn any nonlinear complex mapping using gener-
ated input/target sets, given sufficient neurons in the
hidden layer [9]. Training procedures of the mentioned
networks are, as follows, in the next subsections.

BP Training for the NI

The function of the NI is to identify the plant model
(Equation 1) and to be used as a part of the observation
process. It is also used to backpropagate the equivalent
error to the NFT by calculating the plant Jacobians.

By using the state space model of the system, the
problem of NI training can be regarded as an approx-
imation process of state space nonlinear mapping, so
that the NI can approximate the discrete-time model
of the system as:

Xl}jil = NI (Xg/j, uk,WN[) 5 (12)

where x is the state vector generated by the differen-
tial equations of the system (Equation 1) and xklﬂl is
the NI output vector.

As previously mentioned (in Figure 1), x}\i, is
the contribution of the NI network in the observed
state vector (Xxy1). Here, the training of the NI is
to adjust its weight parameters so that it emulates the
differential Equation 1. The objective of training is to
reduce average error defined by:

Nth—l

/= %ZZ(X;ﬁil(i)—xﬁh(i))T(xﬁl(z‘)—xﬁl(i)) ,
41 k=0 (13)

where Ny is the number of training sets, ¢ represents
the data set, which is the ¢th training sample and NV},
is the number of time horizons. Input-state training
patterns are obtained from the operation history of the
plant under various conditions.

One of the most important problems in observer
operation is the measurement noise. Even if a typical
observer can work in the presence of measurement
noise, these noises are transferred to the estimated
states and, sometimes, the performance of the observer
deteriorates significantly. One of the solutions to this
problem, which is proposed in this paper, is to use
neural network learning capabilities, in the same way
that one can learn the neural observer, so that it cancels
incoming noises from the outgoing states. For this
reason, in the off-line training phase, the incoming
states to the NI, i.e. xfy, are corrupted with a Gaussian
white noise, while the noise-free states are used for
error backpropagating. Using the proposed method,
the neural network learns to cancel the noises, which
are coming from the measurement channels. The same
procedure would be employed in NFT training, as will
be discussed. The block diagram for NI training is
given in Figure 3.

144 M.R. Dehghan Nayeri and A. Alasty
Uy — 1
w, tansig Pureline
X — LoD : Lo Xih
&} [Ay
y
SN
il 2
<
(a) NI
[yr— 9] . :
: _ B
D z B o
e e B N e R Tl e e A
-~
L > ak
b I b2
(b) NFT
Figure 2. MLP network structure for (a) NI and (b) NFT.
uy, Xt real time:
System
Xp+1 = NI(Xg, ug, Wa). (16)

White noise

+

Xk
_’CE

ﬁ Error

Figure 3. Block diagram for training the NI network.

NI network

Using the backpropagation algorithm, the weight
parameters of the NI are updated in the following
manner:

oJ

k _ k—1

(14)
where o and v are learning rate and momentum coef-
ficient, respectively and v should satisfy the following
condition:

0<~<1. (15)

Through the learning process, a and 7 should be
identified adaptively and normalization of training sets
should be done. For more details of the BP method,
readers are referred to [22].

The training would be terminated when the aver-
age error between the plant states and NI outputs (J
in Equation 13) converges to a small value.

The problem arising here is that, in a real time
process, xﬂ/f does not exist to be fedback to the NI net-
work, therefore, after the training is done, the following
relation is used as an approximation to Equation 12 in

BTT Training for the NFT

As the observer structure (Figure 1 and Equation 11)
indicates, the contribution of the NFT (Neural-
Feedback-Tuning) is to close the estimation loop, be-
cause the NI network is an open loop estimator and
is not stable by itself. Here, the NFT makes the
neural observer be a stable closed-loop estimator. As
previously mentioned (Figure 2), the NFT network is
a two-layer MLP, which has a universal approximation
property. For NFT off-line training, a method, based
on the Backpropagation-Through-Time (BTT) algo-
rithm, is developed. The objective of this method is to
minimize the following receding horizon cost function:

N+1

J=5 30 M -x] Q [k - %, (17)

k=1

where N is an appropriate time horizon and @ is a
positive definite weighting matrix. The BTT algorithm
can be regarded as a trial and error learning procedure,
which consists of two main parts. First, from randomly
selected initial states and an arbitrary given control
effort (which can be randomly selected or generated
by a designed control system), the plant model and
observer are derived for N steps. Second, the weight
and bias parameters in the NFT are updated, using the
equivalent error generated. To perform these steps, the
state sensitivity of the cost function is defined by:

o3
oh A —
T af{k ’

k=1,2,--- ,N+1. (18)

Adaptive Nonlinear Observer Design

Using the chain rule, the above gradient can be devel-
oped as:

P TR 0%ki1) cri1
6y =Q (xp" —%i) +) &
k

%o\
+(=22) 657 k=12, ,N-1, (19)
axk
% r
o = —) + (FEL) 82
8xN
67 = Q (xyr —&nvpa) - (21)

Using the weight parameters of the NI and NFT, the
existing Jacobians can be expressed as:

a)A(;H,l _ |:8NI ()A(k, ug, WN[):|

8§ck af{k

_ ONFT (éyk ’ ‘%ykfl ? WNFT) C, (22)
dey,
8?(1#1 _ aNFT (éyk Ll éykfl ? WNFT) C (23)
OXj—1 L 0y) |
éyk =y — Cxp. (24)

The formula for derivation of MLP Jacobians
ONL ONFT apq ONFL g described in the Appendix,

oxy ? Oe Oe 1
Equatlons Al and A2

Now, the off-line BTT training procedure of the
NFT can be summarized as follows:

i) Generate small random weights and biases for the
NFT network;

ii) Set the plant initial states with random numbers
in the operation region of the plant and observer
initial states with arbitrary numbers (for example,
Z€ro);

iii) Forward pass: Run the plant model, neural ob-
server and controller for N steps forward from
k = 1to N+ 1. If there is not a designed
control algorithm, set the control inputs as a
sinusoidal function with random amplitude and
frequency in the operation region of the plant.
The forward pass generates sequences of plant
states, x{7,x3!,--- x3/,; and observed states,
T1,Ta, 7fN+1;

iv) Backward pass: Using the operation results in Step
(iii), run the state sensitivity equations backward
from k = N + 1 to 1, to evaluate the equivalent
error, 6§,k:N+1,N,~~~ , 1

145

v) Update the weights and biases of the NFT network
using:

AWnrr(j + 1) = v,AWxrr(j)

ORXp+1)T k1
+ 6y, (25
77] ; (aWNFT) X ()
where:
a)A(k+1 _ ONFT (éyk) éykq) WnrT (]))
OWnrr(J) OWnrr())

(5) ()

oxy, OWnxrr(j)

() ()
OXp—1 OWnrr(y)/) (26)

v; and 7; are momentum coefficient and variable
learning rate, respectively, and should be selected
adaptively [22] The terms 83;::1 and LJri can
be calculated using Equations 22 and 23;

vi) Go to Step iii until convergence.

The training would be terminated when, by updating
the NFT weights, no appreciable change in the receding
horizon cost function (Equation 17) is observed.

In Equation 26, the formulas for derivation of

ONFT(&, &, , Wxrr(j Lo .
(eygvf,i:‘;;(].) NFT(])), which is the gradient of the

MLP output with respect to its weights and biases
vector, are explained in the Appendix, Equations A3
through A7.

To achieve the generalization property, the train-
ing algorithm should be repeated for other sets of initial
conditions and set-points iteratively. An important
matter is the off-line training of NFT. In the forward
pass phase, the output signals are corrupted with a
Gaussian white noise; but, in performance measure and
state sensitivity equations, noise free output signals are
backpropagated. Using this procedure, the NF'T learns
the noise cancellation property (the same as the NI, as
described in the last section).

ADDITIVE ON-LINE ADAPTING PART

In the previous section, a comprehensive neural ob-
server was designed, based on the assumption that the
mathematical model of the system is known and there
are not catastrophic errors in the model. But, there are
many nonlinear systems, in which the mathematical
models are not completely known and/or some of
their parameters are not certain. Although the neural
observers, generally, have robustness properties, in the
presence of large model errors, the observer results may

146

be unsatisfactory. One of the possible solutions to
this problem is to add an adaptive online term, whose
contribution is to compensate the remainder estimation
error, due to unmodeled dynamics and/or parameter
variations, from instantaneous output error feedback
(measured output minus observed output).

In this paper, Linearly Parameterized Neural
Networks (LPNNs) are used as the adaptive part.
These networks are mathematically very simple and
computationally efficient for on-line training. The neu-
ral observer structure (Equation 11) can be modified
by adding the on-line updating LPNN; as:

Xi+1 =NI (X, up, W)
+NFT ([yr — ¥&], [yr—1 — Y&-1], Wnrr)

+ [Wps(ye —¥kr) +bs]. (27)

During real time implementation, the off-line trained
parts (i.e., NI and NFT) are only simulated and are
not updated, but, Wp and bp are updated, at each
time step, using the following recursive steepest descent
algorithm:
AWF = y AW 4 (v = 1) 0" (28)
b = b) awke
oW/
where « and 7 are learning rate and momentum
coefficient, respectively, and W, is a vector made by
arranging the elements of Wy and bp.

The instantaneous performance measure (J*) is
defined by:

1

Jk = 3 (Ve —96)" (Ve — $&) - (29)

Finally, % can be developed as:
b

oJ* T ., 0Ky
— = (yp — C 30
owr eyl O (30)
where aa‘;’;kk is calculated through the following recur-
b

sive relation:
O0Xp
=k —([D1][Ds] - - [D][I
W ([{ e R 1]

<8NI(§<;€1,111c17WNI)
+ ~
OXp—1

aeyk—l

OXp—1
+WB>C> an)) (31)

—.. <8NFT (€yiis@yisr W)

M.R. Dehghan Nayeri and A. Alasty

n and m have been defined in the previous section and:

O1><m
[D;] = |el — jth row) (32)
01><m nxm
1 0 0
01 --- 0
m=1. . .| . (33)
0 0 1
nxn

The training would be terminated when the instan-
taneous performance measure (Equation 29) becomes
less than a desired value or processor computation
time becomes more than a time step. The archi-
tecture of the overall neural observer is shown in
Figure 4.

It is also noted that the stability of the on-line
training part is not a challenging matter here, because
the NI + NFT can stably observe the states, even
though the on-line part is removed in the estimation
process. The main role of the on-line part is not to
stabilize the process, but to reduce the remainder error
due to unmodeled dynamics. Most of the referred
papers have used the on-line part as the process
stabilizer [14-16], in which the guaranty of stability
is crucial. Therefore, if the on-line updating (LPNN)
tends to diverge in a time step, the algorithm will
remove it in that step and, then, in the next step,
on-line updating begins with zero (or random) initial
weights and biases.

[y — 9] X NFT
k41
NFT network
uy, [Yr-1=9n-1] aH
X1/ D\ X k+1
X} NI network b
X networ +\/

[Recursive steepest descent]

\

onnr&mm\f —

[yr— 9]

3%

Figure 4. Architecture of the overall neural observer.

Adaptive Nonlinear Observer Design

SIMULATION RESULTS

In this section, simulation results of two examples,
illustrating the applicability of the proposed neural
observer, are presented.

Case Study 1

Consider the Van der Pol oscillator [15] with the output
subjected to the measurement noises:

:"Ul = T2,
iy = p(l —2)zy — 21,
y=o +§y7

ICs:z1(0) =2, a2(0)=1.

First, it is assumed that the model is perfect and u
is known and equal to 1.50. Initial conditions for the
observer and time step are chosen as [15]:

h = 0.3[sec].

Measurement noise, (&), is assumed to be white
noise, with a variance equal to 0.1. The number of
hidden neurons in the NI and NFT networks is selected
to be 20 and 16, respectively.

First, NI and then NFT were trained off-line
using BP and BTT, respectively. For off-line training,
a hundred ICs were picked up randomly from the
operating range of the plant. The training iteration was
stopped when no appreciable change in the criterion
function was observed. In this case, the observer results
for an IC, which has not been used in the trainings, are
reported in Figure 5. It is noted that, in this case, the
on-line part is not presented. The results show that
the proposed scheme yielded satisfactory smooth state
estimates.

Second, it is assumed that the p’s value are
not known and, also, an unmodeled dynamics L(t) is
added, such that:

.’,571 = T2
iy = p(l —2)zy — 21 + L(1).

For off-line training, the value of u is chosen equal to
1.5, but, its real value (for the plant) is taken as 2.5.
Initial conditions, measurement noise and time step are
the same as the first part. L(t) is selected to be a
Gaussian white noise with the variance equal to 0.4. In
this case, the behavior of the overall neural observer, in
the presence of the on-line adapting part, is shown in

147

1

T2

Time (sec)

Figure 5. Real and estimated states of the Van der Pol
oscillator with noise.

A

1

— Real f
--- Estimated| |

T2
o

Time (sec)

Figure 6. Real and estimated states of the Van der Pol
oscillator with modeling error and noise.

Figure 6. By studying the results, it is obvious that the
observation is quite satisfactory, even in the presence
of a 40% parameter error (u’s error) and almost large,
unmodeled dynamics. In comparison to [15], where the
observed states are noisy, due to measurement noise,
the results of the proposed simulation show that the
measurement noise is not transferred to the observed
states.

148

Case Study 2

Consider a single-link robot manipulator, rotating in a
vertical plane [14], described as:

[z;] - {—sm(xﬁ +u(t)] + Af,

y:$1+§y7

where the unmodeled dynamics are given as follows:

Af — 001 |1 cos(z1)
) xosin(wg) |’

and w(t) is selected to be zero. In addition to
what has been considered in [14], this paper considers
unmodeled dynamics, Af, and measurement noise, &,
which introduces a more general case. After off-line
training, the overall observer was tested with plant

initial conditions as follows:
z1(0) =2, x3(0)=1.

While the observer initial conditions, time step and
measurement noise are chosen as:

1(0) = £,(0) =0,
h = 0.4[sec],
&, — white noise, with the variance equal to 0.15,

the number of hidden neurons in the NI and NFT
networks is selected as 23 and 18, respectively. The

~ |=—Real
\ |=="Estimated

1
o

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 7. Real and estimated states of the robot
manipulator with modeling error and noise.

M.R. Dehghan Nayeri and A. Alasty

behavior of the overall neural observer is shown in
Figure 7. The results are completely satisfactory, even
in the presence of measurement noise and unmod-
eled dynamics. The results verify, again, that the
observed states are not noisy, due to measurement
noise.

CONCLUSION

In this paper, a new neural observer is designed
and it is shown that it can provide a good enough
estimation process for nonlinear dynamic systems in
the presence of internal uncertainties and external
perturbations. The proposed scheme consists of three
neural parts, two of which are off-line trained MLP
networks and the other being an on-line updating
LPNN. If the mathematical model is perfect, the off-
line parts are sufficient for the observation process,
but, in the presence of model error, the on-line part
adapts and compensates the estimation error, due to
model error. By adding a time delay term, the arising
differential effects are compensated. MLP’s off-line
training, using noise corrupted data sets, helps the
observer to cancel most of the measurement noises
from the observed states. The numerical experiments
demonstrate the high effectiveness of the proposed
technique.

REFERENCES

1. Luenberger, D.G. “Observing the state of linear sys-
tems”, IEEE Transactions on Military Electron, 8, pp
74-90 (1964).

2. Gauthier, J.P., Hammouri H. and Othman S. “A
simple observer for nonlinear systems: Applications to

bioreactors”, IEFE Transactions on Automatic Con-
trol, 37, pp 875-880 (1992).

3. Marino, R. and Tomei, P. “Adaptive observer with
arbitrary exponential rate of convergence for nonlinear
systems”, IEEE Transactions on Automatic Control,
40, pp 1300-1304 (1995).

4. Ciccarella, G., Dalla Mora, M. and Germani, A. “A
Luenberger-like observer for nonlinear systems”, In-
ternational Journal of Control, 45, pp 537-556 (1993).

5. Walcott, B.L., Corless, M.J. and Zak, S.H. “Compara-
tive study of nonlinear state observation technique”,
International Journal of Control, 45, pp 2109-2132
(1987).

6. Tsinias, J. “Further results on observer design prob-
lem”, Systems and Control Letters, 14, pp 411-418
(1990).

7. Sira-Ramirez, H. and Spurgeon, S.k. “On the robust
design of sliding observers for linear systems”, Systems
and Control Letters, 23, pp 9-14 (1994).

8. Funahashi, K. and Nakamura, Y. “Approximation of

dynamic systems by continuous time recurrent neural
networks”, Neural Networks, 6, pp 801-806 (1993).

Adaptive Nonlinear Observer Design

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Hornik, K., Stinchcombe, M. and White, H. “MLP’s
are universal approximators”, Neural Networks, 2, pp

359-366 (1989).

Narendra, K.S. and Parthasarathy, K. “Identification
and control of dynamic systems using neural net-

works”, IEEE Transactions on Neural Networks, 1, pp
4-27 (1990).

Zhu, R., Chai, T. and Shao, C. “Robust nonlinear
adaptive observer design using dynamic recurrent neu-
ral networks”, Proc. Amer. Cont. Conf., pp 1096-1100,
New Mexico (June 1997).

Wang, J. and Wu, G. “Real time synthesis of linear
state observers using a multilayer recurrent neural
networks”, Proc. IEEE Int. Conf. Industrial Tech., pp
287-282 (1994).

Ahmed, M.S. and Riyaz, S.H. “Design of dynamic
neural observers”, IEEE Proc. Cont. Theory Appl.,
147(3), pp 257-266 (May 2000).

Vargas, J.R. and Hemerly, E.M. “Adaptive observers
for unknown general nonlinear systems”, I[EEE Trans-
actions on Systems, Man. and Cybernetics, 31(5), pp
683-690 (2001).

Poznyak, A. and Yu, W. “Robust asymptotic neuro-
observer with time delay term”, International Journal
of Robust and Nonlinear Control, 10, pp 535-559
(2000).

Sun, F., Sun, Z. and Woo, P. “Neural network-based
adaptive controller design of robotic manipulators with
an observer”, IEEE Transactions on Neural Networks,
12(1), pp 54-67 (2001).

Morino, P., Milano, M. and Vasca, F.
quadratic state feedback and robust neural network
estimator for field-oriented-controlled induction mo-

“Linear

tors”, IEEFE Transactions on Industrial Electronics,
46(1), pp 150-161 (1999).

Pilluta, S. and Keyhani, A. “Development and im-
plementation of neural network observers to estimate
the state vector of a synchronous generator from
online operating data”, IEEKE Transactions on Energy
Conversion, 14(4), pp 1081-1087 (1999).

Powell, J.D., Fekete, N.P. and Chang, C.F. “Observer-
based air-fuel ratio control”, IEEE Control Systems
Magazine, 18(5), pp 72-83 (1998).

Webros, P.J. “Backpropagation through time: What it
does and how to do it”, Proc. IEEE, 78, pp 1550-1560
(Oct. 1990).

Park, Y.M., Choi, M.S. and Lee, K.Y. “An optimal
tracking neuro-controller for nonlinear dynamic sys-
tems”, IEEE Transactions on Neural Networks, 7(5),
pp 1099-1110 (1996).

Hagan, M.T., Demuth, H.B. and Baal, M., Neural
Network Design, PWS Publications (1996).

149

APPENDIX
Derivation of MLP Jacobian

Suppose there exists a two-layer tansig/pureline MLP
network where its input and output are p, x1 and @, x1,
respectively. The MLP Jacobian is given by:

22 —[ding(Aa(j)] e W
[diag (1 — [tan sig(ny (5))]*)] ., 0 W'

s (m)]....

where W1, W2, b! and b? are the weights and biases for
the first and second layers, respectively, and Aa and
Ap are expressed as:

(A1)

(max (p(1)) — min (p(1))
max (p(2)) — min (p(2))
Ap: . ’
{ max(p(n)).—miﬂ (p(n)) nxl
(max (a(1)) — min (a(1))
max (a(2)) — min (a(2
max (a(m)) - min (a(m))), =,

Gradient of MLP Output with Respect to its
Weights and Biases

This gradient can be expressed as:

da 1 . Ony | | On,
=3 ldiag(Aa)] Hawl]]

Ony | |Ons
OW?2| | 0b2

where W is a vector made by arranging the elements
of Wy, W5, by and by and one has:

H . (43)
52 ><(n><51+s1+s2 ><sl-|—52)

§°=m,
1 0 0

Ony 0 1 0

[W} : ’
0 0 1 5

150

B BB =

8n2 }
|:8W2(Sz) S;]XSI‘| S2X(SZX51)
0151
On :
01X51 S2x Sl

[%] =W’ {diag (1_[tansig(nl(j))]2)}slel (A6)

M.R. Dehghan Nayeri and A. Alasty

[8n2

=W?|diag(1 — [tansig
aVvl:|52><(51><n) [(

8n1
SAVAI

[gvr:f] :Ha\?ﬁlm}m [avtzfr?(z)]mn

<n1<j>>12)]

S1xSt

s
an(Sl) Stxn Sl><(Sl><n)7

len
8n1 {
[8W1(j)} = |pl — ?th row : (A7)
017 Slxn

