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Adaptive Nonlinear Observer Design

Using Feedforward Neural Networks

M�R� Dehghan Nayeri� and A� Alasty�

This paper concerns the design of a neural state observer for nonlinear dynamic systems with
noisy measurement channels and in the presence of small model errors� The proposed observer
consists of three feedforward neural parts� two of which are MLP universal approximators� which
are being trained o��line and the last one being a Linearly Parameterized Neural Network �LPNN��
which is being updated on�line� The o��line trained parts are able to generate state estimations
instantly and almost accurately� if there are not catastrophic errors in the mathematical model
used� The contribution of the on�line adapting part is to compensate the remainder estimation
error due to uncertain parameters and�or unmodeled dynamics� A time delay term is also added
to compensate the arising di�erential e�ects in the observer� The proposed observer can learn
the noise cancellation property by using noise corrupted data sets in the MLP�s o��line training�
Simulation results in two case studies show the high e�ectiveness of the proposed state observing
method�

INTRODUCTION

The state observation problem is one of the most
essential problems in modern control theory� In lin�
ear systems� the solution is well known and can be
expressed by the Kalman �lter �for stochastic noise�
and Luenberger�s observer �for noises of a determin�
istic nature� �	
� Since early 	��� many published
papers have been devoted to the theory and practice
of nonlinear observers ����
� Based on linearization
techniques� the extended Luenberger observers were
proposed for nonlinear systems ��
� Nonlinear observer
analysis and synthesis� using the Lie�algebra approach
and Lyapunov based methods� can be found in ����
�
The sliding mode observers for linear systems were
considered and studied in ��
�

On the other hand� the growing need of industry
for tackling complex systems and the capability of
Neural Networks �NNs� for approximating functions
and dynamical systems ����
� have motivated NN�based
identi�cation and control approaches �	
� The main
reason for this is the fact that NN�based approaches

�� Department of Aerospace Engineering� Sharif University
of Technology� Tehran� I�R� Iran�

�� Corresponding Author� Center of Excellence in Design�
Robotics and Automation �CEDRA�� Department of Me�
chanical Engineering� Sharif University of Technology�
Tehran� P�O� Box ����	�
	��� I�R� Iran�

allow the modeling and control of highly uncertain
dynamical systems with unknown nonlinearities� un�
modeled dynamics and disturbances�

In �		
� Zhu et al� focused on the application
of Dynamic Recurrent Neural Networks �DRNN�� as
observers for nonlinear systems� They considered a
class of Single�Input�Single�Output �SISO� nonlinear
time�varying systems� where they proved the bound�
edness of the observer error and the DRNN weights
during adaptation using the Lyapunov stability theory
and the well�known universal approximation theorem
for neural networks ���		
� With an alternative ap�
proach� Wang and Wu �	�
 exploited the multilayer
recurrent neural networks as matrix equation solvers
and utilized this scheme to synthesize linear state
observers in real time by solving Sylvester�s equation
for pole placement� There are� also� examples of static
feedforward neural network applications in observer
and controller designs� For example� Ahmed and
Riyaz �	�
 considered an o��line training scheme for
a Multilayer Perceptron �MLP� based observer design
for nonlinear systems� They noted that although the
NN observer requires more computation in the training
phase� it is more computation�e�cient compared to the
Extended Kalman Filter �EKF� in the implementation
phase�

An interesting approach was presented in �	�
 by
Vargas and Hemerly� where they employed Linearly
Parameterized Neural Networks �LPNN� for the design
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of an adaptive observer for general nonlinear systems�
LPNN include a wide class of networks� including
Radial�Basis�Function �RBF� networks� adaptive fuzzy
systems and wavelet networks� They used the Lya�
punov stability theory to prove the stability of the
observer and the NN weights� In �	�
� the Luenberger
observer was suggested for extension in two ways� �rst�
the unknown nonlinear dynamics were estimated by a
dynamic NN� second� the time delay term was added
to compensate the arising di�erential e�ects in the
Luenberger observer�

Besides all the theoretical approaches to the
subject matter� there are also a number of application�
oriented studies on the use of neural networks� Most
commonly investigated applications are observer and
controller designs for robot manipulators �	�
� induc�
tion motors �	�
� synchronous generators �	�
 and the
air�fuel ratio in gasoline engines �	�
� Most of the
referred studies followed a conservative approach to
the NN based observer design� wherein they mostly
extended a classical approach� such as EKF or Lu�
enberger� by using the NNs� In this study� a design
approach� which uses only NNs� is suggested for ob�
serving the states of nonlinear dynamic systems with
noisy measurement channels�

The structure of the proposed observer consists
of three parts� which are being trained separately�
The �rst two parts are o��line trained MLP networks
and the last part is a Linearly Parameterized Neural
Network �LPNN� that is being trained on�line�

Two di�erent o��line schemes are proposed for
training of the �rst two MLP networks� The �rst
one is trained� based on an error Backpropagation
�BP� algorithm and� then� the other is trained� based
on a Backpropagation Through Time �BTT� algo�
rithm ����	
� Finally� a recursive steepest descent
on�line algorithm is used to train the third part �the
LPNN�� It is pointed out that the o��line trained
parts �without an on�line training part� would be
able to generate state estimates instantly and almost
accurately� if there were not catastrophic errors in the
mathematical model used� The contribution of the
on�line part is to compensate the remainder of the
estimation error� due to uncertain parameters and�or
unmodeled dynamics� from instantaneous output error
feedback �measured output minus estimated output��

DEVELOPMENT OF THE NEURAL

OBSERVER DESIGN

Consider the class of nonlinear dynamic systems given
by�

�x�t� � f�x�t��u�t�� t�� �	�

y�t� � Cx�t� � �y�t�� ���

where x�t� � �n is the state vector of the system �the
initial state� x�� is unknown�� u�t� � �q is a given
control action� y�t� � �m is the output vector �u�t� and
y�t� are assumed to be measurable at each time t�� C �

�m�n is a known output matrix� f � �n�q�� � �n is a
nonlinear function describing the system dynamics and
�y�t� � �

m is an unknown random vector representing
additive measurement noises�

One can utilize the following scheme for an ob�
server mathematical model�

��x�t� � F ��x�t��u�t�� t� �H��y�t� � �y�t�
�� ���

where �x�t� is the observed state vector at time t� �y�t� �
C�x�t��F can be regarded as an approximation of the
described state space mapping and H is an unknown
nonlinear function that can be approximated� The
second term on the right�hand side of Equation �
intends to correct the estimated trajectory� based on
the current residual values �y�t� � �y�t�
�

The application of such observers to a class of me�
chanical systems when only the position measurements
are available� turns out to be not so good� To describe
this� consider an original dynamic mechanical system
that is given as a second�order ODE�

�Z�t� � G
�
Z�t�� �Z�t��u�t�� t

�
� ���

y�t� � Z�t�� ���

or� in an equivalent standard Cauchy form of�

�x��t� � x��t��

�x��t� �
�

G �x�t��u�t�� t� � ���

y�t� � x��t�� ���

So� the corresponding nonlinear observer �Equation ��
has the form�

�
��x��t�
��x��t�

�
�

�
�x��t�

�

G��x�t��u�t�� t�

�
�

�
H� ��y�t���x��t�
�
H� ��y�t���x��t�
�

�
�

���

In such systems� if only the position estimation er�
ror �y�t�� �x��t�
 is fedback� any current information�
containing the output �y � x��t��� has no in�uence
on the velocity estimates� �x��t�� that leads to their
bad estimates� To improve the rate estimation error
�x��t�� �x��t�
� it has been suggested in �	�
 to add a
time delay term to the observer model �Equation �� as
follows�

��x�t� �F ��x�t��u�t�� t�

�H ��y�t� � �y�t�
� �y�t� h�� �y�t� h�
� � ���
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where h is a positive constant corresponding to a
selected time delay� If h is small enough� the following
interpretation can be utilized�

�y�t� � h�� ��y�t�� �y�t� h�� � �	�

In this section� it is assumed that the mathematical
model described by Equation 	 is known to be accurate
enough and almost certain� The arising problems�
due to uncertain parameters and unmodeled dynamics�
are addressed in the following section� Considering
the above mentioned assumption� the proposed neural
observer consists of two o��line trained networks with
the following discrete form�

�xk�� �NI ��xk�uk�WNI�

� NFT ��yk � �yk
� �yk�� � �yk��
�WNFT� �
�		�

where NI �Neural�Identi�er� and NFT �Neural�
Feedback�Tuning� are separately trained MLP net�
works� which are used to approximate the nonlinear
mapping functions� F and H �in Equation ��� respec�
tively and WNI and WNFT are their corresponding
weight and bias parameters� The architecture for the
proposed observer is shown in Figure 	�

The training procedures of the NI and NFT�
which are done o��line� are quite di�erent� First� the
NI is trained by the well�known backpropagation �BP�
algorithm and� then� using the trained NI� the NFT is
trained� based on the Backpropagation Through Time
�BTT� algorithm� Detailed descriptions of training
procedures are addressed in the next section�

OFF�LINE TRAINING FOR THE NEURAL

OBSERVER

Both the NI and NFT are two�layer tansig�pureline
MLP networks� as shown in Figure �� Such MLP
networks are universal approximators� because they

Figure �� Neural observer architecture�

can learn any nonlinear complex mapping using gener�
ated input�target sets� given su�cient neurons in the
hidden layer ��
� Training procedures of the mentioned
networks are� as follows� in the next subsections�

BP Training for the NI

The function of the NI is to identify the plant model
�Equation 	� and to be used as a part of the observation
process� It is also used to backpropagate the equivalent
error to the NFT by calculating the plant Jacobians�

By using the state space model of the system� the
problem of NI training can be regarded as an approx�
imation process of state space nonlinear mapping� so
that the NI can approximate the discrete�time model
of the system as�

xNIk�� � NI
�
xMk �uk�WNI

�
� �	��

where xMk is the state vector generated by the di�eren�
tial equations of the system �Equation 	� and xNIk�� is
the NI output vector�

As previously mentioned �in Figure 	�� xNIk�� is
the contribution of the NI network in the observed
state vector ��xk���� Here� the training of the NI is
to adjust its weight parameters so that it emulates the
di�erential Equation 	� The objective of training is to
reduce average error de�ned by�

J�
	

�Nd

NdX
i��

Nh��X
k��

�
xMk���i��x

NI
k���i�

�T�
xMk���i��x

NI
k���i�

�
�

�	��

where Nd is the number of training sets� i represents
the data set� which is the ith training sample and Nh

is the number of time horizons� Input�state training
patterns are obtained from the operation history of the
plant under various conditions�

One of the most important problems in observer
operation is the measurement noise� Even if a typical
observer can work in the presence of measurement
noise� these noises are transferred to the estimated
states and� sometimes� the performance of the observer
deteriorates signi�cantly� One of the solutions to this
problem� which is proposed in this paper� is to use
neural network learning capabilities� in the same way
that one can learn the neural observer� so that it cancels
incoming noises from the outgoing states� For this
reason� in the o��line training phase� the incoming
states to the NI� i�e� xMk � are corrupted with a Gaussian
white noise� while the noise�free states are used for
error backpropagating� Using the proposed method�
the neural network learns to cancel the noises� which
are coming from the measurement channels� The same
procedure would be employed in NFT training� as will
be discussed� The block diagram for NI training is
given in Figure ��
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Figure �� MLP network structure for �a� NI and �b� NFT�

Figure �� Block diagram for training the NI network�

Using the backpropagation algorithm� the weight
parameters of the NI are updated in the following
manner�

�Wk � ��Wk�� � ��� � 	�
�J

�Wk
� �	��

where � and � are learning rate and momentum coef�
�cient� respectively and � should satisfy the following
condition�

 � � � 	� �	��

Through the learning process� � and � should be
identi�ed adaptively and normalization of training sets
should be done� For more details of the BP method�
readers are referred to ���
�

The training would be terminated when the aver�
age error between the plant states and NI outputs �J
in Equation 	�� converges to a small value�

The problem arising here is that� in a real time
process� xMk does not exist to be fedback to the NI net�
work� therefore� after the training is done� the following
relation is used as an approximation to Equation 	� in

real time�

�xk�� � NI��xk �uk�WNI�� �	��

BTT Training for the NFT

As the observer structure �Figure 	 and Equation 		�
indicates� the contribution of the NFT �Neural�
Feedback�Tuning� is to close the estimation loop� be�
cause the NI network is an open loop estimator and
is not stable by itself� Here� the NFT makes the
neural observer be a stable closed�loop estimator� As
previously mentioned �Figure ��� the NFT network is
a two�layer MLP� which has a universal approximation
property� For NFT o��line training� a method� based
on the Backpropagation�Through�Time �BTT� algo�
rithm� is developed� The objective of this method is to
minimize the following receding horizon cost function�

J �
	

�

N��X
k��

	
xMk � �xk


T
Q
	
xMk � �xk



� �	��

where N is an appropriate time horizon and Q is a
positive de�nite weighting matrix� The BTT algorithm
can be regarded as a trial and error learning procedure�
which consists of two main parts� First� from randomly
selected initial states and an arbitrary given control
e�ort �which can be randomly selected or generated
by a designed control system�� the plant model and
observer are derived for N steps� Second� the weight
and bias parameters in the NFT are updated� using the
equivalent error generated� To perform these steps� the
state sensitivity of the cost function is de�ned by�

�kx � �
�J

��xk
� k � 	� �� � � � � N � 	� �	��



Adaptive Nonlinear Observer Design 	��

Using the chain rule� the above gradient can be devel�
oped as�

�kx �Q
�
xMk � �xk

�
�

�
��xk��
��xk

�T
�k��x

�

�
��xk��
��xk

�T
�k��x k � 	� �� � � � � N � 	� �	��

�Nx � Q
�
xMN � �xN

�
�

�
��xN��

��xN

�T
�N��
x � ���

�N��
x � Q

�
xMN�� � �xN��

�
� ��	�

Using the weight parameters of the NI and NFT� the
existing Jacobians can be expressed as�

��xk��
��xk

�

�
�NI ��xk�uk�WNI�

��xk

�

�


�NFT

�
�eyk � �eyk�� �WNFT

�
��eyk

�
C� ����

��xk��
��xk��

� �


�NFT

�
�eyk � �eyk�� �WNFT

�
��eyk��

�
C� ����

�eyk � yk � C�xk� ����

The formula for derivation of MLP Jacobians
�NI
��xk

� �NFT
��eyk

and �NFT
��eyk��

is described in the Appendix�

Equations A	 and A��
Now� the o��line BTT training procedure of the

NFT can be summarized as follows�

i� Generate small random weights and biases for the
NFT network�

ii� Set the plant initial states with random numbers
in the operation region of the plant and observer
initial states with arbitrary numbers �for example�
zero��

iii� Forward pass� Run the plant model� neural ob�
server and controller for N steps forward from
k � 	 to N � 	� If there is not a designed
control algorithm� set the control inputs as a
sinusoidal function with random amplitude and
frequency in the operation region of the plant�
The forward pass generates sequences of plant
states� xM� �xM� � � � � �xMN�� and observed states�
�x�� �x�� � � � � �xN���

iv� Backward pass� Using the operation results in Step
�iii�� run the state sensitivity equations backward
from k � N � 	 to 	� to evaluate the equivalent
error� �kx� k � N � 	� N� � � � � 	�

v� Update the weights and biases of the NFT network
using�

�WNFT�j � 	� � �j�WNFT�j�

� �j ��j � 	�

NX
k��

�
��xk��

�WNFT�j�

�T
�k��X � ����

where�

��xk��
�WNFT�j�

�
�NFT

�
�eyk � �eyk�� �WNFT�j�

�
�WNFT�j�

�

�
��xk��
��xk

��
��xk

�WNFT�j�

�

�

�
��xk��
��xk��

��
��xk��

�WNFT�j�

�
�

����

�j and �j are momentum coe�cient and variable
learning rate� respectively� and should be selected
adaptively ���
� The terms ��xk��

��xk
and ��xk��

��xk��
can

be calculated using Equations �� and ���

vi� Go to Step iii until convergence�

The training would be terminated when� by updating
the NFT weights� no appreciable change in the receding
horizon cost function �Equation 	�� is observed�

In Equation ��� the formulas for derivation of
�NFT��eyk ��eyk�� �WNFT�j��

�WNFT�j�
� which is the gradient of the

MLP output with respect to its weights and biases
vector� are explained in the Appendix� Equations A�
through A��

To achieve the generalization property� the train�
ing algorithm should be repeated for other sets of initial
conditions and set�points iteratively� An important
matter is the o��line training of NFT� In the forward
pass phase� the output signals are corrupted with a
Gaussian white noise� but� in performance measure and
state sensitivity equations� noise free output signals are
backpropagated� Using this procedure� the NFT learns
the noise cancellation property �the same as the NI� as
described in the last section��

ADDITIVE ON�LINE ADAPTING PART

In the previous section� a comprehensive neural ob�
server was designed� based on the assumption that the
mathematical model of the system is known and there
are not catastrophic errors in the model� But� there are
many nonlinear systems� in which the mathematical
models are not completely known and�or some of
their parameters are not certain� Although the neural
observers� generally� have robustness properties� in the
presence of large model errors� the observer results may
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be unsatisfactory� One of the possible solutions to
this problem is to add an adaptive online term� whose
contribution is to compensate the remainder estimation
error� due to unmodeled dynamics and�or parameter
variations� from instantaneous output error feedback
�measured output minus observed output��

In this paper� Linearly Parameterized Neural
Networks �LPNNs� are used as the adaptive part�
These networks are mathematically very simple and
computationally e�cient for on�line training� The neu�
ral observer structure �Equation 		� can be modi�ed
by adding the on�line updating LPNN� as�

�xk�� �NI ��xk�uk�WNI�

� NFT ��yk � �yk
 � �yk�� � �yk��
 �WNFT�

� �WB �yk � �yk� � bB 
 � ����

During real time implementation� the o��line trained
parts �i�e�� NI and NFT� are only simulated and are
not updated� but� WB and bB are updated� at each
time step� using the following recursive steepest descent
algorithm�

�Wk
b � ��Wk��

b � ��� � 	�
�Jk

�Wk
b

� ����

where � and � are learning rate and momentum
coe�cient� respectively� and Wb is a vector made by
arranging the elements ofWB and bB �

The instantaneous performance measure �Jk� is
de�ned by�

Jk �
	

�
�yk � �yk�

T �yk � �yk� � ����

Finally� �Jk

�Wk
b

can be developed as�

�Jk

�Wk
b

� ��yk � yk�
T
C

��xk

�Wk
b

� ���

where ��xk
�Wk

b

is calculated through the following recur�

sive relation�

��xk

�Wk
b

�

�h
�D�
�D�
 � � � �Dn
�I 


i
n��n�m�n�

�

�
�NI ��xk���uk���WNI�

��xk��

� � � �

�
�NFT

�
�eyk�� � �eyk�� �WNFT

�
��eyk��

�WB

�
C

�
��xk��

�Wk
b

��
� ��	�

n and m have been de�ned in the previous section and�

�Dj 
 �

�
�������

��m
���

eTyk � jth row
���

��m

�
�������
n�m

� ����

�I
 �

�
����
	  � � � 
 	 � � � 
���
���

���
  � � � 	

�
����
n�n

� ����

The training would be terminated when the instan�
taneous performance measure �Equation ��� becomes
less than a desired value or processor computation
time becomes more than a time step� The archi�
tecture of the overall neural observer is shown in
Figure ��

It is also noted that the stability of the on�line
training part is not a challenging matter here� because
the NI � NFT can stably observe the states� even
though the on�line part is removed in the estimation
process� The main role of the on�line part is not to
stabilize the process� but to reduce the remainder error
due to unmodeled dynamics� Most of the referred
papers have used the on�line part as the process
stabilizer �	��	�
� in which the guaranty of stability
is crucial� Therefore� if the on�line updating �LPNN�
tends to diverge in a time step� the algorithm will
remove it in that step and� then� in the next step�
on�line updating begins with zero �or random� initial
weights and biases�

Figure �� Architecture of the overall neural observer�
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SIMULATION RESULTS

In this section� simulation results of two examples�
illustrating the applicability of the proposed neural
observer� are presented�

Case Study �

Consider the Van der Pol oscillator �	�
 with the output
subjected to the measurement noises�

�x� � x��

�x� � ��	� x���x� � x��

y � x� � �y�

ICs � x��� � �� x��� � 	�

First� it is assumed that the model is perfect and �

is known and equal to 	��� Initial conditions for the
observer and time step are chosen as �	�
�

�x��� � �x��� � �

h � ���sec
�

Measurement noise� ��y�� is assumed to be white
noise� with a variance equal to �	� The number of
hidden neurons in the NI and NFT networks is selected
to be � and 	�� respectively�

First� NI and then NFT were trained o��line
using BP and BTT� respectively� For o��line training�
a hundred ICs were picked up randomly from the
operating range of the plant� The training iteration was
stopped when no appreciable change in the criterion
function was observed� In this case� the observer results
for an IC� which has not been used in the trainings� are
reported in Figure �� It is noted that� in this case� the
on�line part is not presented� The results show that
the proposed scheme yielded satisfactory smooth state
estimates�

Second� it is assumed that the ��s value are
not known and� also� an unmodeled dynamics L�t� is
added� such that�

�x� � x�

�x� � ��	� x���x� � x� � L�t��

For o��line training� the value of � is chosen equal to
	��� but� its real value �for the plant� is taken as ����
Initial conditions� measurement noise and time step are
the same as the �rst part� L�t� is selected to be a
Gaussian white noise with the variance equal to ��� In
this case� the behavior of the overall neural observer� in
the presence of the on�line adapting part� is shown in

Figure �� Real and estimated states of the Van der Pol
oscillator with noise�

Figure �� Real and estimated states of the Van der Pol
oscillator with modeling error and noise�

Figure �� By studying the results� it is obvious that the
observation is quite satisfactory� even in the presence
of a � parameter error ���s error� and almost large�
unmodeled dynamics� In comparison to �	�
� where the
observed states are noisy� due to measurement noise�
the results of the proposed simulation show that the
measurement noise is not transferred to the observed
states�



	�� M�R� Dehghan Nayeri and A� Alasty

Case Study �

Consider a single�link robot manipulator� rotating in a
vertical plane �	�
� described as��
�x�
�x�

�
�

�
x�

� sin�x�� � u�t�

�
��f �

y � x� � �y�

where the unmodeled dynamics are given as follows�

�f � �	

�
x� cos�x��
x� sin�x��

�
�

and u�t� is selected to be zero� In addition to
what has been considered in �	�
� this paper considers
unmodeled dynamics� �f � and measurement noise� �y �
which introduces a more general case� After o��line
training� the overall observer was tested with plant
initial conditions as follows�

x��� � �� x��� � 	�

While the observer initial conditions� time step and
measurement noise are chosen as�

�x��� � �x��� � �

h � ���sec
�

�y � white noise� with the variance equal to �	��

the number of hidden neurons in the NI and NFT
networks is selected as �� and 	�� respectively� The

Figure �� Real and estimated states of the robot
manipulator with modeling error and noise�

behavior of the overall neural observer is shown in
Figure �� The results are completely satisfactory� even
in the presence of measurement noise and unmod�
eled dynamics� The results verify� again� that the
observed states are not noisy� due to measurement
noise�

CONCLUSION

In this paper� a new neural observer is designed
and it is shown that it can provide a good enough
estimation process for nonlinear dynamic systems in
the presence of internal uncertainties and external
perturbations� The proposed scheme consists of three
neural parts� two of which are o��line trained MLP
networks and the other being an on�line updating
LPNN� If the mathematical model is perfect� the o��
line parts are su�cient for the observation process�
but� in the presence of model error� the on�line part
adapts and compensates the estimation error� due to
model error� By adding a time delay term� the arising
di�erential e�ects are compensated� MLP�s o��line
training� using noise corrupted data sets� helps the
observer to cancel most of the measurement noises
from the observed states� The numerical experiments
demonstrate the high e�ectiveness of the proposed
technique�
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APPENDIX

Derivation of MLP Jacobian

Suppose there exists a two�layer tansig�pureline MLP
network where its input and output are pn�� and am���
respectively� The MLP Jacobian is given by�

da

dp
��diag��a�j��
m�mW
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diag
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	� �tan sig�n��j��


�
�

s��s�
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n�n
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whereW ��W �� b� and b� are the weights and biases for
the �rst and second layers� respectively� and �a and
�p are expressed as�
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Gradient of MLP Output with Respect to its

Weights and Biases

This gradient can be expressed as�
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where W is a vector made by arranging the elements
of W��W�� b� and b� and one has�
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