Scientia Iranica, Vol. 12, No. 2, pp 131-140
(© Sharif University of Technology, April 2005

Volume-of-Fluid Interface Tracking
with Lagrangian Propagation for

Incompressible Free Surface Flows

A.H. Nikseresht!, M.M. Alishahi* and H. Emdad'

One of the most powerful methods to implement the free surface is the Volume Of Fluid (VOF).
In this study, an algorithm is developed, which includes an implicit pressure based method
(SIMPLE) with a staggered grid and a Lagrangian propagation VOF method. Based on this
algorithm, a computer code is generated and a cavity with a free surface and two test cases of
dam-breaking problems are examined and, then, the effect of fluid sloshing on a near wall is also
analyzed and a time history of the normal force on the wall is presented. The results show good
agreement with experimental and other computational results.

INTRODUCTION

Incompressible viscous flows with moving free surfaces
are instances which occur both in industry and in na-
ture, such as in environmental engineering, die-casting,
injection molding processes, marine sciences and many
others. Available numerical methods for such problems
can be classified into moving and fixed grid approaches.
The moving grid approach is, typically, confined to
special applications, due to limitations in the rezoning
technique [1-3]. In this connection, the fixed grid
approach seems to be a more viable method, whenever
a general motion of free surface flow is considered [4,5].

Among the existing fixed grid approaches, Harlow
and Welch [6] proposed the well-known marker and cell
method (MAC) that labels fluid particles with markers.
Recently, Nakayama and Mori [7] improved the MAC
method to preclude the possibility of producing an
unphysical liquid front advancement. In the MAC
method, the region occupied by the fluid is tracked
by the locations of the markers in the course of fluid
motion. Such a method defines the fluid region rather
than the free surface and, thus, requires large computer
storage and additional computational time to move all
fluid markers to new locations, especially when a three-
dimensional problem is encountered [8]. Furthermore,
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a finite volume far from the free surface might be
unrealistically overfilled or partially filled with markers,
due to numerical error. In 1981, Hirt and Nichols [9]
introduced the Volume Of Fluid method (VOF) for
incompressible flow with a moving free surface.

In the VOF method, which the interface describes
implicitly, the data structure that represents the inter-
face is the fraction, C, of each cell that is filled with
a reference phase, say phase 1. The scalar field, C, is
often referred to as the color function. The magnitude
of C in the cells cut by the free surface is between 0 and
1 (0 < C < 1) and, away from it, is zero or one. The
data C are given at the beginning of a computational
cycle, but no approximation of the interface position
is known. The method is implicit, since one needs
to “invert” the data, C, to find the approximate
interface position. In other words, an algorithm for
interface reconstruction is needed. Typically, one
can reconstruct the interface by the straightforward
Simple Line Interface Calculation (SLIC) method [10]
or by various “Piecewise Linear Interface Calculation”
(PLIC) methods [11]. The latter methods give much
better results than the former. The advantages of the
VOF method are as follows:

1. It preserves mass in a natural way, as a direct
consequence of the development of an advection
algorithm, based on a discrete representation of the
conservation law;

2. No redistribution of the surface markers is necessary
when they are stretched by the flow and no special
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provision is necessary to perform reconnection of
the interfaces;

3. It can be relatively simply extended from two-
dimensional to three-dimensional domains;

4. The scheme is local in the sense that ounly the
C values of the neighboring cells are needed to
update the C value in a cell. For this reason, it
is relatively simple to implement these algorithms
in parallel, in particular within the framework of
domain decomposition techniques.

In incompressible Computation of Fluid Dynamics
(CFD), the leading class of techniques for the numerical
solution of pressure is the SIMPLE class of methods,
as formulated by Patankar [12,13]. Unfortunately,
very few papers have investigated the application of
the SIMPLE algorithm to free surface flow modeling.
This is in contrast to the fact that most of the world-
wide leading CFD workers use these methods. In the
present paper, the appropriate numerical technique is
introduced to solve the Navier Stokes equations, for
a two-phase incompressible flow with a high density
difference. Performance of the proposed numerical
procedure will be examined through the solution of a
cavity with a free surface and two, well-documented,
dam-breaking examples. Then, a wall near the broken-
dam is considered and the impingement of the flow on
the wall is analyzed and the normal forces at different
times are presented.

GOVERNING EQUATIONS
Let ﬁ be the velocity vector field, p the density, p the

pressure and p the viscosity. Then, the Navier-Stokes
equations are:

A (pU) + V.(pU @ U) = =Vp+ V.(2uD) + pg, (1)

where D is the rate-of-strain tensor with components:
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Viscosity and density are assumed to be constant
in each phase, but may vary from phase to phase.
1; and p; are the viscosity and density in phase i,
respectively. These equations may be viewed as a
“one-fluid formulation”, as they are expressed at any

position, X. Consider incompressible fluids, with:

V.U = 0.0. (3)
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If these equations were transformed to a dimensionless
form as follows:

_z —_y — U
x_fv y_fv u_Uoo7
_ U _ P—P ¥ __ P
V=7 P= it p=00
¥ — (Ux _ pLUxL
M—HL7 T_(L)t’ Re = wr

where L is an arbitrary characteristic length and pr,
stands for Liquid density and viscosity, respectively,
then, a single set of governing equations, covering both
the liquid and the surrounding air, could be written as:

. [ Ou ou Ju 8p ,u 9
- it — ) = 4
p <aT+“ax+”ay) "o T Re 4

ov v v gp .1 2,
2 <8 Tuge Y 8y>__5_y_ Flrz-i_Rev (5)

Us
viscosity p* are step functions across the free surface.
They are unity in the liquid region and jump to another

constant in the air region, i.e.:
B 1 in liquid N 1 in liquid
P =19 pa L. , B =9 pa L .
PL

in air s in air
Another useful formulation is: If x is a characteristic
function with value 1 in phase 1 and 0 in phase 2, then,
the equation governing the change of y, following the
motion of the fluid, is [14,15]:

where F'r = is the Froude no. and density p* and

ox +u.Vx =0.0. (6)

The color function, C, in the VOF method may be
viewed as a discretization of the characteristic function.
w* and p* at any cells (denoted by ij) can be computed
using a simple volume average over the cell:

pi; = Cijpp + (1= Cij)py, (7)

pi; = Cijuy + (1 = Cij) - (8)

A more explicit account of the interface should be
taken, considering the special nature of the problem,
which is introduced in the following.

INTERFACE TRACKING

In the PLIC, at each time step, given the volume
fraction of one of the two fluids in each computational
cell and an estimate of the normal vector to the
interface, a planar surface is constructed within the
cell with a unique normal vector and the cell is divided
into two parts, each of which contains the proper
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area of one of the two fluids. This interface is, then,
propagated by the flow and the resulting area of each
fluid into its neighboring cells is determined. The
updated values of the area fraction fields are found
throughout the domain and the numerical simulation
can proceed to the next time step. The next three
subsections describe the procedure for estimating the
normal vector, the construction of the interface in each
cell and the propagation of the interface by the flow.

Normal Estimation

The reconstruction is based on the idea that a normal
vector, 171, together with the fractional volume, C,
determines a unique line interface cutting the cell. In
the first part of the reconstruction, a normal direction
to the interface is estimated, using a finite-difference
formula. The normal vector is defined as:

—

m = VC. (9)

At first, a cell corner value of the normal m vector is
computed at (i +1/2,5 +1/2) by:

1
Mait1/2,j+1/2= 57— (Cit1,7=Cij+Cit1,j41=Ci 1),

(10)
1
My iy1/2,j41/2= E(Ci,j+1 —Ci;+Cit1,+1 —Ci+1(,j)~)
11

Then, the required cell centered values are computed
from the cell corner values by averaging:

1
mij =7 (Migajogo1/a +Mic1y2,5-1/2

+Miy1y2, 54172 M1/, 541/2)- (12)

If V" is a difference operator for the gradient, it can be
seen from Equation 12 that V" will be approximated
from nine neighboring points.

Connecting Fractional Volume and Interface
Position

In the second part of the reconstruction, a line in-
terface, which divides the computational cell into two
parts containing the proper area of each fluid, must
be found. This is achieved by deriving an explicit
expression, which relates the “cut” area to a parameter,
«, which completely defines the interface. The problem
can be started as follows: Given a rectangular (or
square) cell of sides ¢; and ¢y in the (z1,z2) plane,
depicted in Figure 1 and a straight line (such as EH)
with normal vector m, find the area of the region
(ABFGDA). To obtain an expression for this area, let
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Figure 1. The “cut area” refers to the region within the
rectangle ABCD which also lies below the straight line
EH, having normal m and parameter o.

one suppose that the components m; and msy of the
normal vector are both positive. The most general
equation for the straight line in the (z1,x2) plane with

nd .
normal m is:
mix1 + maxo = Q. (13)

The area of the region contained below this line, within
the rectangle ABCD, is given by:

2

2
Area = [1 — H(a —mycy) <w>
ARUD) «
o 2
_ H(a = macs) (w> } ,
Q

(14)

The prefactor, a?/2mimsz, on the right-hand side of
this equation, is simply the area of the triangle, AEH.
In case points E and H lie within the original rectangle,
this is the desired area. If point E is to the right of
point B, i.e., if a)mjcy, the area of the small triangle,
BEF, must be subtracted to obtain the proper area.
Since triangle BEF' is geometrically similar to triangle
AFEH, the ratio of their areas is equal to the square of
the ratio of the sides BE to AFE, given by:

Area of BEF  (a/m; — ¢ 2_ a—micy 2

AreaofAEH_< a/my ) _< a ) ’

This corresponds to the second term within the square
brackets on the right-hand side of Equation 14, which
also contains the Heaviside step function, H(a—mqc;),
defined, such that:

H(z) 0 forz<O
T) = .
1 forxz>0

Since the area of the triangle, BEF, is only subtracted
if E is to the right of B. Similarly, the third term
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within the square brackets in Equation 14 subtracts
the area of the triangle, DGH, provided that point
H lies above point D, i.e., if & > mocy. The single
formula (Equation 14), thus, provides the area of the
region below the straight-line (Equation 13), which lies
in the original rectangle of sides ¢; and c¢o, for all
possible cases. The area is a continuous, one-to-one,
monotonically increasing function of a. It ranges from
zero, when o = 0, to ¢;c2, when « reaches its maximum
value of mic1 + moco.

In practice, not only does one need the forward
relation (Equation 14) between the cut area and the
parameter, o, but, the method also requires the inverse
problem of determining «, which corresponds to a given
cut volume and normal direction in a computational
cell. One can simply use a standard iterative root-
finding approach. Another option, which is the one
that is implemented here, is as follows: Corresponding
to each critical value of «, for which the interface passes
through one of the corners of a rectangle, there exists
a critical value of the cut area. Between any two
critical values, the roots of function (Equation 14) can
be evaluated analytically.

Lagrangian Propagation of the Interface
Segments

Once the interface has been reconstructed, its motion,
by the underlying flow field, must be modeled by a
suitable advection algorithm. This can be achieved
by either an Eulerian or a Lagrangian scheme. In the
FEulerian method, one computes the fluxes of y across
the faces of the control volume, V;;. The characteristic
function, y, is conserved in an incompressible flow and
the flux, during time 7, across the face F' of Vjy, is:

tn+T7
¢F:// yu.n'dFdt, (15)
Flt,

where n' is the unit normal vector to the face. This
expression may be estimated, once the area of face
F that is “wetted” by phase 1, is found from the
reconstruction algorithm of the previous section. The
explicit evaluation of the time integral forms the basis
of the FEulerian method. The Lagrangian approach to
the propagation of the interface can be best described
by considering the way in which the given interface
(Equation 13) is propagated by the flow [14,15]. For
this purpose, rewrite Equation 11 with superscript (n)
attached to all the variables,

m§”)x§”) + mgn)xgn) = oz("), (16)
and think of this as the equation for the interface in

the given cell at the initial time, ¢,,. The Lagrangian
advection of this interface by the flow, as time increases
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to tp41 = t, + 7, will modify it to a new form,
which must be calculated. Since, in practice, the
time stepping is performed separately in each spatial
direction through operator splitting, the advection of
the interface along only one spatial coordinate, say w1,
will be described.

To make the description simpler, let one suppose
that the left face of the cell has coordinate x; = 0
and the right face vy = h = ¢;. Also, denote the x;
components of the velocity on the faces by Uy and Uy,.
These are taken to be constant over the entire face to
which they are assigned. The x; component of the
velocity, within the cell, is a simple linear interpolation
of the form:

ui(z1) = Uy (l—x—’;>+Uh%. (17)

For each point initially at xgn), the above velocity is
calculated and assumed to remain constant in time
during the advection step. Then, the z; coordinate
of each point initially on the interface (Equation 16)
changes to the new value:

xg*) = x§”) + ul(x(ln))r

- [1 + <w> r] af + Upr. (18)

The x4 coordinate remains constant during advection
along 1. The superscript (%) is used rather than (n+1)
to denote a fractional step, to be followed by similar
steps in the zo direction before the advection to time
tnt+1 is completed. In order to find the equation for
the interface after this advection step, an expression of

2™ in terms of x{*) is obtained from Equation 18:

(%)
(n) _ xy —Upt
xy = . 19
LT T (Un = Uo)/h)r (19)

Upon substituting this result into Equation 16, the
interface equation after advection is:

xg*) — Uyt
1+ ((Un — Uo)/h)T

(n)

my + m§”>x§”) =al™ (20)

which can be written in the more standard form:

mg*)x(l*) + mé*)xg*) =al, (21)

in which, at z; direction;

(n)
m{) = . my) =m{", (22)

1+ ((Uh - Uo)/h)‘l’7

+ mgn)UgT
1+ ((Un = Uo)/h)7

ol = o™
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After advection, one has to check whether the interface
has protruded at all into the neighboring cells to the
right and left and, if so, to calculate the volumes
moved into those cells. Thus, for instance, if a(*)/m(l*)
is larger than h, a portion of the volume originally
contained below (Equation 16), has moved to the right
cell. This area can be calculated using the general
formula (Equation 14), provided that the equation for
the interface is rewritten in an appropriate form by
making one additional coordinate transformation in
Equation 21. Let:

A =htal, (24)
so that | measures distances from the left face, z; = h,

of the right cell. With this substitution, Equation 16
becomes:

m(l*)x'l + mg*)x(;) =d, (25)
where:
o =a® - m(l*)h. (26)

Using the coefficients of Equation 25, Formula 14 can
now be used to calculate the area of the phase 1 fluid
that was moved to the right neighboring cell. Similarly,
if Uy is negative, the volume moving to the left
neighboring cell can be calculated. Finally, the volume,
which remains in the original cell, is calculated, using
Equation 16 and Formula 14, provided that account is
taken of the change in the size of the parallelepiped,
which results if Uy is positive and/or U}, is negative. In
particular, if Uy is positive, the left face moves in by an
amount, Uy, during time interval 7 and, to calculate
the volume remaining in the cell, it is necessary to make
a coordinate transformation similar to Equation 24,
which puts the origin on this new left face.

To illustrate the method, the procedure is
sketched in Figure 2. The shaded region represents
the volume lost by the original cell and gained by the
downwind cell. Formula 14, applied to parallelepiped

=
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Figure 2. A schematic illustration of the Lagrangian

propagation of the interface in two dimensions.

Q
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AFEFB, can be used to calculate the volume of the
shaded region. With this procedure, the volume
fraction field is updated at time #,41.

This Lagrangian method is stable and satisfies
the physical constraint on the volume fraction, 0 <
C < 1, when the CFL condition, (max|u|)T/h <
1/2, is satisfied. The programming of the Lagrangian
method is considerably simplified by the fractional-step
strategy, described above.

NUMERICAL PROCEDURE

The algorithm follows these steps:

a) Initialize the flow field variables and, then, the
numerical procedure, in one time step, is as follows:

b) Propagate the volume fraction for the new time
step, based on the velocity from the previous time
step and update phase averaged quantities by the
following sub steps:

1) Normal estimation,

Do

Reconstructing the interface,

W

)
) Propagating the interface,
)

Compute new values of C' and other averaged
quantities.

c) Use the SIMPLE algorithm to solve the flow field
governing equations;

f) Repeat b-c.

RESULT AND DISCUSSION

At first, a two-dimensional cavity with fixed vertical
side walls, a driven floor and a free surface at the
upper boundary was modeled; the geometry is shown
in Figure 3. Results were obtained for flows with
a Reynolds number of 100 and for Froude numbers
varying between 0.2 and 2.0.

L=1.0 A
<l | -
<% L hy = 0.325
Air v
A
Water
h =1.0
- v
U=1.0

Figure 3. The geometry for the free surface driven cavity
problem.
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The stream functions for the free surface flow, at
a Froude number of 2.0, is shown in Figure 4 and are
compared with the stream functions for a conventional
driven cavity (Figure 5), where a no-slip stationary
wall, at the same Reynolds number, replaces the top
surface. It is readily seen that, for the free surface
problem, the surface has been displaced by the flow
and no longer lies on the horizontal plane. Also, the
two recirculation bubbles in the top corner, for the
conventional cavity, are missing. These two features
are due to the lack of restraining shear force upon the
upper boundary.

The effect of the Froude number on the free
surface elevation is shown in Figure 6 and is compared
with the results of the MAC method [16]. As the
Froude number increases, the disturbance in the free
surface position grows, where the elevation of the free

Figure 4. The streamlines for a floor driven cavity with a
free surface (Re = 100 and Fr = 2).

-

Figure 5. The streamlines for a conventional floor driven
cavity (Re = 100).
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Figure 6. The free surface elevation for the driven cavity,
calculated for a flow with Re = 100 on a 129 * 169 mesh.

surface is seen to be proportional to the square of
the Froude number, which is consistent with physical
reasoning.

To demonstrate the mesh independence of the free
surface flow, solutions of the free surface profile, for a
cavity with Froude number 2.0, is shown in Figure 7.
As the mesh is refined, the free surface elevation
converges towards a mesh independent position. To
examine the performance of the present numerical
procedure, two cases of the dam-breaking problem are
considered at this point. Water and air are adopted
as the media of the flow. The height and width of
the water column of the two cases are (2.25 in, 2.25
in) and (4.5 in, 2.25 in) and corresponding Reynolds
numbers, in terms of the height of the liquid region, are
43,129 and 121,986, respectively. In most free surface
flows, the grid near the free surface should be fine,

1.02 pee S g S g f 1 ! ! ! ! 1
k —¢32%42
q ‘\ -~ 6383
&\ ——94%124 ||
X - 1297169
1.014 %
a
1)
-3
2
>
[
i)
g 1.00
&
-
=
0w
[
2
[
0.99
0‘98 T T T T T T T T T T T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Figure 7. Convergence of the calculated free surface with
Fr = 2 and Re = 100 for a range of different meshes.
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but, at applications such as dam-breaking, since the
flow sweeps through a great part of the domain at all
possible inclinations, it is better to use fine grids in
the entire flow field. Thus, for simplicity, a uniform
Cartesian grid system, Ax; = Az = Ay; = Ay, is
used. In the case of (2.25 in, 2.25 in), three grids,
namely, 81 x 41,101 x 51 and 201 x 101 grid points are
employed on the dimensionless domain of 0 < z < 4
and 0 < y < 2, which means the grid sizes of Az =
Ay = 0.05,0.04 and 0.02, respectively. Figure 8 shows
the isobar and velocity vector of the first case (2.5 in
* 2.5 in) at various time steps and it is obvious that
the pressure is, essentially, near zero in the air region.
This can be attributed to the negligible density of the
air, as compared to the water. It is interesting to note
from velocity vectors that the conservative Equations
1 to 3 induce a vortex in the layer of air adjacent
to the free surface, which is consistent with physical
reasoning.

Figure 9 shows the resulting water front, x;(7),
of the present study on various grids for the case of a
square water column, H = W = 2.25 in. The available
experimental data [17] and the existing numerical
results, such as the standard MAC method [6] and the
modified MAC method [7], are also plotted in Figure 9.
As shown in this figure, MAC methods overpredict the
experimental results, but, the present work shows much
better agreement with experiments.

In the second case of (4.25 in * 2.25 in), two grids,

2.00
1.50
1.00
0.50

7=0.5

Y/H

2.00 2.00
T=1.5

fy 180 m 1.50]

5 1.00 = 1.004

0.50 0.50%

0 1.0 20 3.0 4.0 0 1.0 2.0 3.0 4.0
X/H X/H
2.00 2.00
 1.50 T=20  1.50
S 1.00 = 1.00
0.50 0.50

0 1.0 2.0 3.0 4.0
X/H

0

1.0 2.0 3.0 4.0
X/H

Figure 8. Isobars with increment of Ap = 0.05 and
velocity vectors at various times for the case of (2.5 in *

2.5 in).

137

|5 Y T S S N S S S S I SR S SR S N S SR S S SN S S St

Dam-breaking (2.5 in *2.5 in)
O Experimental [17]
Present work (81%41)
@ Present work (101%51)
—¥— Present work (201*101)
A MAC [6] ©

27 B i e I e e e e R e e e B P e B

fl | e Modified MAC [7] A

zp(T)

+——r v
0.0 0.5 1.0 1.5 2.0

T

M
(3

Figure 9. Comparison of the waterfront, z(7), from the
present results, experimental data and other existing
numerical results for the case of (2.5 in * 2.5 in).
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Figure 10. Comparison of the waterfront, z;(7), from
the present results, experimental data and other existing
numerical results for the case of (4.5 in * 2.5 in).

namely, 101 x 41 and 201 x 81 grid points, are employed
on the dimensionless domains of 0 < z < 10/3 and
0 < y < 4/3. Figure 10 shows a comparison of
the waterfront from different sources. It includes the
results of the present work, the previous VOF code of
Hirt and Nicholls [9] and the modified MAC method.
It is obvious from Figure 10 that the Hirt and Nichols
code [9] overpredicts the experimental data. The MAC
results are more comparable with the experimental
data in Figure 10 than those of Figure 9; however,
comparison of the present results with experimental
results are almost the same in both cases.

At last, the force extended by a broken dam
on a nearby wall, is analyzed. A wall is set at a
distance of 1.5 H from a dam. Figure 11 shows
the dynamic evolution of the liquid configuration at
different times. As shown in this figure, at 7 = 1.8,



138

A H. Nikseresht, M.M. Alishahi and H. Emdad

2.00 2.00
r=0.0 | r=18 | r=2.0
150 1.50 F
E E 1.25 F E 1.25 F
= = 1.00f ~ 100E
075 F 0.75 F
0.50 F 0.50 F
o —
To 15 2.0 0.5 1.0 1.5 2.0
X/H X/H X/H
2.00 2.00 2.00
175k T=25 1.75E 175 F T =8l
1.50F 1.50 150 F
E 1.25F 5 1.25 E 1.25 F
>~ 1.00f = 100k >~ 1.00F
0.75F 0.75 F 0.75 F
0.50 F 0.50 F 0.50 F
0.25 F 0.25 F
05 1.0 1.5 2.0 0.5 1.0 1.5 2.0 05 1.0 15 20
X/H X/H X/H
2.00 . 2.00 2.00
1.75 T=40 1.75 1.75F =
1.50 1.50 150 F
E 1.25 5 1.25 E 1.25 F
> 1.00 >~ 1.00 ~ 1.00F
0.75 0.75 0.75F
0.50 0.50 0.50 F
0.25 0.25F
05 1.0 1.5 2.0 05 1.0 1.5 2.0 T o5 10 1.5 20
X/H X/H X/H

Figure 11. Dynamical evolution of the liquid configuration of a breaking-dam on a nearby wall.

the leading edge of the water column reaches the right
wall. The front of the rising water column begins to
go down and a breaking wave generates at the bottom
at 7 = 3.7 to 7 = 4.0 and the bore front, generated
due to the wave breaking, then, moves to the left
wall, at 7 = 4.5. The main reason for this wave
breaking and the emerging jet (Figure 11, 7 > 3.7)
is the interaction of two counter flows. One of these
flows is coming down from the right wall and the
other is due to the remains of the initial flow from
left to right. This interaction of two flows and the
resulting stagnant region is clearly seen in Figure 11.
To examine further details for the dynamical evolution
of the breaking wave, please see Figure 12, which
represents the velocity vectors in each phase and the
interface between the phases at 7 = 0.0,3.0,3.7,4.5,4.7
and 6, respectively. A large circulation structure in the
gas phase appears appreciably in front of the liquid
phase. Two counter flows mentioned earlier are also
seen in Figure 12, 7 > 3.7, which produce a stagnation
point flow near the bottom wall. It is evident that
the dynamical evolution of the breaking wave contains

quite complicated behavior in both liquid and gas
phases. Figure 13 represents the time history of a
normal force coefficient on the wall, (Cn = [)U#H).
It shows that at 7 = 2.5, the force on the lower pz;(ft of
the right wall is maximum, which is mainly due to high
static pressure at this location. The forces on the lower
part of the right wall, at 7 = 3.5, become less than
7 = 2.5, but the forces at the upper region of the wall
become more than that at 7 = 2.5 because of the effect
of dynamic pressure. At 7 = 4.0 and 7 = 4.5, when the
flow starts to come down, the forces at all regions go
up. When the flow is setting down, the forces, again,
start to decrease (7 = 4.7).

CONCLUSION

A single set of dimensionless equations is derived to
handle both liquid and air phases in viscous incom-
pressible free surface flows. The momentum equations
are solved by the SIMPLE method. The Lagrangian
approach is used to solve the VOF method to imple-
ment the free surface effect. The results are compared
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Figure 13. History of normal force coefficients on the
right wall at various times.

with two cases of dam-breaking problems, which show
good agreement with the experimental data of the
waterfront. The algorithm is also applied to a free
surface driven cavity problem and the results are com-
pared with those of a closed cavity problem and other
numerical methods. Application of the present method
to a liquid sloshing problem between two vertical walls
reveals the complicated physics of wave breaking and
jet emerging in this flow. It can be concluded that the
present method and the code is robust and produces
results of good quality.
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