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Stability Analysis of a Second-Order
Proportionally-Fair Rate Allocation Algorithm

P. Goudarzi*, F. Sheikholeslam' and H. Saidi'

In this paper, a delay-difference second-order proportionally-fair rate allocation algorithm has
been proposed. As conventional proportionally-fair rate allocation algorithms deploy some form
of scaled gradient ascent iterative algorithm for converging to user optimal rates, using fast
second-order algorithms, such as Jacobi or approximate Newton methods, can be considered
as natural and good candidates for increasing the convergence speed of the rate allocation
algorithms.  Stability analysis, related to scaled gradient ascent algorithms, in the presence
of propagation delays, has been performed by some researchers, such as R. Johari et al., in
Cambridge. In the current paper, the stability conditions of a second-order Jacobi method in the
presence of propagation delays, with the simplifying premise of equality between all the users’
propagation delays, is derived mathematically. Simulation results show that even in the general

case of different propagation delays, stability is maintained.

INTRODUCTION

Real store-and-forward networks are composed of a
number of users sending their data packets through
some links. Actually, network links have some non-
negligible propagation delays, which can become im-
portant as the scale of the network grows. Propagation
delay is the physical delay, which is generated due to
the finite speed of electromagnetic or electrical waves
propagated through some medias such as fiber optic
or microwave links. Usually, such propagation delays
in the large scale networks become more important
than queuing delays, which are due to packet waiting
time in network switches or routers. Designing rate
allocation strategies that remain stable and robust
under propagation delays is a challenging problem.
Chong et al. in [1,2] analyzed the equilibrium and
stability of their first order rate-based flow control
algorithm in ATM networks for a single bottleneck
link, through which a number of users with differ-
ent propagation delays send their traffic. Johari et
al. in [3] have analyzed the stability property of
Kelly’s first-order delay-difference proportionally-fair
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rate allocation algorithm [4], under some simplify-
ing premises. Massoulié et al. have analyzed the
stability property of Kelly’s rate allocation algorithm
under the general case of arbitrary propagation delays
for connections [5]. In [6] Altman et al. have
designed a stable congestion controller for a single
bottleneck link under their so-called action delays and
with the notion of certainly-equivalent controllers. In
the work of Johari and Massoulié, the packet-level
queuing behavior at the resources is not important and,
instead, a deterministic fluid-flow approximation is
considered. In their approach, a quasi static viewpoint
of network congestion control is adopted [7] and all
of the users’ rates are average, which are averaged
through, for example, ten or one hundred round trip
times.

In this paper, the same approach as Johari et
al. and Massoulié et al. is followed and it is assumed
that the network traffic can adapt itself to the network
conditions. In another words, the term ‘elastic’ has
been used for the traffic, as introduced by S. Shenker
in [8] and used in Kelly’s paper [4]. Examples of such
traffic types are TCP traffic in the current Internet and
ABR traffic in the ATM networks.

In the current paper, to improve the convergence
rate of Kelly’s conventional proportionally-fair rate al-
location algorithm, the Jacobi method is incorporated
in Kelly’s algorithm. In the presence of propagation de-
lays, the local stability of the rate allocation algorithm
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has been analyzed. The proposed algorithm has been
compared with Kelly’s algorithm using simulation.

The paper is organized as follows. In the following
section some related works, specially the work of F.
Kelly et al. [4] and R. Johari et al. [3] are reviewed
in detail. Then, the stability analysis of the proposed
second-order algorithm is described. After that, the
simulation results are presented followed by the sum-
mary and conclusion.

RELATED WORKS
Problem Formulation

Consider a network with a set, J, of resources or
links and a set, R, of users and let C; denote the
finite capacity of link 57 € J. Each user, r, has a
fixed route, R,, which is a nonempty subset of J.
Also, define a zero-one matrix, A, where A,; = 1 if
link ‘57 is in the user, r’s, route, R,, and A,; = 0
otherwise. When the allocated rate to the user, r, is
x,, user, r, receives utility, U, (z,). The utility, U,(z,),
is an increasing, strictly concave and continuously
differentiable function of x, over the range x, > 0.
Furthermore, assume that the utilities are additive, so
that the aggregate utility of rate allocation x = (z,,r €
R) is: X,¢,U.(z,). This is a reasonable assumption,
since these utilities are those of independent network
users. Agssume that user utilities are logarithmic,
then Kelly’s formulation of the proportionally-fair rate
allocation would be:

+
oln+1)= {xr[nHkr - (wr = In] 'Zuj[n])} :
JER. (1)
where:

S wdnl]. fe} 2 max(0,2). (2)

s:JER.

in] = p;

Parameter ‘k,’ controls the speed of convergence in
Equation 1. p;(y) is the amount that link ‘j’ penalizes
its aggregate traffic, y, and is a non-negative, continu-
ous increasing function of its argument. If one defines:

Aeln] £ wln,

JER,

then, given A,, user, r, selects an amount that it is
willing to pay per unit time, w,, and receives a rate
Tr = W[ A

One of the interpretations is that using Equa-
tion 1, the system tries to equalize w, with z.[n].
> ier, Hjln] by adjusting the z,[n] value. Systems in
Equations 1 and 2 show that the unique equilibrium,
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xr, is the solution of the following equation:

wT:xj~ij sz , TER. (3)

JER, s:JERs

Propagation Delays

As R. Johari et al. have shown in [3], in the presence
of propagation delays and neglecting queuing delays,
Equation 1 changes to the following delay-difference [9]
equation:

zo[n+ 1] = x.[n] + &, - (wr —z,[n— D,

Y = dG]), TER (4)
where:

pill = (Y w - diGs)]). Je .

siJER,

dy(j, s) is the forward delay from the user, s, to link, 7,
and do(7,7) is the reverse delay from link, 7, to user, 7.
Let D, be the propagation delay of user, r, then, one
can write:

dy(j,7) + d2(j,7) = D, Yj Er.

If one assumes that D,. = D,Vr € R for all users, Johari
has shown that a sufficient condition for the local
stability of the rate allocation algorithm (Equation 4),
for each 7, would be [3]:

kr-(zpj 3 +z(

JER, s:JERs JER,

.<p;( S x)))) < 2sin (ﬁ) (5)

s:JERs

S

s:jERs

where w;, k;, p;(.) and p}(.) are non-negative and the
sign (") in pj(.) represents the derivative with respect
to the .

In the following section, a similar condition has
been proposed for the second-order Jacobi iteration.

SECOND-ORDER ALGORITHM AND
STABILITY

In [10,11], the Jacobi method has been applied to
Kelly’s rate allocation algorithm [4] (which is based
on the gradient ascent method) and the stability of the
resulting second-order method is analyzed, in hierarchi-
cal form. However, in the current paper the stability
of the second-order algorithm has been analyzed in the
presence of propagation delays.
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The rate allocation algorithm, in the case of
using the Jacobi method [12] and in the presence of
propagation delays, would be:

z.[n + 1] = z.[n] + &k,

' (wr—xr[n—DT] ~Ej€R,’_ ,uj[n—dz(j,r)])
ZjeerJ’j [n_d2(j7r)]+xr[n_Dr] 'ZjeRJJ’S [n—dz(j,’f')] 7

r € R, (6)
where:
wilnd =, (Y wuln—di(Gs)]),
siJER,

i =25 ( > - diGs)), e
s:JER,
By linearization around the equilibrium point (z.[n] =
11
xr + kFxiyy[n],r € R) [4], one can write Vr € R:

yrln + 1] = ypln]—

11 11
yrln—Dplkpwra i 4 S T AkZ of AjkZ el Pl ysln—dy (j.9—dg (j.9)]
JEJSER

. . 1
Zjer, mjtrr Lier, 1}

(7)

where, in the denominator of the above relation, it is
assumed that y,[n] is negligible in comparison with z,.
From now on, sometimes for simplicity of notation,
the pj(Zs:jER_, xs)vp_lj(Zs:jeRf .’IJS), /“L]-(Zs:jERS .’IJS),
and ,LL;—(ZS:]ERS ) is represented by pj, pl, pu; and i,
respectively.

Theorem

With the simplifying condition, D, = D,Vr € R,
the sufficient condition for the local stability of the
proposed Jacobi iteration (Equation 6) can be written
as:

() 5l ) 5-)
kr.]ER,. s:jER, JER,. s:JER, s:JER.

> P > T |twe e Y ph > T
J
JER, s:JER. JER, siJER,

T
2si _ .
< sm<2(2D+1)>, reRr

Proof

Consider Equation 7, suppose that a vector a =
(o, € R) exists, such that Equation 7 has solutions
in the form y[n] = a.A™ (see Appendix). Local stability
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is resulted if one can conclude that all normal modes,
A, satisfy |A| < 1.

By substituting the solution y[n] = a.A™ in
Equation 7, one has for each r € R:
S = N

g

11 11
2.2 2

krurz,TIaTX’"’D"'+Z Y Ak A k2 zg.’p;_assz.—tll(j#)*tlz(j;,-)
JEJSER
T pj  ws|twr Top) T ws
JERy siJERg JERy siJERs (9)

By canceling A\, multiplying by AP~ and the definition
of D,, one has for each r € R:

- (ADT‘“ — ADT)

1 1 . 1 1 .
krwpe; tarts T Aj k2 a2 A0 a5 6202 p’jasxfdl(!w“)
JEJ SER
+ =o.
S| S ed)4e oo T e
i€Rr 7 \s:j€R, i€Ry 7 \s:j€R, (10)

In matrix form, Relation 10 can be rewritten as:

(diag(A\P"tt = AP re R)+ 71 (KQX 1

+EEXPAONY) PANXEEY))a =0,
(11)

where:
AN) = (A A~ 400 e Jr € R),
X = diag(z,,r € R),
Q = diag(w,,r € R),
K = diag(k,,r € R),

P’ = diag(p},j € J),

y = (yr,7 €R),
and also:
BAMeI, M2Q X '4+X2ATP'AX:.

Assume that A = [a;;], B = [bs;], then, operator ® is
the point-wise product of its two matrix operands and
is defined as follows:

C:AQB:>CU‘ :a,ij.bij,Vi,j. (12)
Equation 11 has solution, iff one has:

det(diag (APt = AP re R) + 8- (KQX

+EEXPA(NY) PANXERD) =0 (13)

If all roots of Equation 13 have absolute value less than
unity, then, the system in Equation 7 is asymptotically
stable.
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As in [3], one defines the LHS of Equation 13 to
be p(A, K). The following definition is also made:

COMK)2 1. (KQX—l

+EEX A PANXEIEY). (19)

The proof is completed in 5 steps (for detailed proof of
each step, the interested reader can refer to [3]):

Step 1
10 < a < 2sin (557)

AP 4+ a = 0 have absolute value equal to unity [3].

then, no roots of AP+ —

Step 2

The maximum absolute value of roots A of p(A, K) =0
is continuous in K [3].

Step 3

For any K satisfying the hypotheses of the theorem,
p(A,K) = 0 has no roots of absolute value equal to
unity, because if there exists A = €?,0 < 4 < 2x,
then, since w,a ! = E]ER Ajrp;, the hypotheses of
the theorem yields:

ﬂ;l ) (krwrx:l + ZAjrerTp9‘>‘
JjEJ

2

) D T e T R N

s#T jEJ

Skrﬂr1<ZAjrpj +ZZ}AjrAjs)\dl(j’r)%l(j’s)xsp;-)
VER seRjeJ
= Mﬁ(Z ZEDIDY w&-)
JER, JER, s:JER.
71'

2sin| —— R. 15

< Sl11(2(2D+1))’ re (15)

The first line of Equation 15 is the absolute row
sum of the row ‘r’ of the matrix Kg QX! +
AN HTP'A(N)X). Since the spectral radius of any
square matrix is bounded by its maximum absolute row
sum (||.||1 by definition) [12], one has the bound:

p(C (A K))
=p(3 " (KX L4 KEXTAN ) P A X EKE))

=p (67 K (X A () PARX))

< 2sin (ﬁ) : (16)
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where p (-) is the spectral radius operator.

Equation 16 reveals that the spectral radius of
C (A, K) is bounded. If, by the theorem assumption,
D, = D, then the characteristic Equation 13 can be
written more simply as:

det (AP = AP) I+ C(\, K)) =0. (17)

The eigenvalues of the matrix (AP* — AP) I+C(\, K)
are equal to the eigenvalues of the matrix C(\, K) plus
APHL_ AP Also, a matrix is singular iff at least one of
its eigenvalues is equal to zero [12]. From Equation 17
and the mentioned facts one concludes that at least for
oner € R:

APHL AP 16, =0, (18)

where ¢, is an eigenvalue of the matrix C(\, K).

From the bound in Equation 16 and Step 1, it
can be concluded that Equation 18 is a contradiction.
Thus, p(\, K) = 0 has no roots of absolute value equal
to unity.

Step 4

There exists a K satisfying the hypotheses of the
theorem, such that all roots A of p(A, K') have absolute
value less than unity.

For convenience, one assumes that R =
{1,2,---,N}. Define R, = {1,2,---,n}. One may
denote by p,(\, K) = 0, the characteristic equation
defined by the subnetwork of routes in R,; mathe-
matically, this corresponds to replacing C (A, K) with
the submatrix C(A\,K) = ([C(\, K)],s,r,s € R,) in
Equation 17. The result is proven, inductively, on ‘n’.

Casen=1

In this case, Equation 6 can be written simply in the
following form:

(w—a[n - D] -p[n — D))

+1]= +k- . (19
By linearization, Equation 19 reduces to:
yln +1] = y[n] =k -y[n — D]. (20)
Its characteristic equation is equal to:
APFL APk =0. (21)

If ‘K’ is selected such that it satisfies Inequality 22, it is
proven in [3] that the system in Equation 19 is asymp-
totically locally stable and all roots of Equation 21 have
absolute value less than unity.

k < 2sin (ﬁ) . (22)
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In [3], the authors inductively assume that there exist
parameters ky, ks, -+, k,_1, such that all roots, A, of
Pn—1(A, ) = 0 have absolute value less than unity
and, by the Implicit Function Theorem [13], they show
that all of the roots of the equation, p, (A, K) = 0, have
absolute value less than unity.

If one takes n = N, then, p, = p and, thus, one
can find a vector K* = (kq, ks, - ,ky) satisfying the
hypotheses of the theorem, such that all of the roots of
p(A, K) =0 have absolute value less than unity.

Step 5
Suppose that for some K satisfying the hypotheses
of the theorem, p(A,K) = 0 has a root of absolute
value greater than unity. Consider the path K(t) =
tK*+(1—t)K,for 0 <t < 1. All roots of p(\, K(1)) =
0 have absolute value less than unity by Step 4; so
by Step 2 (continuity of maximum absolute value of
roots), there exists ‘t’, such that p(\, K(t)) = 0 has
a root ‘A’ of absolute value unity. But, since K(t)
satisfies the hypotheses of the theorem (both K* and
K satisfy the hypotheses of the theorem as does any
convex combination), this is a contradiction to Step 3.
So, one concludes that no such K exists, i.e. for all
K satisfying the hypotheses of the theorem, p(A, K) =
0 has all roots of absolute value less than unity.H
With assumption A = 1, from Equation 15 and
the definition of ||.||1, one can conclude that:

oK - (- x 1 + 4T PAx)||

< 2sin <m> . (23)

If one defines ' £ 5~! . K - M, one has:

||

trace(I") = Zk“ (24)

where the operator |.| is the cardinality operator and
represents the number of the elements of its argument
set. I' is a positive matrix.

As spectral radius of any square matrix is
bounded by its maximum absolute row sum [12], from
Inequality 23, it is clear that:

p(ﬁ*1 K-(Q-X 'y ATP’AX)> = p(D)

= Amax(T) < 2sin <m> . (25)

From Equation 25, one can write:

|R|
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On the other hand, from Equation 24:

R |R|

Z A = trace(T') = Z k. (27)

From Relations 26 and 27, one has:

||

;kr < 2|R|sin <m) : (28)

If one assumes, k. = k,Vr € R, then:

k<2 sin (ﬁ) . (29)

An important interpretation of Relations 28 and 29 is
lack of dependency of the stability condition to the
equilibrium ‘2z’ vector, in contrast with Relation 5. For
example, in the special case of D = 0, one has:

k<2

So, network users can select their confident ‘k’ param-
eter, independent of the network condition. Also, if,
in Equation 29, users can estimate their propagation
delay, D, using any end-to-end protocol, they can
select their appropriate ‘k’ based on Inequality 29 in
a distributed manner.

Although, the conditions have been simplified by
this assumption that all network users have the same
propagation delays, in the general case of different
propagation delays, the algorithm has been simulated
and the simulation results justify the author’s claims,
even in a general network.

SIMULATION RESULTS

In the current section, a similar approach has been
adopted to that of Walrand [14] and Basar [15], for
simulating the rates allocated to the users with different
propagation delays. An OPNET discrete-event simu-
lator is used for simulation purposes. The simulated
network, which is depicted in Figure 1, is composed
of 87 elastic users and 94 unidirectional links. Gray
nodes are the network’s backbone boundary. All links’
propagation delays are set to 5 ms. It has been assumed
that sources have data for sending at all times (greedy
sources). All links’ buffer sizes are set to 100 packets
and so loss occurs in the network.

The go back n method has been used for resending
the packets that are double acknowledged. The links’
scheduling discipline is FIFO. As in TCP, the Slow-
Start method is used for initializing the rate allocation.

Receivers’” window sizes are set to unity and
sender window size, in the Kelly and Jacobi method, is
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Figure 1. Simulated network topology with 87 users and 94 links.
updated according to Relations 30 and 31, respectively: / [ wy - RIT,[n] ~CWND,[n]
CWND, [n] RTT,[n]
cwnd,[n + 1] = { cwnd,[n] + k. - RTT,[n] +
(dofn] = d,fn=1])[] (31)
d, [n] '
cwnd,[n
Nwr — s - di[n 30 where:
(- o) £ 0
d,[n] = RTT,[n] — d, (32)
CWND, [n + 1] = { CWND, [n] + K, - RTT,[n] d, is the user ‘r’ propagation delay and its round trip

time is RTT,.. Here, k, = K, = 0.0003 has been used.
The simulation results for users in Figure 1 are
-dr[n]] depicted in Figures 2 to 5. In these figures, the

{ _ CWND,[n +1]
' Jacobi method has been compared with Kelly’s method

RTT,[n]
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Figure 5. Rate allocated to user 87 in different methods.

and TCP. It can be verified that despite stability, the
Jacobi method outperforms that of the Kelly method
in convergence speed.

On the other hand, another outstanding feature
of the second-order rate allocation strategy is that the
user rates in the Jacobi and Kelly methods have less
fluctuation with respect to TCP. Also, the rate alloca-
tion is TCP-friendly because none of the allocated rates
in the Jacobi or Kelly methods are greater than their
corresponding TCP rate allocation. The link capacities
in the backbone are considered to be 100 KBps and
other link capacities are considered much higher and
are equal to 10 MBps.

As Equations 30 and 31 use only the RTT and
propagation delay of the connection, they can be
implemented in an end-to-end manmner, even in the
current Internet.

CONCLUSON

In this paper, a second-order technique has been
proposed, which allocates proportionally-fair rates to
network users. The convergence speed of the proposed
algorithm is improved by using a high-speed algorithm
(such as the Jacobi or approximate Newton method).
The stability property of the proposed method, in
the presence of propagation delays, is proved under
certain limiting conditions. The stability property of
the proposed method, in general, has been verified
using simulation.
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APPENDIX

By using a similar approach to that of Kelly [4],
Equation 7 can be written in its matrix form as:

y[n + 1] y[n]
y[n] y[n — 1]
: =T : : (A1)
y[n — D +1] yln — D]
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Wherev D £ maxj,ns{dZ(j?r) + dl (]73)}7y[n] =
(yr[n],r € R) and, with the simplifying condition,
D, = D,V¥r € R, matrix T is defined as follows:

T2
[1-37'L[0] -3 'L[1] -6~ (KQX 1+ L[D))
1 0 0
0 I
0
I
0
.0 0 0
L1 37 L]
0 0
; (A2)
I 0 J

where the parameters Q,3, K and X have been de-
fined previously and the |R| x |R| matrices (L[d],d =

~

0,1,---,D) are defined as follows:
N , 111 1
(Lld])rs 2> pjAjpAjckikZaiail
JjeJ
[dz(j,’f‘) +d1(]78) = d]7 (A3)
where I[.] is, in fact, a logical operator that returns the
value 1 if its argument is a true statement, otherwise

it returns the value 0.
If one defines:

Y[n] 2 (y[n] yln — 1] yin—D)".  (A4)

It can be seen that by replacing matrix T from
Relation A2 into Equation Al, Equation 7 can be
obtained. From the above definition, Equation Al can
be rewritten in the following form:

Y[n] = T"Y]0]. (A5)

Omne can simply verify that the following can be a
solution vector for the linear Equation A5:

Y] = &A™ (A6)



74

In linear algebra, it has been proved that & is an
arbitrary eigenvector of the matrix T" (and also T)
and A" is its associated eigenvalue of both matrices.

From the condition in Inequality 8 and assuming
Equation A6 for the solution vector, it has been
concluded, by the proposed theorem, that all of the
parameters, A, that satisfy Equation A6 have an
absolute value that is less than unity. Thus, matrices
T and T” have not any eigenvalue with absolute value
greater or equal to unity.

Now, assume that there exists an arbitrary solu-
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tion vector Y;[n] for the linear system (Equation A5):
Yiln] = TVi[0], Vi (A7)

As mentioned in the proposed theorem, matrix T™ has
not any eigenvalue with absolute value greater than, or
equal to, unity. Thus, the solution Y;[n] in Equation A7
converges to 0 as ‘n’ goes to infinity. So, selecting the
special form (Equation A6) for the solution has not
any influence on the generality of the problem and is
reasonable.



