
Scientia Iranica� Vol� ��� No� �� pp �����

c� Sharif University of Technology� January ����

Integrating Model Checking

and Deduction for Rebeca

M� Sirjani� and A� Movaghar�

Rebeca is an actor�based language for modeling concurrent and distributed systems� Its Java�like

syntax makes it easy�to�use for practitioners and its formal foundation is a basis to make di�erent

formal veri�cation approaches applicable� Compositional veri�cation and abstraction techniques

are used in formal veri�cation of Rebeca models to overcome state explosion problems� The

main contribution of this paper is to show how model checking and deduction are integrated

for verifying certain properties of these models� Deduction is used to prove that abstraction

techniques preserve a set of behavioral speci�cations in temporal logic and is also used in applying

the compositional veri�cation approach� on the basis of the model checked components�

INTRODUCTION

Reactive systems are increasingly used in applications
where failure is unacceptable� Correct and highly
dependable construction of such systems is particularly
important and challenging� A very promising and
increasingly attractive method for achieving this goal
is using the approach of formal veri�cation ������

Object�oriented modeling is an appropriate ap�
proach for representing reactive systems� which usu�
ally exhibit concurrency and are distributed� The
actor model �	�
� is a better candidate than passive
object�oriented programming languages� because of its
promotion of independent computing entities to sup�
port migration� distribution� dynamic recon�guration�
openness and e�cient parallel execution�

Two basic approaches for verifying properties are
model checking and deductive methods� A combination
of these two approaches can be exploited in a number
of ways� for example� in abstraction and compositional
veri�cation�

Much work has been done on formal methods�
with di�erent kinds of models for system behavior and
di�erent veri�cation approaches
 also� the actor model
is used in di�erent ways for modeling open� distributed
systems� But� to the best of the authors� knowledge�
little has been done on verifying actor languages �re�

�� Corresponding Author� Department of Computer Engi�
neering� Sharif University of Technology� Tehran� I�R�
Iran�

�� Department of Computer Engineering� Sharif University
of Technology� Tehran� I�R� Iran�

lated work is discussed in the following section�� In this
paper� an actor�based model� called Rebeca �Reactive
Objects Language� has been developed for describing
reactive systems� Methods for specifying properties
and verifying their correctness are presented� A major
obstacle to the use of automatic veri�cation methods
is the problem of state explosion� Specially� in the
authors� model� because of the encapsulated constructs
used� there may be a very large state space in model
checking� even for simple systems� Modularity and
di�erent kinds of abstraction techniques are used to
overcome the state�explosion problem� The main con�
tribution of this paper is to show how model checking
and deduction are integrated to apply some abstraction
techniques and a compositional veri�cation approach�
well�suited to the presented actor�based model�

Modeling a system in Rebeca requires one to
specify reactive�object templates and a �nite set of
object instances that run in parallel� In Rebeca� actor�
based concepts are used for the speci�cation of reactive
systems and their communications
 components are
introduced as an additional structure for veri�cation
purposes
 and formal semantics are provided for the
model and components being comprised of their states�
communications� state transitions and the knowledge
of accessible interfaces� For formal veri�cation of
Rebeca models� di�erent abstraction techniques are
used� which preserve a set of behavioral speci�cations
in temporal logic and reduce the state space of a
model� making it more suitable for model checking
techniques� Deduction is used to establish the sound�
ness of these abstraction techniques by proving certain
relations between the constructs
 model checking and



	
 M� Sirjani and A� Movaghar

deduction are integrated in applying a compositional
veri�cation approach to model check properties of the
components of a system and to deduce global properties
from these local properties� A tool is provided for
translating models into target languages of existing
model checkers� NuSMV ��� and Spin ���� enabling
model checking of open� distributed systems�

The language used� Rebeca� is inspired by the
actors paradigm� but goes well beyond it by adding
the concept of components and the ability to analyze
a group of active objects as a component� Also� there
are classes� from which active objects are instantiated�
Classes serve as templates for state� behavior� and
the interface access
 adding reusability in both the
modeling and veri�cation processes�

Rebeca and the above features are explained in
the following sections�

Outline of the Paper

In the following section� the work that is related to
the authors� approach of modeling and analyzing open
systems is reviewed� Then� the modeling language�
Rebeca� and its syntax and formal semantics for closed
Rebeca models are presented� After that� open Rebeca
models� called components� are introduced� In the
section of Integrating Model Checking and Deduction�
compositional veri�cation and abstraction techniques
used in the authors� approach are explained� Following
this� weak simulation is de�ned as an abstraction
technique applied to Rebeca components� used in the
compositional veri�cation of the model� Furthermore�
a simple example is used to show how reactive systems
can be modeled in Rebeca� A formal veri�cation
approach is applied to this example and the results
gained by using the authors� tool are shown
 the tool
works by automatic translation of abstracted Rebeca
models into SMV ���� The �nal section shows the
direction of future work�

RELATED WORK

Object�oriented models for concurrent systems have
been widely proposed since the ����s� The actor model
was originally introduced by Hewitt ��� as an agent�
based language� It was later developed by Agha �	�
�
into a concurrent object�based model�

The actor model is proposed as a model of
concurrent computation in distributed open systems�
Actors have encapsulated states and behavior and are
capable of changing behavior creating new actors and
redirecting communication links through the exchange
of actor identities� Valuable work has been done on
formalizing the actor model �
��������

The actor model was �rst explained as a simple
functional model� but several imperative languages

have also been developed based on it� Besides its
theoretical basis� the actor model and languages pro�
vide a very useful framework for understanding and
developing open distributed systems�

As far as is known� little has been done on the
formal veri�cation of actors �������� In Rebeca� an
imperative view of actors is proposed� trying to have
a more practical model� as well as a �rm theoretical
basis�

The integration of model checking and deduction
has been used in di�erent ways in the analysis of models
of concurrency �����	�� Abstraction is a methodology
that combines deductive and algorithmic techniques�
Abstraction can be used to reduce problems to model�
checkable form� where deductive tools are used to
construct valid abstract descriptions or to justify that
a given abstraction is valid� Another approach is
compositional veri�cation in which deduction is used
to prove global system properties by composing local
system properties �with a smaller state space� that have
been proved using model checking�

Kesten and Pnueli mentioned modularization and
abstraction as the keys to practical formal veri�cation�
using a fair Kripke structure as the computational
model for reactive systems and temporal logic as a re�
quirement speci�cation language ��
�� Rajan� Shankar
and Srivas ���� illustrated an application� where model
checking is applied to a �nite state abstraction of
a system� where abstraction is justi�ed by means of
theorem proving� Saidi and Shankar presented a gen�
eral abstraction�re�nement algorithm that preserves
the full ��calculus as the basis for an integration
of abstract interpretation� model checking and proof
checking ����� A formal framework for modular de�
scription and veri�cation of fair transition systems is
presented and several deductive proof techniques to
establish and re�use modular properties are proposed
by Finkbeiner and Manna �����

Clarke� Long and McMillan used interface pro�
cesses to model the environment for a component in
their compositional veri�cation approach ����� They
modeled systems as �nite transition systems and used
CTL �Computation Tree Logic� to specify their prop�
erties� Input�output automata for modeling asyn�
chronous distributed systems are introduced by Lynch
and Tuttle �������� They showed how to construct
modular and hierarchical correctness proofs for their
models� Alur and Henzinger proposed RML �Reactive
Modules Language� for modeling a system and used
a subset of linear temporal logic and alternating�time
temporal logic� to specify its properties ����� RML
supports compositional design and veri�cation�

All of these methods can be viewed as formal ver�
i�cation methods� consisting of a model for describing
the behavior of the system� a property speci�cation lan�
guage and a method to verify the correctness of prop�



Integrating Model Checking and Deduction for Rebeca 	�

erties� Rebeca can be considered in the same category�
using an actor�based model for describing the behavior
of the system� temporal logic for specifying properties
and a method� using deduction and model checking� for
verifying the correctness of properties� The complex
semantics of Rebeca cause the state explosion problem
to be more severe in model checking� but its actor�
based nature leads to straightforward techniques for
modularization and abstraction� The contribution is
integrating model checking and deduction and using
the inherent decoupling of the modules in Rebeca for
overcoming the state space explosion problem� thus�
providing an actor�based language suitable for mod�
eling concurrent and distributed systems and familiar
for practitioners on which formal veri�cation can be
applied�

Many models� including those mentioned above�
have tools for facilitating their analysis� For example�
Mocha is the model checker for RML ����� Two of
the most widely known tools for model checking are
SMV ��� and Spin ���� The SMV system is a tool
for checking �nite state systems against speci�cations
in the temporal logic CTL� Spin supports the LTL
model checking of distributed systems� Spin uses a
high level language� called PROMELA �PROcess MEta
LAnguage�� to specify system descriptions�

A tool has� also� been developed for translating
Rebeca to SMV� It enables one to model check Rebeca
models� both in closed and open forms� This tool
is used to show that the compositional veri�cation
approach reduces the state space in many cases ��	��

PROPOSED MODEL� REBECA

The model proposed here ��
� is similar to the ac�
tor model in that it has independent active objects�
asynchronous message passing� unbounded bu�ers for
messages� dynamically changing topology and dynamic
creation of active objects� Class declarations are added
to the syntax� which act like templates for states�
behavior and interfaces of active objects� Also� there
is the notion of a component as a set of concurrently
executing active objects�

The authors� objects are reactive and self�
contained� Each of them are called a rebec� for
reactive object� Computation takes place by message
passing and execution of the corresponding methods
of messages� Each message speci�es a unique method
to be invoked when it is serviced� Each rebec has
an unbounded bu�er� called a queue �or inbox�� for
arriving messages� When a message at the head of a
queue of a rebec is serviced� its method is invoked and
the message is deleted from the queue� One may refer
to the messages as �method invocation requests��

Each rebec is instantiated from a class and has
a single thread of execution� A model� representing

a set of rebecs� is de�ned as a closed system� It is
composed of rebecs� which execute concurrently and
interact with each other� Components are introduced
as open systems� consisting of subsets of rebecs in a
model�

The execution of a method is triggered by remov�
ing its �method invocation request� from the top of
the queue and results in an atomic execution of its
body� which cannot be interleaved by any other rebec�
Note that this coarse granularity of the interleaving of
rebecs is compatible with the asynchronous nature of
the communication of Rebeca� which does not contain
suspending communication primitives �e�g�� a possibly
suspending receive state�� It also reduces state space
and makes the model simpler�

Syntax

The syntax for classes �reactive�object templates��
rebecs �class instantiations� and models �parallel com�
position of rebecs�� is presented in Figure � �a simple
example is shown in Figure � and is explained further��
The syntax of a �class� de�nition is similar to the one
in Java� except for the syntactic entity �interfaces�
that precedes the body of every class de�nition� In
�methodssig� of the interface� a rebec speci�es what
kind of services it o�ers to the world� Only methods
from this interface are intended to be possibly known
to other rebecs�

The �body� �rst lists its �elds �in �statevar��
and� then� declares its local methods� which may�
themselves� contain local variables �in �method���
Variables are typed and method declarations
follow a standard syntax� Unlike in Java� methods
have no call�back mechanism and� therefore� no
return type� The core language for statements
��statement�� allows remote method invocation
requests ��mir��� assignments ��assignment���
if�statements ��conditional��� while�statements

Figure �� Class� rebec and model de�nition syntax�



	� M� Sirjani and A� Movaghar

Figure �� Dining philosophers system�

��iteration��� object creation ��create�� and
sequential composition�

In �mir�� a message consists of the callee id�
message id and the parameters passed to the callee�
Although not mentioned explicitly in the message� the
caller �sender� passes its rebec identity �self� to the
callee �receiver�� Caller and callee may be the same
rebec� modeling local calls �sends to self��

It is required that every class de�nition has� at
least� one main method� named init� which is the �rst
method executed by each rebec� In Rebeca� a�model�
is a �nite collection of rebecs that are �created and
then� run in parallel� In declaring a rebec� the bindings
to its known rebecs are speci�ed in its parameter list�

State variables of each rebec are declared in its
body� Idle waiting can be modeled by sending messages
to self� All the rebecs in the model are instantiated
from classes and their bindings to known rebecs are
speci�ed when instantiated� The model is a parallel
composition of declared rebecs�

Operational Semantics for Closed Models

Figure � shows that a Rebeca �model� is a �nite
collection of rebecs r�� r�� � � � � rn� running in parallel
jjri� A model is called closed� if all �mir� requests
within a �model� are addressed to and originate from
rebecs within that model� Otherwise� a model is open
and is called a component� Components are discussed
further in the following section�

A closed �model� determines a labelled tran�
sition system� M � �S�L� T� s��� with state set� S�
signature of action labels� �L�� transition relation� �T �
S � L� S�� and initial state� s� � S�

� The state space of the model� S� is the set�

nY
i��

�Si � qi�� ���

where each Si is a model of the local state of rebec�
ri� consisting of a valuation that maps each local



Integrating Model Checking and Deduction for Rebeca 	�

�eld variable to a value of the appropriate type
 and
the inbox� qi� is an unbounded bu�er that stores all
incoming method� invocation requests ��mir�� for
rebec� ri� in a FIFO manner�

� The set of action labels� L� is the set of all �mir�
calls in the given �model�
 such calls record the
processing of those method invocation requests that
are part of the target rebec behavior


� A triple �s� l� s�� � S � L � S is an element of the
transition relation� T � i��

� In state s there is some i�� � i � n�� such that
l is the �rst message in the inbox� qi� l is of the
form �sendid� i�mtdid�vars��� and sendid is the
rebec identi�er of the requester �sender rebec�
implicitly known by the receiver�� i is the rebec
identi�er of ri �receiver rebec� and mtdid is the
name of the method� m� of ri� which is invoked�
together with its parameters� vars


� State s� results from state s� through the atomic
execution of two activities� �rst� rebec� ri� deletes
the �rst message� l� from its inbox� qi� second�
method� m� is executed in state s� The latter
may add requests to rebecs� inboxes� change the
local state and create new rebecs


� If new rebecs are created in the invocation of m�
then� the state space� S� expands dynamically
from the set in Formula � to the following set��Y

inew

�Sinew � qinew�

�
�

nY
i��

�Si � qi�� ���

where inew ranges over the new rebecs created
within that method invocation and s� is an
element in the set represented in Formula �


� The initial state� s�� is the one where each rebec has
executed the declarations of all its �elds and its init
method is the sole element in its inbox�

Clearly� the execution of the above methods relies
implicitly on a standard semantic for the imperative
code in the body of method m� Within such a code�
�mir� requests may be issued and rebecs may be
created� In the authors� semantics� method invocation
requests ��mir�� are the sole mechanism for commu�
nication between these rebecs� Regarding the in�nite
behavior of the semantics� communication is assumed
to be fair �	�� All �mir� requests eventually reach their
respective inboxes and will� eventually� be invoked by
the corresponding rebec�

COMPONENTS IN REBECA

In Rebeca� for veri�cation purposes� one may de�
compose a closed model and think of one part as

the open system and the remainder as the environ�
ment that makes the overall system closed� This de�
composition determines which rebecs in the model have
to be modeled with state and behavior and which
rebecs may be abstracted such that they only send
messages�

Since environment rebecs never execute their own
methods� there is no need to model their inboxes� state
or behaviors� In a Rebeca model� environment rebecs
are termed external and all other rebecs internal�

This decomposition process abstracts the model
considerably� Only internal rebecs are fully modeled

external rebecs are only modeled in their capacity
to request remote method invocations� So� they are
only modeled as the set of external messages that
can be sent by them� This set of external messages
represents the environment for the component� Instead
of putting external messages in an internal inbox� they
may be processed at any time� up to fair interleaving
with the processing of requests in the inbox� This
makes the model more understandable and the model
checking more e�cient� Formally� the behavior of the
environment of a component is modeled by additional
transitions� which describe its messages sent to the
component� In other words� with respect to the
external environment� a component behaves like an I�O
automata ����� where inputs from the environment are
always enabled�

Internal rebecs constitute the �focus� of a par�
ticular analysis� Determination of such a focus may
often be the result of intuition and experience with
similar patterns of open systems and depends on the
properties� which have to be proved�

With the decomposition technique� the universe of
rebecs is always known� The active classes in the closed
system designate this set� Given a model as the uni�
verse of rebecs� any ��nite� subset thereof can be the set
of internal rebecs of some Rebeca component� Given
two such components� one is able to compose them into
another component� The resultant component is the
union of internal rebecs of the constituents� Internal
and external messages can be obtained knowing the
universe of rebecs and internal rebecs�

INTEGRATING MODEL CHECKING AND
DEDUCTION

In formal veri�cation� one tries to prove or disprove
that a model satis�es some speci�cations� There are
two basic approaches of analysis� Model checking
and deductive methods� Typically� model checking is
performed by an exhaustive simulation of the model
on all possible inputs� In this case� a software tool
performs the analysis� In a deductive method� the
problem is formulated as proving a theorem in a
mathematical proof system and the modeler attempts




� M� Sirjani and A� Movaghar

to construct the proof of the theorem �usually using a
theorem prover as an aid��

Model checking and deduction both have
strengths and weaknesses� Model checking can be done
automatically� but is limited by the state explosion
problem� Deductive approaches� using theorem prov�
ing� require a considerable amount of manual guidance
and high expertise� By integrating these two technolo�
gies� one can take advantage of both� Abstraction can
be used to reduce state space and transform a problem
to a model�checkable form� Deduction can be used
to justify that a given abstraction preserves a set of
properties� In compositional veri�cation� these two
methods can be combined in such a way that desirable
features of each are retained� while minimizing their
shortcomings� In compositional veri�cation� the goal
is to check the properties of the components of a
system and deduce the global properties from these
local properties� The main di�culty with this approach
is that local properties are often not preserved at the
global level�

A property�preserving abstraction of a model is
another model whose properties can be mapped back
to the �rst one� If a model� A� is a property�
preserving abstraction of a model� M � which preserves
a certain set of properties� including �� and� if the
property� �� holds for A� i�e�� A j� �� then� one can
conclude that � holds for M � i�e� M j� �� If it is
proven that � holds for A by model checking and� if
A can be automatically constructed from M � then�
one has a powerful veri�cation method ��
����� In
compositional veri�cation� the speci�cation of a system
is decomposed into the properties of its components�
which are then veri�ed separately� If one deduces
that the system satis�es each local property and show
that the conjunction of the local properties implies the
overall speci�cation� then� one can conclude that the
system satis�es this speci�cation too� There has been a
strong trend to use compositional approaches in formal
veri�cation of systems �����������

In general� compositional veri�cation may be
exploited more e�ectively when the model is naturally
decomposable �������� In particular� a model consisting
of inherently independent modules is suitable for com�
positional veri�cation� The actor�based model provides
such independent modules because of the asynchronous
communication mechanism� which involves only an
explicit non�blocking send operation�

Weak Simulation

The state explosion problem may be avoided by using
techniques that replace a large component by a smaller
component� which satis�es the same properties� In
general� a notion of equivalence or preorder among
structures is needed� guaranteeing that two compo�

nents satisfy the same set of formulas in a given logic�
or that certain properties are preserved� The set of
properties which are preserved depends on the notion
of de�ned equivalence or preorder�

A simulation relates a component to an abstrac�
tion of that component� Because the abstraction can
hide some of the details of the original structure�
it may have a smaller set of state variables� The
simulation guarantees that every observable behavior
of a component is� also� a behavior of its abstraction�
However� the abstraction may have behaviors that are
not possible in the original component� Because of the
over�approximation of the transition relation� abstrac�
tions usually preserve only universally quanti�ed path
temporal formulas in logics� such as LTL or �CTL
formulas�

Now� the weak simulation relation among com�
ponents in this model is explained� For the sake
of simplicity� here� dynamic creation and dynamic
topology are ignored both in the closed model and the
components� Therefore� referring to the operational
semantics of the models in the previous section� the
state space� S� does not expand dynamically from
Formula � to Formula ��

External messages coming into the component are
present in all the states and one can imagine that they
are like the members of a set that is constantly attached
to all the states in the corresponding labelled transition
system� So� in each state� there are a set of variables�
a message �multi�� queue and� also� a set of external
messages� Because the set of external messages is
constant in all states� one does not need to consider
it in each state�

To de�ne the weak simulation relation between
two components� the operational semantics de�nition�
the component de�nition and the following notations
are used� A component� C� is a set of rebecs� the set
of identi�ers of internal rebecs of C is denoted by IC
and its state by sC � Each variable has one valuation
in each state� For a state sC � sC �VC denotes the set
of these valuations for each one of the variables in that
state� The inbox of component C is de�ned as a multi�
queue� where each queue is de�ned as a �nite sequence
of messages corresponding to an internal rebec as the
receiver� The multi�queue of component C in state sC
is denoted by sC �qC � As explained previously� a label
is a message of the form �sendid� i�mtdid�� where
sendid is the identi�er of the sender rebec� i is the
identi�er of the receiver rebec and mtdid designates
the method of i to be executed�

A projection relation between two states is also
de�ned� State sC� is a projection of state sC �denoted
by sC� 	 sC�� if� ��� IC� � IC 
 ��� The variables of their
common rebecs have the same values� i�e�� sC� �VC� �
sC �VC 
 and ��� The multi�queue� sC �qC� � is a projection
of sC �qC �



Integrating Model Checking and Deduction for Rebeca 
�

The multi�queue� qC� � is a projection of the
multi�queue� qC �denoted by qC� 	 qC�� if IC� �
IC and� for each i � IC� � the sequence of mes�
sages �sendid� i�mtdid� in qC � ignoring messages with
sendid � IC � IC� � is the same as the sequence of
messages in qC� �

With this terminology� the weak simulation rela�
tion is now de�ned�

De�nition � �Weak Simulation�

Given two components C and C � of a given model� rep�
resented by labelled transition systems �SC � TC � s�C ��
with signature of action labels LC and �SC� � TC� � s�

C�
��

with its signature of action labels LC� � such that IC� �
IC �

�� A relation H � SC � SC� is a weak simulation
relation between C and C � if� and only if� for
all sC � SC � sC� � SC� � if H�sC � sC��� then� the
following conditions hold�

�a� sC� 	 sC �

�b� For every state sC� and label l � LC � such
that �sC � l� sC�� � TC � there is a state sC�

�
�

with the property that sC�
�
� sC� or one has

�sC� � l� sC�
�
� � TC� � where H�sC� � sC�

�
�� �Note

that one has sC�
�
� sC� � if l �� LC� � which is

stuttering
 and �sC� � l� sC�
�
� � TC� � if l � LC� ��

�� The authors believe that C � weakly simulates C
�denoted by C � C ��� if there exists a weak
simulation relation�H � between C and C �� such that
H�sC� � sC�

�
��

Next� a theory is introduced� which provides a
formal justi�cation for the compositional veri�cation
technique of a component�based model� This theory
consists of two theorems� one theorem� which semanti�
cally characterizes the behavior of a component in the
context of a given closed model� in terms of the above
weak simulation relation and a general theorem� which
provides the semantic characterization of the logic� in
terms of the weak simulation relation�

Theorem �

For any two components C � and X of a model C
�de�ned on the same universal set of rebecs�� C � weakly
simulates C � C �jjX �

Proof

Consider H � f�sC � sC�� � SC � SC� jsC� 	 sCg� It
requires to be shown� ��� That H is a weak simulation
and ��� H�sC� � sC�

�
��

�� To show that H is a weak simulation�

�a� sC� 	 sC � by de�nition of H �

�b� For the second condition� let H�sC � sC�� and l �
LC � such that �sC � l� sC�� � TC �

i� If l �� LC� � then� sC� stays unchanged� i�e��
sC�

�
� sC� and one still has H�sC� � sC�

�
��

But l �� LC� means that l is a message
to rebecs in the component X � i�e�� l �
�p� r�m�� r � IX � r �� IC� � In this case� m will
be executed and� so� the variables of C � �VC��
remain unchanged� Also� messages that may
be sent by m are not put into the multi�
queue of C �� Thus� qC� won�t be changed
either and� therefore� H�sC� � sC�

�
�


ii� If l � LC� � it means that r � IC� � where l �
�p� r�m�� One has to show that l is enabled
in sC� and� then also show that sC�

�
	 sC� �

First� it is shown that l is enabled in sC� � in
all possible conditions�

� l is external for both C and C �� It is
known that IC� � IC � so� I

�
C
� I �

C� and
the set of external messages to C is a
subset of external messages to C �� Thus�
l is enabled in sC� �

� l is internal for C and external for C �� It
means that l is a message coming from
a rebec in X � e�g�� p � X � When l is
an external message for C �� it is always
enabled in all states� so� it is enabled in
sC� �

� l is internal for both C and C �� It is
known that H�sC � sC��� so sC� 	 sC and�
also� qC� 	 qC � From the de�nition of
projection� it is known that� if l is on the
top of the queue in sC � it has to be on
top of the queue for sC� too� Thus� l is
enabled in sC� �

Second� it is proven that sC�
�
	 sC� is the

same for all three cases�

� execution of m causes the same changes
on variables of both components �just the
variables in r�


� it may send some messages to rebecs in
C �� causing the same changes in both
queues of sC and sC� 
 or� it may send
messages to rebecs in X � making sC�

�
�qC�

di�erent from sC� �qC � but still guarantee�
ing qC� 	 qC and� so� sC�

�
	 sC� �

�� Now� it is shown that sC�
�
	 sC� � This follows from

the de�nition of the initial state in the operational
semantics of components� sC�

�
�VC� � sC� �VC 


furthermore� sC�
�
�qC� 	 sC� �qC � because there are

only init messages in both of them�

De�nition � �Satisfaction Relation�

A computation of a component� C� is a maximal
execution path� beginning at the initial state� Given
an LTL formula� �� one says that C j� �� i� � holds
for all computations of C�




� M� Sirjani and A� Movaghar

There is the following theorem� which restricts
the corresponding theorem of Clark et al� ��� to safety
properties�

Theorem �

If C � weakly simulates C� then� for every property
speci�ed by an LTL�X formula� � �LTL without the
next operator�� with atomic propositions on variables
in C �� C � j� � implies C j� ��

Using this theorem� one has the following corol�
lary for compositional veri�cation of LTL�X properties�
R � jjn

i��Xi is the parallel composition of n compo�
nents� Xi� i � �� � � � � n and one has IR �

S
n

i�� IXi
�

Corollary �

Let R � jjni��Xi and �Xi
be a property of Xi speci�ed

in LTL�X� e�g�� Xi j� �Xi
� In order to show that �R

is a property of system R� e�g� R j� �R� it su�ces to
�nd properties for each Xi� such that�

�� For i � �� � � � � n� �Xi
is a property of Xi� e�g�� Xi j�

�Xi
�

�� �
Vn
i�� �Xi

�
 �R is valid�

One can prove for i � �� � � � � n�Xi j� �Xi
by model

checking� After that� if �
Vn
i�� �Xi

� 
 �R� then� R j�
�R� In each system� deduction shall be used to prove
that this formula is valid� Automated theorem provers
can be used for proving this formula�

There are no conditions on selected components�
But� obviously� it is better to put highly interacting
rebecs in a component� It would also be better to
select loosely coupled components for model checking�
in order to decrease the number of external messages�
Sometimes� one needs to share some rebecs between
some components� Theorem � holds in this situation
too� Hence� one can use this corollary�

Sometimes� a system consists of similar compo�
nents in which one can use a kind of generalization�
It is said that two components are similar when they
consist of the same number of rebecs and� for each
rebec in one� there is one� and only one� corresponding
rebec in the other component and both rebecs are
instantiated from the same class� Hence� there are also
similar sending�receiving connections between rebecs
in similar components� Since all instances of a class
have similar properties� so have all similar components�
This is due to the existing symmetry in the model� A
component is a permutation of its similar components
over the rebec identi�ers set and so their semantics are
equivalent� The modeler chooses a component whose
parallel composition with a number of other similar
ones� makes up the total system� S�he veri�es the
property of this component by model checking and it
is generalized to other similar ones� Then� the rest is
done by using Corollary ��

CASE STUDY

Rebeca is used to model the dining philosophers exam�
ple� This system is discussed in various texts ��
�������
and can serve as a simple example for showing how to
use the proposed method�

A Rebeca Model

There are n philosophers at a round table� To the left
of each philosopher there is a fork� but� s�he needs two
forks to eat� Of course only one philosopher can use
a fork at a time� If the other philosopher wants it�
s�he just has to wait until the fork is available again�
Figure � shows a solution for the dining philosophers
problem� with n � �� coded in Rebeca�

The system consists of a Philosopher class that is
a template for de�ning philosophers and a Fork class
that is a template for forks �see Figure ��� This model
consists of four philosophers and four forks� The known
rebecs of each philosopher are its left and right forks
and known rebecs of each fork are its left and right
philosophers�

Some State Transitions

Here� some of the state transitions in the example
and how the execution of method servers causes state
transitions are explained�

� In the dining philosophers example� in the initial
state� there are four philosophers and four forks
with their init methods in their inboxes� So� we
have eight enabled transitions� Execution of the init
methods may cause sending messages to others or
to self and�or setting �eld variables


� After execution of the init method of Phils�� one
has an arrive message in its inbox� When the arrive
message in the inbox of Phils� is selected to be
served� it is popped from inbox� and its code is
executed by sending three messages� a Request to
Forks�� a Request to Forks� and an Eat to itself�
These method invocation requests are added to
corresponding inboxes�

A Component in a Rebeca Model

In the dining philosophers example� one can take rebecs
Phils�� Forks� and Phils� as an open component and
other rebecs as the environment� This component
can be denoted by Phils�jjForks�jjPhils�� The only
external messages coming to the component are Permit
messages from Forks� to Phils� and from Forks� to
Phils�� It is assumed that these messages are always
enabled�



Integrating Model Checking and Deduction for Rebeca 
�

Composition of Components in a Rebeca
Model

If one composes two components� Phils�jjForks�jj
Phils� and Phils�jjForks�jjPhils�� one will have Phils�jj
Forks�jjPhils�jjForks�jjPhils�� It is the union of in�
ternal rebecs� Internal and external messages can be
obtained knowing the universe of rebecs and internal
rebecs�

Compositional Veri�cation of Mutual
Exclusion Property

The system safety requirement is that at any given time
two neighboring philosophers cannot both hold the fork
between them� It is speci�ed in LTL�X as follows ��
denotes addition in mod n and n is � in our example��

�sys � ��

n���
i��

��Philsi�FR 
 Philsi���FL���

One decides how to decompose the system according
to the above property� which is the required system
property� It is required to deduce the system property�
�sys� from the properties of the components� So�
Phils�jjPhils�jjForks� is considered as a component and
the following property is proven by model checking�

�Phils�jjForks�jjPhils� � ����Phils��FR 
 Phils��FL���

This property is proven by model checking using our
tool� The tool can� automatically� generate the abstract
model of the component out of the closed model and�
then translate it to SMV� The SMV code is� then
model checked by NuSMV model checker� Considering
four similar components� PhilsijjForksi��jjPhilsi��� i �
�� � � � � � �with a shared philosopher between each pair
of overlapping components�� one has�

�PhilsijjForksi��jjPhilsi�������Philsi�FR
Philsi���FL���

and� then using deduction� one can easily prove that�

n���
i��

�PhilsijjForksi��jjPhilsi�� 
 �sys�

By Corollary �� in order to show that �sys is a
property of sys� it su�ces to �nd valid properties for
each component� such that the conjunction of these
properties yields to �sys� Thus� by what is shown
above� one can conclude that �sys is a property of sys�

Using Deduction to Prove the Mutual
Exclusion Property

In this example� it is obvious that the following formula
holds�

����Phils��FR 
 Phils��FL�


����Phils��FR 
 Phils��FL�


����Phils��FR 
 Phils��FL�


����Phils��FR 
 Phils��FL��


 ����Phils��FR 
 Phils��FL�


��Phils��FR 
 Phils��FL�


��Phils��FR 
 Phils��FL�


��Phils��FR 
 Phils��FL���

This will satisfy Condition � of Corollary �� In this
case� proving this formula is an easy deduction in linear
temporal logic� But� for proving more complicated
formulas� automated theorem provers can be used�

Model Checking Rebeca Code Using the
Authors� Tool

A tool has been developed by the authors for automatic
translation of Rebeca models to SMV ��	�� Using this
tool� some Rebeca examples were translated into SMV
and� then NuSMV were used to check their safety
properties� Data types supported by our tool are
limited to those provided by NuSMV�

In all examples� there were bugs in the code�
which were found by model checking� Some of the bugs
were simple ones in initializing variables and some were
more serious in communication and synchronization
between rebecs� In ��	�� some examples are presented
and it is shown how the state space is reduced by using
compositional veri�cation�

Here� the results obtained by using the tool to
model check the dining philosopher example and� also�
the results of applying the compositional veri�cation
approach to the same example are shown� CPU time
and memory� used by NuSMV for computing total and
reachable states� are summarized in Tables � and ��
Comparing data in Tables � and � shows that modeling
the components� instead of the whole system� can help
to reduce the number of reachable states� It can be seen
that increasing the number of philosophers and forks
will increase the size of total and reachable states in
the example� The mutual exclusion property� discussed
earlier� is satis�ed for the code in Figure ��

FUTURE WORK

Data abstraction in model checking Rebeca codes is�
now� based on the back�end model checker approaches�
The same data types are provided� as in SMV and
PROMELA� In future work� for direct model checking
of Rebeca codes� one also needs to consider the abstract
interpretation of supported data types�




� M� Sirjani and A� Movaghar

Table �� Closed�world approach� Results generated by NuSMV�

Model
Reachable

States

Total

States

CPU Time

�mm�ss�

Memory Usage

�KByte�

� Phils� � Forks ��	 ����E��� ����� ����


� Phils� � Forks ��
�� ����E��
 ����� �����

� Phils� � Forks ������ ����E�	� �
��� �����

Table �� Component�based approach� Results generated by NuSMV

Model
Reachable

States

Total

States

CPU Time

�mm�ss�

Memory Usage

�KByte�

� Phils� � Fork ���� ���
E��� ����� ����


� External Forks

Currently� the authors are working on extending
Rebeca and the compositional veri�cation method
to an actor�based language with a mechanism for
synchronous communication of signals� This ex�
tension involves new send statements of the form
send��var���signalid����value����� which describe
the emission of the signal �signalid���value��� to
the actor� denoted by var� This signal emission
has to synchronize with the execution by the actor�
denoted by var� of a corresponding receive statement
receive��signalid���� which contains the particular
signalid� Such a synchronization involves the trans�
mission of the actual parameters� which will be stored
by the receiver in the formal parameters of the signal�
In extending Rebeca� high�level components are also
provided� which generalize rebecs to sets of rebec�
classes with well�de�ned interfaces� Abstracting from
its internal class structure� such a component behaves
as a rebec in Rebeca� Extending Rebeca is carried
out in the context of the IST��������	�� EU project�
Omega� on the correct development of real�time em�
bedded systems in UML� This work will also involve
the extension of Rebeca to real�time�

ACKNOWLEDGMENT

The authors wish to thank Michael Huth for his
insightful comments on an earlier draft of this paper�
The �rst author also wishes to thank the o�ce for Inter�
national and Scienti�c Cooperation of Sharif University
of Technology and the British Council for providing the
partial scholarship to visit Imperial College� London in
Spring �����

REFERENCES

�� Manna� Z� and Pnueli� A�� The Temporal Logic of
Reactive and Concurrent Systems� Springer�Verlag�
Berlin� Germany ��		
��


� Manna� Z� and Pnueli� A�� Temporal Veri�cation of
Reactive Systems �Safety�� Springer�Verlag� Berlin�
Germany ��		���


� Clarke� E�M�� Grumberg� O� and Peled� D�A�� Model
Checking� The MIT Press� Cambridge� Massachusetts�
USA ��			��

�� Huth� M�R� and Ryan� M�� Logic in Computer Science�
Modelling and Reasoning About Systems� Cambridge
University Press� London� UK �
��
��

�� Agha� G�� Actors� A Model of Concurrent Computa�
tion in Distributed Systems� MIT Press� Cambridge�
MA� USA ��		���

�� Agha� G�� Mason� I�� Smith� S� and Talcott� C�
�A foundation for actor computation�� Journal of
Functional Programming� �� pp ���
 ��		���

�� NuSMV user manual� ewblock available through http�
��nusmv�irst�itc�it�NuSMV� userman�index�v
�html�

�� Spin user manual� available through http���netlib�bell�
labs�com�netlib�spin�what isspin�html�

	� Hewitt� C� �Description and theoretical analysis �using
schemata� of PLANNER� A language for proving
theorems and manipulating models in a robot�� MIT
Arti�cial Intelligence Technical Report� ���� Depart�
ment of Computer Science� MIT� �April �	�
��

��� Talcott� C� �Actor theories in rewriting logic�� The�
oretical Computer Science� ����
�� pp ������� �Aug�

��
��

��� Gaspari� M� and Zavattaro� G� �An actor algebra for
specifying distributed systems� The hurried philoso�
phers case study�� In Concurrent Object�Oriented Pro�
gramming and Petri Nets� Lecture Notes in Computer
Science� ����� pp 
���
��� Springer�Verlag� Berlin�
Germany �
�����

�
� Sirjani� M�� Movaghar� A� and Mousavi� M�R� �Com�
positional veri�cation of an object�based reactive sys�
tem�� In Proceedings of the Workshop on Automated
Veri�cation of Critical Systems �AVoCS�	
�� pp ����
���� Oxford� UK �April 
�����



Integrating Model Checking and Deduction for Rebeca 
	

�
� Schacht� S� �Formal reasoning about actor programs
using temporal logic�� In Concurrent Object�Oriented
Programming and Petri Nets� Lecture Notes in Com�
puter Science� ����� pp �������� Springer�Verlag�
Berlin� Germany �
�����

��� Rushby� J� �Integrated formal veri�cation� Using
model checking with automated abstraction� invariant
generation� and theorem proving�� In Proceedings
of Theoretical and Practical Aspects of SPIN Model
Checking� Dams� D�� Gerth� R�� Leue� S� and Massink�
M�� Eds�� Lecture Notes in Computer Science� �����
pp ����� Springer�Verlag� Berlin� Germany ��			��

��� Uribe� T�E� �Combinations of model checking and
theorem proving�� In Proceedings of Workshop on
Frontiers of Combining Systems� Lecture Notes in
Computer Science� ��	
� pp �������� Springer�Verlag�
Berlin� Germany �
�����

��� Kesten� Y� and Pnueli� A� �Modularization and ab�
straction� The keys to practical formal veri�cation��
In Proceedings of MFCS���� pp ������ Lecture Notes
in Computer Science� �
��� Springer�Verlag� Berlin�
Germany ��		���

��� Rajan� S�� Shankar� N� and Srivas� M�K� �An in�
tegration of model checking with automated proof
checking�� In Proceedings of CAV��
� P� Wolper� Ed��
Lecture Notes in Computer Science� 	�	� pp ���	��
Springer�Verlag� Berlin� Germany ��		���

��� Saidi� H� and Shankar� N� �Abstract and model check
while you prove�� In Proceedings of CAV���� N� Halb�
wachs and D� Peled� Eds�� Lecture Notes in Computer
Science� ����� pp ��
���
� Springer�Verlag� Berlin�
Germany ��			��

�	� Finkbeiner� B�� Manna� Z� and Sipma� H�B� �Deductive
veri�cation of modular systems�� In Proceedings of
CAV���� Lecture Notes in Computer Science� �����
pp 

	�
��� Springer�Verlag� Berlin� Germany ��		���


�� Clarke� E�M�� Long� D�E� and McMillan� K�L� �Com�
positional model checking�� In Proceeding of the Fourth
IEEE Symposium on Logic in Computer Science� pp

�
�
�
� Pasi�c Grove� CA� USA ��	�	��


�� Lynch� N�A� and Tattle� M� �An introduction to
input�output automata�� CWI�Quarterly� ��
�� pp

�	�
��� Amsterdam� The Netherlands ��	�	��



� Lynch� N�A�� Distributed Algorithms� Morgan Kauf�
mann� San Francisco� CS� USA ��		���



� Alur� R� and Henzinger� T�A� �Computer aided veri��
cation�� Technical Report Draft ��			��


�� Alur� R�� Henzinger� T�A�� Kupferman� O� and Vardi�
M�Y� �Alternating re�nement relations�� In Proceed�
ings of the Ninth International Conference on Con�
currency Theory �CONCUR����� Lecture Notes in
Computer Science� �
��� pp ��
����� Springer�Verlag�
Berlin� Germany ��		���


�� Sirjani� M�� Movaghar� A�� Iravanchi� H�� Jaghoori�
M� and Shali� A� �Model checking Rebeca by SMV��
In Proceedings of the Workshop on Automated Veri�
�cation of Critical Systems �AVoCS�	��� pp 


�

��
Southampton� UK �April 
��
��


�� Sirjani� M� and Movaghar� A� �An actor�based model
for formal modelling of reactive systems� Rebeca��
Technical Report CS�TR��	�	
� Tehran� Iran �
�����


�� McMillan� K� Veri�cation of Digital and Hybrid Sys�
tems� Springer�Verlag� Berlin� Germany �
�����


�� Kupferman� O�� Vardi� M�Y� and Wolper� P� �Module
checking�� Information and Computation� ��
�
�� pp



�
�� �
�����


	� Tsay� Y� �Compositional veri�cation in linear�time
temporal logic�� In Proceedings of FOSSACS �			�
Lecture Notes in Computer Science� ���
� pp 
���
���
Springer�Verlag� Berlin� Germany �
�����


�� De Roever� W�P� �The need for compositional proof
systems� A survey�� In W�P� Roever� H� Langmaack�
and A� Pnueli� Eds�� Compositionality� The Signi�cant
Di�erence� Lecture Notes in Computer Science� �����
pp ��

� Springer�Verlag� Berlin� Germany ��		���


�� De Roever� W�P�� de Boer� F�S� et al�� State�Based
Proof Theory of Concurrency� From Noncomposi�
tional to Compositional Methods� Cambridge Univer�
sity Press� Tracts in Theoretical Computer Science
�
�����



� Hoare� C�A�R�� Communications Sequential Processes�
Prentice�Hall� Englewood Cli�s� NJ� USA ��	����



� Roscoe� W�A�� Theory and Practice of Concurrency�
Prentice�Hall� Englewood Cli�s� NJ� USA ��		���


