Scientia Iranica, Vol. 12, No. 1, pp 55-65
© Sharif University of Technology, January 2005

Integrating Model Checking
and Deduction for Rebeca

M. Sirjani* and A. Movaghar!

Rebeca is an actor-based language for modeling concurrent and distributed systems. Its Java-like
syntax makes it easy-to-use for practitioners and its formal foundation is a basis to make different
formal verification approaches applicable. Compositional verification and abstraction techniques
are used in formal verification of Rebeca models to overcome state explosion problems. The
main contribution of this paper is to show how model checking and deduction are integrated

for verifying certain properties of these models.

Deduction is used to prove that abstraction

techniques preserve a set of behavioral specifications in temporal logic and is also used in applying
the compositional verification approach, on the basis of the model checked components.

INTRODUCTION

Reactive systems are increasingly used in applications
where failure is unacceptable. Correct and highly
dependable construction of such systems is particularly
important and challenging. A very promising and
increasingly attractive method for achieving this goal
is using the approach of formal verification [1-4].

Object-oriented modeling is an appropriate ap-
proach for representing reactive systems, which usu-
ally exhibit concurrency and are distributed. The
actor model [5,6] is a better candidate than passive
object-oriented programming languages, because of its
promotion of independent computing entities to sup-
port migration, distribution, dynamic reconfiguration,
openness and efficient parallel execution.

Two basic approaches for verifying properties are
model checking and deductive methods. A combination
of these two approaches can be exploited in a number
of ways, for example, in abstraction and compositional
verification.

Much work has been done on formal methods,
with different kinds of models for system behavior and
different verification approaches; also, the actor model
is used in different ways for modeling open, distributed
systems. But, to the best of the authors’ knowledge,
little has been done on verifying actor languages (re-

*. Corresponding Author, Department of Computer Engi-
neering, Sharif Unwersity of Technology, Tehran, I.R.
Iran.

1. Department of Computer Engineering, Sharif University
of Technology, Tehran, I.R. Iran.

lated work is discussed in the following section). In this
paper, an actor-based model, called Rebeca (Reactive
Objects Language) has been developed for describing
reactive systems. Methods for specifying properties
and verifying their correctness are presented. A major
obstacle to the use of automatic verification methods
is the problem of state explosion. Specially, in the
authors’ model, because of the encapsulated constructs
used, there may be a very large state space in model
checking, even for simple systems. Modularity and
different kinds of abstraction techniques are used to
overcome the state-explosion problem. The main con-
tribution of this paper is to show how model checking
and deduction are integrated to apply some abstraction
techniques and a compositional verification approach,
well-suited to the presented actor-based model.
Modeling a system in Rebeca requires one to
specify reactive-object templates and a finite set of
object instances that run in parallel. In Rebeca, actor-
based concepts are used for the specification of reactive
systems and their communications; components are
introduced as an additional structure for verification
purposes; and formal semantics are provided for the
model and components being comprised of their states,
communications, state transitions and the knowledge
of accessible interfaces. For formal verification of
Rebeca models, different abstraction techniques are
used, which preserve a set of behavioral specifications
in temporal logic and reduce the state space of a
model, making it more suitable for model checking
techniques. Deduction is used to establish the sound-
ness of these abstraction techniques by proving certain
relations between the constructs; model checking and



56

deduction are integrated in applying a compositional
verification approach to model check properties of the
components of a system and to deduce global properties
from these local properties. A tool is provided for
translating models into target languages of existing
model checkers, NuSMV [7] and Spin [8], enabling
model checking of open, distributed systems.

The language used, Rebeca, is inspired by the
actors paradigm, but goes well beyond it by adding
the concept of components and the ability to analyze
a group of active objects as a component. Also, there
are classes, from which active objects are instantiated.
Classes serve as templates for state, behavior, and
the interface access; adding reusability in both the
modeling and verification processes.

Rebeca and the above features are explained in
the following sections.

Outline of the Paper

In the following section, the work that is related to
the authors’ approach of modeling and analyzing open
systems is reviewed. Then, the modeling language,
Rebeca, and its syntax and formal semantics for closed
Rebeca models are presented. After that, open Rebeca
models, called components, are introduced. In the
section of Integrating Model Checking and Deduction,
compositional verification and abstraction techniques
used in the authors’ approach are explained. Following
this, weak simulation is defined as an abstraction
technique applied to Rebeca components, used in the
compositional verification of the model. Furthermore,
a simple example is used to show how reactive systems
can be modeled in Rebeca. A formal verification
approach is applied to this example and the results
gained by using the authors’ tool are shown; the tool
works by automatic translation of abstracted Rebeca
models into SMV [7]. The final section shows the
direction of future work.

RELATED WORK

Object-oriented models for concurrent systems have
been widely proposed since the 1980s. The actor model
was originally introduced by Hewitt [9] as an agent-
based language. It was later developed by Agha [5,6]
into a concurrent object-based model.

The actor model is proposed as a model of
concurrent computation in distributed open systems.
Actors have encapsulated states and behavior and are
capable of changing behavior creating new actors and
redirecting communication links through the exchange
of actor identities. Valuable work has been done on
formalizing the actor model [6,10,11].

The actor model was first explained as a simple
functional model, but several imperative languages

M. Sirjani and A. Movaghar

have also been developed based on it. Besides its
theoretical basis, the actor model and languages pro-
vide a very useful framework for understanding and
developing open distributed systems.

As far as is known, little has been done on the
formal verification of actors [12,13]. In Rebeca, an
imperative view of actors is proposed, trying to have
a more practical model, as well as a firm theoretical
basis.

The integration of model checking and deduction
has been used in different ways in the analysis of models
of concurrency [14,15]. Abstraction is a methodology
that combines deductive and algorithmic techniques.
Abstraction can be used to reduce problems to model-
checkable form, where deductive tools are used to
construct valid abstract descriptions or to justify that
a given abstraction is valid. Another approach is
compositional verification in which deduction is used
to prove global system properties by composing local
system properties (with a smaller state space) that have
been proved using model checking.

Kesten and Pnueli mentioned modularization and
abstraction as the keys to practical formal verification,
using a fair Kripke structure as the computational
model for reactive systems and temporal logic as a re-
quirement specification language [16]. Rajan, Shankar
and Srivas [17] illustrated an application, where model
checking is applied to a finite state abstraction of
a system, where abstraction is justified by means of
theorem proving. Saidi and Shankar presented a gen-
eral abstraction/refinement algorithm that preserves
the full p—calculus as the basis for an integration
of abstract interpretation, model checking and proof
checking [18]. A formal framework for modular de-
scription and verification of fair transition systems is
presented and several deductive proof techniques to
establish and re-use modular properties are proposed
by Finkbeiner and Manna [19].

Clarke, Long and McMillan used interface pro-
cesses to model the environment for a component in
their compositional verification approach [20]. They
modeled systems as finite transition systems and used
CTL (Computation Tree Logic) to specify their prop-
erties.  Input-output automata for modeling asyn-
chronous distributed systems are introduced by Lynch
and Tuttle [21,22]. They showed how to construct
modular and hierarchical correctness proofs for their
models. Alur and Henzinger proposed RML (Reactive
Modules Language) for modeling a system and used
a subset of linear temporal logic and alternating-time
temporal logic, to specify its properties [23]. RML
supports compositional design and verification.

All of these methods can be viewed as formal ver-
ification methods, consisting of a model for describing
the behavior of the system, a property specification lan-
guage and a method to verify the correctness of prop-



Integrating Model Checking and Deduction for Rebeca

erties. Rebeca can be considered in the same category,
using an actor-based model for describing the behavior
of the system, temporal logic for specifying properties
and a method, using deduction and model checking, for
verifying the correctness of properties. The complex
semantics of Rebeca cause the state explosion problem
to be more severe in model checking, but its actor-
based nature leads to straightforward techniques for
modularization and abstraction. The contribution is
integrating model checking and deduction and using
the inherent decoupling of the modules in Rebeca for
overcoming the state space explosion problem, thus,
providing an actor-based language suitable for mod-
eling concurrent and distributed systems and familiar
for practitioners on which formal verification can be
applied.

Many models, including those mentioned above,
have tools for facilitating their analysis. For example,
Mocha is the model checker for RML [24]. Two of
the most widely known tools for model checking are
SMV [7] and Spin [8]. The SMV system is a tool
for checking finite state systems against specifications
in the temporal logic CT'L. Spin supports the LTL
model checking of distributed systems. Spin uses a
high level language, called PROMELA (PROcess MEta
LAnguage), to specify system descriptions.

A tool has, also, been developed for translating
Rebeca to SMV. It enables one to model check Rebeca
models, both in closed and open forms. This tool
is used to show that the compositional verification
approach reduces the state space in many cases [25].

PROPOSED MODEL: REBECA

The model proposed here [26] is similar to the ac-
tor model in that it has independent active objects,
asynchronous message passing, unbounded buffers for
messages, dynamically changing topology and dynamic
creation of active objects. Class declarations are added
to the syntax, which act like templates for states,
behavior and interfaces of active objects. Also, there
is the notion of a component as a set of concurrently
executing active objects.

The authors’ objects are reactive and self-
contained. Each of them are called a rebec, for
reactive object. Computation takes place by message
passing and execution of the corresponding methods
of messages. Each message specifies a unique method
to be invoked when it is serviced. Each rebec has
an unbounded buffer, called a queue (or inbox), for
arriving messages. When a message at the head of a
queue of a rebec is serviced, its method is invoked and
the message is deleted from the queue. One may refer
to the messages as “method invocation requests”.

Each rebec is instantiated from a class and has
a single thread of execution. A model, representing

57

a set of rebecs, is defined as a closed system. It is
composed of rebecs, which execute concurrently and
interact with each other. Components are introduced
as open systems, consisting of subsets of rebecs in a
model.

The execution of a method is triggered by remov-
ing its “method invocation request” from the top of
the queue and results in an atomic execution of its
body, which cannot be interleaved by any other rebec.
Note that this coarse granularity of the interleaving of
rebecs is compatible with the asynchronous nature of
the communication of Rebeca, which does not contain
suspending communication primitives (e.g., a possibly
suspending receive state). It also reduces state space
and makes the model simpler.

Syntax

The syntax for classes (reactive-object templates),
rebecs (class instantiations) and models (parallel com-
position of rebecs), is presented in Figure 1 (a simple
example is shown in Figure 2 and is explained further).
The syntax of a <class> definition is similar to the one
in Java, except for the syntactic entity <interfaces>
that precedes the body of every class definition. In
<methodssig> of the interface, a rebec specifies what
kind of services it offers to the world. Only methods
from this interface are intended to be possibly known
to other rebecs.

The <body> first lists its fields (in <statevar>)
and, then, declares its local methods, which may,
themselves, contain local variables (in <method>).
Variables are typed and method declarations
follow a standard syntax. Unlike in Java, methods
have no call-back mechanism and, therefore, no
return type. The core language for statements

(<statement>) allows remote method invocation
requests (<mir>), assignments (<assignment>),
if-statements  (<conditional>),  while-statements
<classes> = {<class> }*
<class> := class<classname>( {<var> }*):
{ <interface>
<body> }
<interface> := interface :
[<methodssig>]
<methodssig> := {<methodid> ({<var> }*);}*
<body> := body :
<statevar>
{<method>}*
<statevar> = {<var>}*
<var> 1= <varid>:<vartype>;
<method> := <methodid> ( {<var> }¥)
{ {<var>*}
{<statement >; }* }
<statement> = <mir> | <assignmnt> |
<conditiontal > | <iteration> | <create>
<mir> == send ( <varid>, <methodid> ({<varid> }*))
<rebecs> = rebecs: {<rebecid>:(<rebecid>*)}*
<model> ::= model=||({<rebecid >}*)

Figure 1. Class, rebec and model definition syntax.



58 M. Sirjani and A. Movaghar
class Philosopher:(Forkl,Forkr:Fork) {  class Fork:(Phill,Philr:Philosopher) {
interface: interface:
Permit(); Request();
Release();
body: body:
boolean eating; boolean busy;
boolean FL, FR; boolean requester;
Arrive() Request() {
if (sender <> self)
send (Forkl, Request()); if (sender == Phill) requester = true;
send (Forkr, Request()); else requester = false;
send (self, Eat()); if (busy) send(self,Request());
else {
Permit() busy = true;
if (requester) send (Phill,Permit());
if (sender == Forkl) else send (Philr,Permit());
FL = true; }
else }
FR = true;
} Release()
Eat() {busy = false; }
if (FL && FR) init()
{ { busy = false; }
eating=true;
send (self, Leave()); rebecs:
Phils0: Philosopher(Forks0,Forks1);
else
send (self, Eat()); Philsl:Philosopher(Forksl,Forks2);
3
Leave() Phils2:Philosopher(Forks2,Forks3);
FL = false; Phils3:Philosopher(Forks3,Forks0);
FR = false;
eating = false; Forks0:Fork(Phil0,Phil3);
send (Forkl,Release());
send (Forkr,Release()); Forksl:Fork(Phill,Phil0);
send (self, Arrive());
} Forks2:Fork(Phil2,Phill);
init()
{ Forks3:Fork(Phil3,Phil2);
FL = false;
FR = false;
eating = false; model = || ( Phils0, Philsl, Phils2, Phils3,
send (self, Arrive()); Forks0, Forksl, Forks2, Forks3);
}
Figure 2. Dining philosophers system.
(<iteration>), object creation (<create>) and Operational Semantics for Closed Models

sequential composition.

In <mir>, a message consists of the callee id,
message id and the parameters passed to the callee.
Although not mentioned explicitly in the message, the
caller (sender) passes its rebec identity (self) to the
callee (receiver). Caller and callee may be the same
rebec, modeling local calls (sends to self).

It is required that every class definition has, at
least, one main method, named init, which is the first
method executed by each rebec. In Rebeca, a <model>
is a finite collection of rebecs that are (created and
then) run in parallel. In declaring a rebec, the bindings
to its known rebecs are specified in its parameter list.

State variables of each rebec are declared in its
body. Idle waiting can be modeled by sending messages
to self. All the rebecs in the model are instantiated
from classes and their bindings to known rebecs are
specified when instantiated. The model is a parallel
composition of declared rebecs.

Figure 1 shows that a Rebeca <model> is a finite
collection of rebecs ry,rs, -+ ,r,, running in parallel
[|r;- A model is called closed, if all <mir> requests
within a <model> are addressed to and originate from
rebecs within that model. Otherwise, a model is open
and is called a component. Components are discussed
further in the following section.

A closed <model> determines a labelled tran-
sition system, M = (S,L,T,sp), with state set, S,
signature of action labels, (L), transition relation, (T' C
S x L x S), and initial state, sy € S:

e The state space of the model, S, is the set:

n

11¢S: x a0), (1)

=1

where each S; is a model of the local state of rebec,
r;, consisting of a valuation that maps each local



Integrating Model Checking and Deduction for Rebeca

field variable to a value of the appropriate type; and
the inbox, ¢;, is an unbounded buffer that stores all
incoming method, invocation requests (<mir>) for
rebec, r;, in a FIFO manner,

e The set of action labels, L, is the set of all <mir>
calls in the given <model>; such calls record the
processing of those method invocation requests that
are part of the target rebec behavior;

e A triple (s,l,s") € S x L x S is an element of the
transition relation, 7', iff:

— In state s there is some i(1 < ¢ < n), such that
[ is the first message in the inbox, ¢;,[ is of the
form <sendid, i, mtdid(vars)>, and sendid is the
rebec identifier of the requester (sender rebec,
implicitly known by the receiver), i is the rebec
identifier of r; (receiver rebec) and mtdid is the
name of the method, m, of r;, which is invoked,
together with its parameters, vars;

— State s’ results from state s, through the atomic
execution of two activities: first, rebec, r;, deletes
the first message, [, from its inbox, ¢;, second,
method, m, is executed in state s. The latter
may add requests to rebecs’ inboxes, change the
local state and create new rebecs;

— If new rebecs are created in the invocation of m,
then, the state space, S, expands dynamically
from the set in Formula 1 to the following set:

(H(Si..cw X qz'..uw)> x T1(Si x a), (2)

=1

Tnew

where ¢,y ranges over the new rebecs created
within that method invocation and s’ is an
element in the set represented in Formula 2;

e The initial state, sg, is the one where each rebec has
executed the declarations of all its fields and its init
method is the sole element in its inbox.

Clearly, the execution of the above methods relies
implicitly on a standard semantic for the imperative
code in the body of method m. Within such a code,
<mir> requests may be issued and rebecs may be
created. In the authors’ semantics, method invocation
requests (<mir>) are the sole mechanism for commu-
nication between these rebecs. Regarding the infinite
behavior of the semantics, communication is assumed
to be fair [5]: All <mir> requests eventually reach their
respective inboxes and will, eventually, be invoked by
the corresponding rebec.

COMPONENTS IN REBECA

In Rebeca, for verification purposes, one may de-
compose a closed model and think of one part as

59

the open system and the remainder as the environ-
ment that makes the overall system closed. This de-
composition determines which rebecs in the model have
to be modeled with state and behavior and which
rebecs may be abstracted such that they only send
messages.

Since environment rebecs never execute their own
methods, there is no need to model their inboxes, state
or behaviors. In a Rebeca model, environment rebecs
are termed external and all other rebecs internal.

This decomposition process abstracts the model
considerably: Only internal rebecs are fully modeled;
external rebecs are only modeled in their capacity
to request remote method invocations. So, they are
only modeled as the set of external messages that
can be sent by them. This set of external messages
represents the environment for the component. Instead
of putting external messages in an internal inbox, they
may be processed at any time, up to fair interleaving
with the processing of requests in the inbox. This
makes the model more understandable and the model
checking more efficient. Formally, the behavior of the
environment of a component is modeled by additional
transitions, which describe its messages sent to the
component. In other words, with respect to the
external environment, a component behaves like an I/0O
automata [22], where inputs from the environment are
always enabled.

Internal rebecs constitute the “focus” of a par-
ticular analysis. Determination of such a focus may
often be the result of intuition and experience with
similar patterns of open systems and depends on the
properties, which have to be proved.

With the decomposition technique, the universe of
rebecs is always known. The active classes in the closed
system designate this set. Given a model as the uni-
verse of rebecs, any (finite) subset thereof can be the set
of internal rebecs of some Rebeca component. Given
two such components, one is able to compose them into
another component. The resultant component is the
union of internal rebecs of the constituents. Internal
and external messages can be obtained knowing the
universe of rebecs and internal rebecs.

INTEGRATING MODEL CHECKING AND
DEDUCTION

In formal verification, one tries to prove or disprove
that a model satisfies some specifications. There are
two basic approaches of analysis: Model checking
and deductive methods. Typically, model checking is
performed by an exhaustive simulation of the model
on all possible inputs. In this case, a software tool
performs the analysis. In a deductive method, the
problem is formulated as proving a theorem in a
mathematical proof system and the modeler attempts



60

to construct the proof of the theorem (usually using a
theorem prover as an aid).

Model checking and deduction both have
strengths and weaknesses. Model checking can be done
automatically, but is limited by the state explosion
problem. Deductive approaches, using theorem prov-
ing, require a considerable amount of manual guidance
and high expertise. By integrating these two technolo-
gies, one can take advantage of both. Abstraction can
be used to reduce state space and transform a problem
to a model-checkable form. Deduction can be used
to justify that a given abstraction preserves a set of
properties. In compositional verification, these two
methods can be combined in such a way that desirable
features of each are retained, while minimizing their
shortcomings. In compositional verification, the goal
is to check the properties of the components of a
system and deduce the global properties from these
local properties. The main difficulty with this approach
is that local properties are often not preserved at the
global level.

A property-preserving abstraction of a model is
another model whose properties can be mapped back
to the first one. If a model, A, is a property-
preserving abstraction of a model, M, which preserves
a certain set of properties, including ¢, and, if the
property, ¢, holds for A, i.e., A = ¢, then, one can
conclude that ¢ holds for M, ie. M = ¢. Ifit is
proven that ¢ holds for A by model checking and, if
A can be automatically constructed from M, then,
one has a powerful verification method [16-18]. In
compositional verification, the specification of a system
is decomposed into the properties of its components,
which are then verified separately. If one deduces
that the system satisfies each local property and show
that the conjunction of the local properties implies the
overall specification, then, one can conclude that the
system satisfies this specification too. There has been a
strong trend to use compositional approaches in formal
verification of systems [12,27-29].

In general, compositional verification may be
exploited more effectively when the model is naturally
decomposable [30,31]. In particular, a model consisting
of inherently independent modules is suitable for com-
positional verification. The actor-based model provides
such independent modules because of the asynchronous
communication mechanism, which involves only an
explicit non-blocking send operation.

Weak Simulation

The state explosion problem may be avoided by using
techniques that replace a large component by a smaller
component, which satisfies the same properties. In
general, a notion of equivalence or preorder among
structures is needed, guaranteeing that two compo-

M. Sirjani and A. Movaghar

nents satisfy the same set of formulas in a given logic,
or that certain properties are preserved. The set of
properties which are preserved depends on the notion
of defined equivalence or preorder.

A simulation relates a component to an abstrac-
tion of that component. Because the abstraction can
hide some of the details of the original structure,
it may have a smaller set of state variables. The
simulation guarantees that every observable behavior
of a component is, also, a behavior of its abstraction.
However, the abstraction may have behaviors that are
not possible in the original component. Because of the
over-approximation of the transition relation, abstrac-
tions usually preserve only universally quantified path
temporal formulas in logics, such as LTL or YCTL
formulas.

Now, the weak simulation relation among com-
ponents in this model is explained. For the sake
of simplicity, here, dynamic creation and dynamic
topology are ignored both in the closed model and the
components. Therefore, referring to the operational
semantics of the models in the previous section, the
state space, S, does not expand dynamically from
Formula 1 to Formula 2.

External messages coming into the component are
present in all the states and one can imagine that they
are like the members of a set that is constantly attached
to all the states in the corresponding labelled transition
system. So, in each state, there are a set of variables,
a message (multi-) queue and, also, a set of external
messages. Because the set of external messages is
constant in all states, one does not need to consider
it in each state.

To define the weak simulation relation between
two components, the operational semantics definition,
the component definition and the following notations
are used. A component, C, is a set of rebecs, the set
of identifiers of internal rebecs of C' is denoted by Io
and its state by s¢. Each variable has one valuation
in each state. For a state s¢, s¢.Veo denotes the set
of these valuations for each one of the variables in that
state. The inbox of component C' is defined as a multi-
queue, where each queue is defined as a finite sequence
of messages corresponding to an internal rebec as the
receiver. The multi-queue of component C' in state s¢
is denoted by sc.qo- As explained previously, a label
is a message of the form <sendid,i, mtdid>, where
sendid is the identifier of the sender rebec, i is the
identifier of the receiver rebec and mtdid designates
the method of ¢ to be executed.

A projection relation between two states is also
defined. State s¢- is a projection of state s¢ (denoted
by scr 1 se), if: (1) Io» C I¢; (2) The variables of their
common rebecs have the same values, i.e., sgr.Vor C
s¢.Vei and (3) The multi-queue, sc¢.qor, is a projection
of sc.qc.



Integrating Model Checking and Deduction for Rebeca

The multi-queue, ¢¢r, is a projection of the
multi-queue, gc (denoted by ¢qor T qc¢), if Ier C
Ic and, for each i € Ig/, the sequence of mes-
sages <sendid, v, mtdid> in q¢, ignoring messages with
sendid € Ic — Igr, is the same as the sequence of
messages in gcr.

With this terminology, the weak simulation rela-
tion is now defined.

Definition 1 (Weak Simulation)

Given two components C' and C’ of a given model, rep-
resented by labelled transition systems (S¢,T¢, So. ),
with signature of action labels Lo and (Scr, Teor, so,., ),
with its signature of action labels L/, such that Ior C
Ict

1. A relation H C S¢ x Scr is a weak simulation
relation between C' and C' if, and only if, for
all s¢ € S¢,sc: € Ser, if H(Sc,SCr), then, the
following conditions hold:

(a) scr T sc.

(b) For every state sc, and label | € L¢, such
that (s¢,l,sc,) € Tc, there is a state scv,,
with the property that s¢r, = s¢v or one has
(scr,l,s01) € Tor, where H(sc,,scr,). (Note
that one has s¢r, = sov, if | ¢ Les, which is
stuttering; and (scr,l,s¢;) € Tor, if 1 € Ler)

2. The authors believe that C' weakly simulates C
(denoted by C < ("), if there exists a weak
simulation relation, H, between C and C', such that

H(SCO , 806)'

Next, a theory is introduced, which provides a
formal justification for the compositional verification
technique of a component-based model. This theory
consists of two theorems, one theorem, which semanti-
cally characterizes the behavior of a component in the
context of a given closed model, in terms of the above
weak simulation relation and a general theorem, which
provides the semantic characterization of the logic, in
terms of the weak simulation relation.

Theorem 1

For any two components C' and X of a model C
(defined on the same universal set of rebecs), C’ weakly
simulates C = C'||X.

Proof
Consider H = {(s¢,s¢) € S¢ x Sci|scr 1 s¢}. It
requires to be shown: (1) That H is a weak simulation
and (2) H(SCm SC(’))'
1. To show that H is a weak simulation:

(a) scr T sc, by definition of H,

(b) For the second condition, let H(s¢, scr) and | €

L¢, such that (s¢, 1, s0,) € To:

61

i. If 1 ¢ Lo, then, sor stays unchanged, i.e.,
scr, = Sc and one still has H(s¢,,scor,).
But [ ¢ Lo means that [ is a message
to rebecs in the component X, ie., [ =
(p,r,m),r € Ix,r ¢ Icr. In this case, m will
be executed and, so, the variables of C' (V)
remain unchanged. Also, messages that may
be sent by m are not put into the multi-
queue of C’. Thus, gqo: won’t be changed
either and, therefore, H(sc,, scr,);

ii. If Il € Lev, it means that r € Ior, where [ =
(p,r,m). One has to show that [ is enabled
in scr and, then also show that sor T sc,.
First, it is shown that [ is enabled in s¢/, in
all possible conditions:

e [ is external for both C and C’. It is
known that Ic» C Ie, so, I, C I, and
the set of external messages to C' is a
subset of external messages to C’. Thus,
l is enabled in sc.

e [ is internal for C' and external for C’. It
means that [ is a message coming from
a rebec in X, e.g., p € X. When [ is
an external message for C’, it is always
enabled in all states, so, it is enabled in
Sor.

e [ is internal for both C and C'. It is
known that H(s¢,scr), so s T s¢ and,
also, gor T gq¢. From the definition of
projection, it is known that, if [ is on the
top of the queue in s¢, it has to be on
top of the queue for s¢: too. Thus, [ is
enabled in s¢r.

Second, it is proven that s¢; T s¢, is the

same for all three cases:

e execution of m causes the same changes
on variables of both components (just the
variables in r);

e it may send some messages to rebecs in
C', causing the same changes in both
queues of s¢ and s¢r; or, it may send
messages to rebecs in X, making sc1.qc
different from s¢, .qc, but still guarantee-
ing gor T go and, so, s¢; 1 8¢,

2. Now, it is shown that s¢y T s¢,. This follows from
the definition of the initial state in the operational
semantics of components: sc/, Vo C s¢,. Ve
furthermore, sc;.gcr 1 sc¢,.qc, because there are
ounly init messages in both of them.

Definition 2 (Satisfaction Relation)

A computation of a component, C, is a maximal
execution path, beginning at the initial state. Given
an LTL formula, ¢, one says that C |= ¢, iff ¢ holds
for all computations of C'.



62

There is the following theorem, which restricts
the corresponding theorem of Clark et al. [3] to safety
properties.

Theorem 2

If C' weakly simulates C, then, for every property
specified by an LTL-X formula, ¢ (LT L without the
next operator), with atomic propositions on variables
in C',C" £ ¢ implies C = ¢.

Using this theorem, one has the following corol-
lary for compositional verification of LT L-X properties.
R = ||», X, is the parallel composition of n compo-

nents, X;,2 =1,--- ,n and one has Ir = J._, Ix,.

Corollary 1

Let R = ||, X, and ¢x, be a property of X; specified
in LTL-X, e.g., X; E ¢x,;. In order to show that ppr
is a property of system R, e.g. R = @g, it suffices to
find properties for each X;, such that:

1. Fori=1,---,n,px, is a property of X;, e.g., X; &=
PXi>»

2. (AL, ox,) = ¢r is valid.

One can prove for i = 1,--- ,n,X; |= px, by model
checking. After that, if (A, ¢x,) = ¢r, then, R |=
¢r- In each system, deduction shall be used to prove
that this formula is valid. Automated theorem provers
can be used for proving this formula.

There are no conditions on selected components.
But, obviously, it is better to put highly interacting
rebecs in a component. It would also be better to
select loosely coupled components for model checking,
in order to decrease the number of external messages.
Sometimes, one needs to share some rebecs between
some components. Theorem 2 holds in this situation
too. Hence, one can use this corollary.

Sometimes, a system consists of similar compo-
nents in which one can use a kind of generalization.
It is said that two components are similar when they
consist of the same number of rebecs and, for each
rebec in one, there is one, and ounly one, corresponding
rebec in the other component and both rebecs are
instantiated from the same class. Hence, there are also
similar sending/receiving connections between rebecs
in similar components. Since all instances of a class
have similar properties, so have all similar components.
This is due to the existing symmetry in the model. A
component is a permutation of its similar components
over the rebec identifiers set and so their semantics are
equivalent. The modeler chooses a component whose
parallel composition with a number of other similar
ones, makes up the total system. S/he verifies the
property of this component by model checking and it
is generalized to other similar ones. Then, the rest is
done by using Corollary 1.

M. Sirjani and A. Movaghar

CASE STUDY

Rebeca is used to model the dining philosophers exam-
ple. This system is discussed in various texts [16,32,33]
and can serve as a simple example for showing how to
use the proposed method.

A Rebeca Model

There are n philosophers at a round table. To the left
of each philosopher there is a fork, but, s/he needs two
forks to eat. Of course only one philosopher can use
a fork at a time. If the other philosopher wants it,
s/he just has to wait until the fork is available again.
Figure 2 shows a solution for the dining philosophers
problem, with n = 4, coded in Rebeca.

The system consists of a Philosopher class that is
a template for defining philosophers and a Fork class
that is a template for forks (see Figure 2). This model
consists of four philosophers and four forks. The known
rebecs of each philosopher are its left and right forks
and known rebecs of each fork are its left and right
philosophers.

Some State Transitions

Here, some of the state transitions in the example
and how the execution of method servers causes state
transitions are explained:

e In the dining philosophers example, in the initial
state, there are four philosophers and four forks
with their init methods in their inboxes. So, we
have eight enabled transitions. Execution of the init
methods may cause sending messages to others or
to self and/or setting field variables;

e After execution of the init method of Phils2, one
has an arrive message in its inbox. When the arrive
message in the inbox of Phils2 is selected to be
served, it is popped from inboxs and its code is
executed by sending three messages, a Request to
Forks2, a Request to Forks3 and an Eat to itself.
These method invocation requests are added to
corresponding inboxes.

A Component in a Rebeca Model

In the dining philosophers example, one can take rebecs
PhilsO, Forksl and Philsl as an open component and
other rebecs as the environment. This component
can be denoted by Phils0||Forks1||Philsl. The only
external messages coming to the component are Permit
messages from ForksO to PhilsO and from Forks2 to
Philsl. It is assumed that these messages are always
enabled.



Integrating Model Checking and Deduction for Rebeca

Composition of Components in a Rebeca
Model

If one composes two components, PhilsO||Forksl||
Phils1 and Phils1||Forks2||Phils2, one will have Phils0||
Forks1||Phils1||Forks2||Phils2. It is the union of in-
ternal rebecs. Internal and external messages can be
obtained knowing the universe of rebecs and internal
rebecs.

Compositional Verification of Mutual
Exclusion Property

The system safety requirement is that at any given time
two neighboring philosophers cannot both hold the fork
between them. It is specified in LT L-X as follows (¢
denotes addition in mod n and n is 4 in our example):

n—1
sy = O( \ ~(Phils; FR A Phils;z . FL)).

i=0
One decides how to decompose the system according
to the above property, which is the required system
property. It is required to deduce the system property,
¢sys, from the properties of the components. So,
Phils0||Phils1||Forksl is considered as a component and
the following property is proven by model checking:

©Philso||Forks1||Philst = D(=(Phils0.F R A Phils1.F'L)).

This property is proven by model checking using our
tool. The tool can, automatically, generate the abstract
model of the component out of the closed model and,
then translate it to SMV. The SMV code is, then
model checked by NuSMV model checker. Considering
four similar components, Phils;||Forks;q ||Phils;g1,7 =
0,---,4 (with a shared philosopher between each pair
of overlapping components), one has:

©Phils;||Forks; g1 ||Phils; o = (7 (Phils;. FRAPhils;g . F'L)),

and, then using deduction, one can easily prove that:

n—1

/\ $PPhils, ||Forks;g1 ||Philsig1 — Psys-

i=0

By Corollary 1, in order to show that ¢gys is a

property of sys, it suffices to find valid properties for
each component, such that the conjunction of these
properties yields to ¢gys. Thus, by what is shown
above, one can conclude that ¢gys is a property of sys.

Using Deduction to Prove the Mutual
Exclusion Property

In this example, it is obvious that the following formula
holds:

O(~(Phils0.F R A Phils1.FL)

63

AD(~(Phils1.FR A Phils2.FL)
AD(~(Phils2.FR A Phils3.FL)
AD(~(Phils3.FR A Phils0.FL))
= O(~(Phils0.F R A Phils1.FL)
A-(Phils1.F R A Phils2.FL)
A-(Phils2.FR A Phils3.FL)

A-(Phils3.F R A Phils0.FL)).

This will satisfy Condition 2 of Corollary 1. In this
case, proving this formula is an easy deduction in linear
temporal logic. But, for proving more complicated
formulas, automated theorem provers can be used.

Model Checking Rebeca Code Using the
Authors’ Tool

A tool has been developed by the authors for automatic
translation of Rebeca models to SMV [25]. Using this
tool, some Rebeca examples were translated into SMV
and, then NuSMV were used to check their safety
properties. Data types supported by our tool are
limited to those provided by NuSMV.

In all examples, there were bugs in the code,
which were found by model checking. Some of the bugs
were simple ones in initializing variables and some were
more serious in communication and synchronization
between rebecs. In [25], some examples are presented
and it is shown how the state space is reduced by using
compositional verification.

Here, the results obtained by using the tool to
model check the dining philosopher example and, also,
the results of applying the compositional verification
approach to the same example are shown. CPU time
and memory, used by NuSMV for computing total and
reachable states, are summarized in Tables 1 and 2.
Comparing data in Tables 1 and 2 shows that modeling
the components, instead of the whole system, can help
to reduce the number of reachable states. It can be seen
that increasing the number of philosophers and forks
will increase the size of total and reachable states in
the example. The mutual exclusion property, discussed
earlier, is satisfied for the code in Figure 2.

FUTURE WORK

Data abstraction in model checking Rebeca codes is,
now, based on the back-end model checker approaches.
The same data types are provided, as in SMV and
PROMELA. In future work, for direct model checking
of Rebeca codes, one also needs to consider the abstract
interpretation of supported data types.



64

M. Sirjani and A. Movaghar

Table 1. Closed-world approach: Results generated by NuSMV.

Model Reachable Total CPU Time | Memory Usage
States States (mm:ss) (KByte)
2 Phils, 2 Forks 285 3.28E+22 00:00 11136
3 Phils, 3 Forks 14671 8.79E+36 00:12 19304
4 Phils, 4 Forks 390720 1.80E+52 06:28 38700

Table 2. Component-based approach: Results generated by NuSMV

Model Reachable Total CPU Time | Memory Usage
States States (mm:ss) (KByte)
2 Phils, 1 Fork 4132 1.16E+21 00:02 14076
2 External Forks

Currently, the authors are working on extending
Rebeca and the compositional verification method
to an actor-based language with a mechanism for
synchronous communication of signals.  This ex-
tension involves new send statements of the form
send(<var>,<signalid>,(<value>*)), which describe
the emission of the signal <signalid>(<value>*) to
the actor, denoted by var. This signal emission
has to synchronize with the execution by the actor,
denoted by var, of a corresponding receive statement
receive(<signalid>*), which contains the particular
signalid. Such a synchronization involves the trans-
mission of the actual parameters, which will be stored
by the receiver in the formal parameters of the signal.
In extending Rebeca, high-level components are also
provided, which generalize rebecs to sets of rebec-
classes with well-defined interfaces. Abstracting from
its internal class structure, such a component behaves
as a rebec in Rebeca. Extending Rebeca is carried
out in the context of the IST-2001-33522 EU project,
Omega, on the correct development of real-time em-
bedded systems in UML. This work will also involve
the extension of Rebeca to real-time.

ACKNOWLEDGMENT

The authors wish to thank Michael Huth for his
insightful comments on an earlier draft of this paper.
The first author also wishes to thank the office for Inter-
national and Scientific Cooperation of Sharif University
of Technology and the British Council for providing the
partial scholarship to visit Imperial College, London in
Spring 2002.

REFERENCES

1. Manna, Z. and Pnueli, A., The Temporal Logic of
Reactive and Concurrent Systems, Springer-Verlag,
Berlin, Germany (1992).

10.

11.

12.

Manna, Z. and Pnueli, A., Temporal Verification of
Reactive Systems (Safety), Springer-Verlag, Berlin,
Germany (1995).

Clarke, E.M., Grumberg, O. and Peled, D.A., Model
Checking, The MIT Press, Cambridge, Massachusetts,
USA (1999).

Huth, M.R. and Ryan, M., Logic in Computer Science:
Modelling and Reasoning About Systems, Cambridge
University Press, London, UK (2002).

Agha, G., Actors: A Model of Concurrent Computa-
tion in Distributed Systems, MIT Press, Cambridge,
MA, USA (1990).

Agha, G., Mason, I., Smith, S. and Talcott, C.
“A foundation for actor computation”, Journal of
Functional Programming, 7, pp 1-72 (1997).

NuSMYV user manual. ewblock available through http:
//nusmv.irst.itc.it/NuSMV/ userman/index-v2.html.

Spin user manual, available through http://netlib.bell-
labs.com/netlib/spin/what isspin.html.

Hewitt, C. “Description and theoretical analysis (using
schemata) of PLANNER: A language for proving
theorems and manipulating models in a robot”, MIT
Artificial Intelligence Technical Report, 258, Depart-
ment of Computer Science, MIT, (April 1972).

Talcott, C. “Actor theories in rewriting logic”, The-
oretical Computer Science, 285(2), pp 441-485 (Aug.
2002).

Gaspari, M. and Zavattaro, G. “An actor algebra for
specifying distributed systems: The hurried philoso-
phers case study”, In Concurrent Object-Oriented Pro-
grammang and Petri Nets, Lecture Notes in Computer
Science, 2001, pp 216-246, Springer-Verlag, Berlin,
Germany (2001).

Sirjani, M., Movaghar, A. and Mousavi, M.R. “Com-
positional verification of an object-based reactive sys-
tem”, In Proceedings of the Workshop on Automated
Verification of Critical Systems (AVoCS’01), pp 114-
118, Oxford, UK (April 2001).



Integrating Model Checking and Deduction for Rebeca

13.

14.

15.

16.

17.

18.

19.

20.

21.

Schacht, S. “Formal reasoning about actor programs
using temporal logic”, In Concurrent Object-Oriented
Programming and Petri Nets, Lecture Notes in Com-
puter Science, 2001, pp 445-460, Springer-Verlag,
Berlin, Germany (2001).

Rushby, J. “Integrated formal verification: Using
model checking with automated abstraction, invariant
generation, and theorem proving”, In Proceedings
of Theoretical and Practical Aspects of SPIN Model
Checking, Dams, D., Gerth, R., Leue, S. and Massink,
M., Eds., Lecture Notes in Computer Science, 1680,
pp 1-11, Springer-Verlag, Berlin, Germany (1999).

Uribe, T.E. “Combinations of model checking and
theorem proving”, In Proceedings of Workshop on
Frontiers of Combining Systems, Lecture Notes in
Computer Science, 1794, pp 151-170, Springer-Verlag,
Berlin, Germany (2000).

Kesten, Y. and Pnueli, A.
straction: The keys to practical formal verification”,
In Proceedings of MFCS-98, pp 54-T1, Lecture Notes
in Computer Science, 1450, Springer-Verlag, Berlin,
Germany (1998).

Rajan, S., Shankar, N. and Srivas, M.K. “An in-
tegration of model checking with automated proof
checking”, In Proceedings of CAV’95, P. Wolper, Ed.,
Lecture Notes in Computer Science, 939, pp 84-97,
Springer-Verlag, Berlin, Germany (1995).

Saidi, H. and Shankar, N. “Abstract and model check
while you prove”, In Proceedings of CAV’99, N. Halb-
wachs and D. Peled, Eds., Lecture Notes in Computer
Science, 1633, pp 443-453, Springer-Verlag, Berlin,
Germany (1999).

Finkbeiner, B., Manna, Z. and Sipma, H.B. “Deductive
verification of modular systems”, In Proceedings of
CAV’99, Lecture Notes in Computer Science, 1536,
pp 239-275, Springer-Verlag, Berlin, Germany (1998).

Clarke, E.M., Long, D.E. and McMillan, K.L.. “Com-
positional model checking”, In Proceeding of the Fourth
IEEE Symposium on Logic in Computer Science, pp
353-362, Pasific Grove, CA, USA (1989).

Lynch, N.A. and Tattle, M.
input/output automata”, CWI-Quarterly, 2(3), pp
219-246, Amsterdam, The Netherlands (1989).

“Modularization and ab-

“An introduction to

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

65

Lynch, N.A., Distributed Algorithms, Morgan Kauf-
mann, San Francisco, CS, USA (1996).

Alur, R. and Henzinger, T.A. “Computer aided verifi-
cation”, Technical Report Draft (1999).

Alur, R., Henzinger, T.A., Kupferman, O. and Vardi,
M.Y. “Alternating refinement relations”, In Proceed-
imgs of the Ninth International Conference on Con-
currency Theory (CONCUR’98), Lecture Notes in
Computer Science, 1466, pp 163-178, Springer-Verlag,
Berlin, Germany (1998).

Sirjani, M., Movaghar, A., Iravanchi, H., Jaghoori,
M. and Shali, A. “Model checking Rebeca by SMV”,
In Proceedings of the Workshop on Automated Veri-
fication of Critical Systems (AVoCS’03), pp 233-236,
Southampton, UK (April 2003).

Sirjani, M. and Movaghar, A. “An actor-based model
for formal modelling of reactive systems: Rebeca”,

Technical Report CS-TR-80-01, Tehran, Iran (2001).

McMillan, K. Verification of Digital and Hybrid Sys-
tems, Springer-Verlag, Berlin, Germany (2000).

Kupferman, O., Vardi, M.Y. and Wolper, P. “Module
checking”, Information and Computation, 164(2), pp
322-344 (2001).

Tsay, Y. “Compositional verification in linear-time
temporal logic”, In Proceedings of FOSSACS 2000,
Lecture Notes in Computer Science, 1784, pp 344-358,
Springer-Verlag, Berlin, Germany (2000).

De Roever, W.P. “The need for compositional proof
systems: A survey”, In W.P. Roever, H. Langmaack,
and A. Pnueli, Eds., Compositionality: The Significant
Dufference, Lecture Notes in Computer Science, 1536,
pp 1-22, Springer-Verlag, Berlin, Germany (1998).

De Roever, W.P., de Boer, F.S. et al., State-Based
Proof Theory of Concurrency: From Noncomposi-
tional to Compositional Methods, Cambridge Univer-
sity Press, Tracts in Theoretical Computer Science
(2001).

Hoare, C.A.R., Communications Sequential Processes,

Prentice-Hall, Englewood Cliffs, NJ, USA (1985).

Roscoe, W.A., Theory and Practice of Concurrency,
Prentice-Hall, Englewood Cliffs, NJ, USA (1998).



