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Analysis of the Convergence and

Closed Loop Stability in EDMC
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�
and H� Zadehmorshed Beik

�

In this paper� the convergence and stability conditions of extended DMC in the control of
nonlinear SISO and MIMO systems are investigated� The formulations are based on the ordinary
DMC in which� with successive linearization of the nonlinear model and new interpretation
of disturbance� the nonlinear extension is deduced� In addition� new convergence and stability
criteria are derived for SISO and MIMO systems� These criteria include convergence and stability
in the case of longer control �M � �� and prediction �P � �� horizons� as well as the �nite and
in�nite sampling time� Finally� the simulation results for a MIMO �� � �� model� based on a
power unit nonlinear plant� are presented�

INTRODUCTION

Model Predictive Control �MPC� and its industrial
applications have become more and more popular
during the last few decades ������ MPC refers to a
family of controllers that share three basic schemes �	��
In all model predictive controllers
 an explicit model is
employed to predict the future outputs of the process�
This is why they are also categorized in model based
control approaches� The control signal is determined

based on an optimization algorithm to optimize an ob�
jective function� This property enables the controllers
to handle the constraints explicitly during the control
design stage� Finally
 the calculated control signals are
applied
 based on the receding horizon strategy
 which
is why they are also called receding horizon controllers�

So far
 almost all types of model structure have
been employed in MPC� Linear MPC refers to those
controllers that use a linear model structure of the
process� In the absence of constraints
 use of linear
models results in a closed form solution to the op�
timization problem� However
 in constrained linear
MPC
 a quadratic programming is usually performed�
In nonlinear MPC controllers
 on the other hand
 a
nonlinear model of the process is employed� In this
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case
 the optimization problem does not generally have
a closed form solution� Usually
 nonlinear program�
ming is implemented to obtain results� Nonlinear
programming is run
 based on either a sequential ��
��
or simultaneous �

�� strategy� In either case
 high
computational power is required ���� This de�ciency
con�nes application of nonlinear MPC on processes
that possess slow dynamics� In order to reduce com�
putational requirements
 linear approximations have
been employed in some designs of nonlinear model
predictive controllers� Multi Model adaptive Predictive
Control �MMPC� ����
 Quadratic Dynamic Matrix
Control �QDMC and NLQDMC� ���
���
 Extended
Dynamic Matrix Control �EDMC� ���
�	� and Univer�
sal Dynamic Matrix Control �UDMC� ���� have been
introduced from this point of view� In the �rst three
approaches
 an approximated linear model is used to
predict the e�ects of future control moves at each
sample time� Free response
 however
 is computed
by integrating the nonlinear model equations� While
the linear models are determined o� line in MMPC

in QDMC and EDMC they are obtained based on
the Jacobian and the perturbation methods at each
sample time� The main di�erence between QDMC
and EDMC is the way of computation and consid�
eration of the model�process mismatch and external
disturbance� In UDMC
 linear approximation is im�
plemented only in the calculation of the Jacobians
during the updating state of the optimization algo�
rithm�

There is plenty of research work on the stability
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consideration of linear ������� and nonlinear �������
MPC controllers� The backbone of ideas presented
in the literature relies on the in�niteness of the pre�
diction horizon and
 therefore
 use of the established
stability property of the LQ control theory� Because
of impracticality
 in most cases
 the in�niteness of the
horizon is replaced by the stability constraints �includ�
ing terminal constraints� in some improved schemes�
Both hard ���
��� and soft constraints ���
�
� were
considered� By choosing the cost function in MPC as
the candidate of the Lyapunov function and showing
that it is a non�increasing function
 the stability of
the closed loop system is proved� The stability is
derived for the nominal condition in most cases and
is based on the state space model representation of the
process
 in which states are assumed to be measurable
directly or determined through indirect measurements�
It is also assumed that the implemented optimization
algorithms are converged to the correct solution of the
problem�

Due to their conceptual simplicity and lower com�
putational requirements
 predictive controllers
 such as
QDMC and EDMC
 provide realistic advanced control
strategies for industrial applications� It is shown
in ���� that by tolerating a negligible loss in the
closed loop performance
 QDMC was six times faster
than a nonlinear MPC run based on the sequential
method� Unfortunately
 there is not an analytical
and explicit stability proof for QDMC or NLQDMC�
Nevertheless
 stable closed loop behavior has been
illustrated in computer simulations
 as well as actual
implementation of the controllers
 even for open loop
integrating
 as well as unstable processes ��
��
����
To get a stable closed loop system
 the state space
representation of the process
 along with a state es�
timator
 has been employed in NLQDMC ����� On
the other hand
 EDMC has proved to be stable

provided that some conditions on the control param�
eters and the steady state gain of the process are
satis�ed ����� Proof of the convergence in the internal
loop
 as well as closed loop stability
 was derived based
on the contraction mapping theorem� Input�output
representations of the process and the controller are
used in the formulation of the problem� Imposing
unrealistic conditions
 such as in�nite sample time
and restricting assumptions
 such as unity control
and prediction horizons
 make the mentioned proof
unacceptable in practice� In this paper
 the authors
try to extend the applicability of the proof by relaxing
the above mentioned restricting conditions� In this
way
 a nonlinear MPC �or time varying linear MPC�
has been provided with less computational require�
ments
 as well as acceptable and realistic stability
conditions�

The paper is organized as follows� First
 the
DMC and its nonlinear extension are reviewed and

nonlinear vector equations and some powerful solutions
are presented� Then
 the convergence and closed
loop stability conditions for a SISO process case with
M � �
 for �nite and in�nite sampling time
 are
proposed� After that
 the EDMC formulation for
the MIMO system is derived and the related con�
vergence theorem and the stability criteria are pre�
sented
 respectively� Finally
 the simulation results
for a nonlinear model �� � �� of a power unit plant
are illustrated� Conclusions are given in the last
section�

DMC FORMULATION AND ITS
NONLINEAR EXTENSION FOR SISO
SYSTEMS

Since EDMC formulation is based on ordinary DMC
 a
brief description of both controllers is presented in this
section�

DMC

Considering a SISO system step response model
 the
output could be determined using the following discrete
convolution�

ylin�k� �

NX
i��

ai�u�k � i� � aNu�k �N � �� � d�k��
���

where u�k� and �u�k� are the input and its variation
i�e� u�k��u�k��� in sample time k
 respectively� ai is
the step response coe�cient at sample time i� N is the
number of sample time at which step response reaches
its steady state� The following disturbance represents
any di�erence between the measured output and the
one predicted by the above model�

d�k��ymeas�k��
NX
i��

ai�u�k�i��aNu�k�N����
���

The future predictions of the process output are given
in the following matrix�vector relation�

�
����
ylin�k � ��
ylin�k � ��

���
ylin�k � P �

�
����

�

�
���������

a� � � � � � �
a� a� � � � � �
���

aM aM�� � � � a�
���
ap ap�� � � � ap�M��

�
���������

�
����

�u�k�
�u�k � ��

���
�u�k�M���

�
�����
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�
����

a� a� � � � aN
a� a� � � � aN �
���

ap�� � � � aN � � � �

�
����

�
����

�u�k � ��
�u�k � ��

���
�u�k �N � ��

�
����

�

�
����

aNu�k �N�
aNu�k �N � ��

���
aNu�k �N � P � ��

�
�����

�
����
d�k � ��
d�k � ��

���
d�k � P �

�
���� � ���

This can be written
 equivalently
 in the following
vector form�

ylin � A�u� ypast � d� �	�

P and M are the prediction and moving �control�
horizons
 respectively
 ypast denotes the e�ects of the
past inputs on the predicted outputs� A is a Toeplitz
matrix
 consisting of step response coe�cients and is
called the dynamic matrix of the process� Since future
estimates of the mismatches are not available
 it is
customary to assume d�k�i� � d�k� for i � �� �� � � � � P �
The control moves
 �u
 are determined according to
the solution of the following optimization problem�

min
�u

PX
i��

�
yd�k�i��ylin�k�i�

��
�

MX
j��

�� ��u�k�M�j��
�
�

���

yd is the desired output trajectory and � is the
weighting coe�cient on the input variations� Using
least square estimation
 the solution of the problem is
given by�

�u �
	
ATA� ��I


��
AT

	
yd � ypast � d



� ���

Usually
 the �rst component of �u
 i�e� �u�k�
 will
be applied to the process �u�k� � u�k � �� � �u�k��
and the same procedure will be performed in future
sampling intervals�

Extended DMC

To extend the application of DMC �which is originally
based on a linear model of the process� to nonlinear
systems
 it is required to employ an approximated
linear model for a nonlinear process in each sample
interval� This is done via linearization of the process�s
nonlinear model or by determination of the process
response for a step perturbation� Also
 a new in�
terpretation of disturbance is introduced
 due to the
nonlinear character of the process� This is explained in
more detail in the next section�

Nonlinear Disturbance

In this extension
 a new interpretation of d is ex�
ploited ����� In other words
 d is split into two
parts
 the unknown parts
 dext
 which are treated as
in ordinary DMC and the known parts
 dnl
 which
represent the di�erence between approximated linear
and nonlinear models of the process�

d � dext � dnl� �
�

To consider this partitioning
 the predicted outputs of
the process are written as�

yel � A�u� ypast � dext � dnl� ���

dext�k � i� is assumed constant over the prediction
horizon �i � �� �� � � � � P � and dnl�k � i� varies during
the horizon� Solving Problem � results in the following
relation for input variations�

�u�dnl��
	
ATA���I


��
AT

	
ysp�ypast�dext�dnl



�
���

dnl is determined
 in order to have the same predicted
outputs from the nonlinear
 ynl
 and linear
 yel
 mod�
els


ynl�dnl� � yel � A�u�dnl� � ypast � dext � dnl�
����

To solve the above problem
 equation �� is reformu�
lated in the following equation
 which is a root �nding
problem�

f�dnl��ynl�dnl��A�u�dnl��ypast�dnl � dext���
����

There are P nonlinear equations in P unknowns

dnl�k���� � � � � dnl�k�P �� Nonlinearity of the equations
arises from the nonlinear relation that exists between
ynl and u �and
 therefore
 �u�� In the following sub�
section
 some well established methods are summarized
that can be applied to �nd the solution to the problem�
One of the simplest methods is successive substitution
via a �xed�point algorithm


dnlk�� � f��d
nl
k � � dnlk � ��ynlk � y

el
k � � dnlk � �f�dnlk ��

����

A block diagram of EDMC in Figure � shows the
internal iteration and external DMC closed loop after
convergence�
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Figure �� Block diagram of EDMC algorithm�

Nonlinear Vector Equation Solution

Almost all existing approaches to �nding a solution to
a nonlinear vector function
 such as f�x� � �
 rely on
iterative methods� The Newton method ���� is perhaps
one of the most popular and is given by the following
relation�

xk�� � xk � �f ��xk����f�xk�� ����

This method bene�ts from convergence rate � around
the optimal solution� However
 it requires a Jacobian
matrix that is not easily available in most applications

like Problem ��� A simpli�ed version of the Newton
method is obtained by substituting f ��x� with a �xed
matrix
 C� Sometimes
 the initial value of the Jacobian
matrix
 f ��x��
 is used in this regard�

xk�� � xk �C��f�xk� � xk � f ��x����f�xk�� ��	�

The �xed�point iteration method is obtained by re�
placing �C�� with �I
 in which � is a small positive
coe�cient�

xk�� � xk � �f�xk�� � � ��� ��� ����

This method requires the least computational e�ort
and bene�ts from a convergence rate of one� Iteration
methods given in Equations �� and �	 have been used
in ���� and some good results have been obtained for
certain conditions� In Quasi Newton �QN� methods

some approximation of the Jacobian matrix is em�
ployed� In Broyden�s method ����
 the following steps
are performed in each iteration�

xk�� � xk � sk�

yk � f�xk���� f�xk��

wksk � �f�xk��

wk�� � wk �
�yk �wksk�s

T
k

sT
k sk

� ����

wk is an approximate for f ��xk� and initialized by
w� � f ��x��� This method converges to the solution at
an approximate rate of ���
 which means super linear

convergence� Some other methods of the QN family

such as Greenstadt
 Barnes and Thomas
 can be found
in �����

The two following subsections describe the con�
tribution made by the present work� This includes an
extension of the work in ���� to higher M and MIMO
systems�

Convergence for SISO Systems with M � �

As in ����
 convergence of the �xed�point iterations
can be proved via the contraction�mapping theorem�
It is shown that for a globally asymptotically stable
open loop system
 iterations in Equations � and ��
will converge if the sampling time and weighting factor
are large enough and the relaxation factor
 �
 is small
enough� Since in the above�mentioned conditions

assumption M � � is not used
 the statement is
also valid for M � �� With some mathematical
manipulation of the results given in ����
 it is shown
that the following condition on the weighting factor
��� is required to get the convergence�

�� �� �MP max
i
fjaiaijg � ��
�

in which ai and ai are the steady state gain of the
linear and nonlinear models at the ith iteration� Since
M is allowed to be higher than one
 more performance
improvement can be expected from the controller�

Stability for SISO Systems with M � �

The operator theory and contraction mapping ���� can
be used to show the closed loop stability of the system
for M � � and in�nite��nite sampling time �T � as
follows�

In�nite Sampling Time

In this section
 it is required to extend the stability
criteria of an SISO system for aM � � case� Regarding
stability
 it is assumed that the iterative computation
of dnl in sample time k has been converged and the
goal is to derive a relation between present �uk� and
previous �uk��� inputs�

uk � uk�� ��uk

� uk�� � eT�
�
�ATA� ��I���

AT �yspk�� � y
past
k�� � d

nl
k���

�
� ����

ei is a M � � vector with all elements zero
 except
the ith element
 which is one� Note that for a
nominal system
 dext � �� To complete and simplify
Equation ��
 the converged value of dnlk�� should be
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determined� When the convergence has been reached

the following equality is satis�ed�

ynl � yel� ynl � �ynl�k � �� � � � ynl�k � P ��T �

and�

yel � �yel�k � �� � � � yel�k � P ��T � ����

The output of the extended linear model
 yelk 
 is
obtained as follows�

yelk�� � ypastk�� �A�uk � dnlk��

� ypastk�� �A�ATA� ��I���

AT �yspk�� � y
past
k�� � d

nl
k��� � dnlk��� ����

Let one de�ne�

A� � A�ATA� ��I���AT �

Using Equations �� and �� and the above de�nition

one can derive the following relation�

�I�A��d
nl
k�� � ynlk�� � �I�A��y

past
k�� �A�y

sp
k���

or�

dnlk����I�A��
��ynlk���y

past
k����I�A��

��A�y
sp
k���

����

Substituting dnlk from Equation �� in Equation ��
 one
obtains�

uk � uk�� ��uk

� uk�� � eT�
�
�ATA� ��I���

AT �yspk�� � y
past
k�� � �I�A��

��ynlk�� � ypastk��

� �I�A��
��A�y

sp
k���

�
�

����

Using the following two matrix relationships for A��

�I�A��
�� � I�

�

��
AAT �

�I�A��
��A� �

�

��
AAT � ����

Equation �� is simpli�ed as�

uk � uk�� � eT� �A
TA� ��I���

AT �I�
�

��
AAT ��yspk�� � y

nl
k���

� uk�� �
�

��
eT�A

T �yspk�� � y
nl
k���� ��	�

When considering the in�nite sampling time assump�
tion �T ���
 one can use the following de�nitions�

ynlk�� � ynl�k � ���P � yspk�� � ysp�P �

A � a�L� eT�A
T�P � aP� ����

where�

�P �

�
����
�
�
���
�

�
����
P��

� �L �

�
���������

� � � � � � �
� � � � � � �
���
� � � � � � �
���
� � � � � � �

�
���������
P�M

�
����

Therefore
 Equation �	 is further simpli�ed as�

uk � uk�� �
aP

��
�ysp � ynl�k � ���� ��
�

This equation is similar to the one derived in ���� but
assumption M � � is not used in this case� Therefore

results given in ���� for the stability of the closed loop
system are also applicable to M � �� This results in
the following theorem�

Nominal Stability Theorem

Suppose that the system to be controlled is globally
asymptotically stable for all feasible inputs and
 fur�
thermore
 suppose that the following is valid�

�� The steady state gain of the system does not change
sign�

�� The weight on the change of the input is larger than
zero�

�� The sampling time is long enough �T ����

	� The set point is constant in the prediction horizon�

Then
 the closed loop system is guaranteed to be
nominally stable�

Finite Sampling Time

In this section
 one considers relaxing assumption � in
the above stability theory� According to the previous
section
 this condition is employed in two cases
 �rst
in de�nitions given in Equation �� and
 second
 in
deriving the Jacobian of the input in Equation �
� In
the following lines
 analysis of the stability is continued
without considering assumption �� Recall the relation
for uk in Equation �	�

uk � uk�� �
�

��
eT�A

T �yspk�� � y
nl
k���� ����
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It is assumed that the internal iteration in EDMC
has been converged� This relation is expanded using
elements of e��A�yspk�� and ynlk���

uk � uk�� �
�

��

PX
i��

ai�y
sp�k � i�� ynl�k � i��� ����

To derive the Jacobian of �uk
�uk��


 derivatives of the

future outputs
 with respect to uk��
 are required�

�uk
�uk��

� ��
�

��

PX
i��

ai
�ynl�k � i�

�uk��

� ��
�

��

�
a�

�ynl�k � ��

�uk��
� a�

�ynl�k � ��

�uk��

� � � �� ap
�ynl�k � P �

�uk��

�
�

����

To solve the problem
 the linear approximations of
ynl�k � i� are used in the computation�

y�k����a�u�k���a��a��u�k��� � �a��a��u�k � ��

� � � �� �aN � aN���u�k �N � ���

y�k����a�u�k�����a��a��u�k���a��a��u�k���

� � � �� �aN � aN���u�k �N � ���

���

y�k �M� � a�u�k �M � �� � �a� � a��u�k �M � ��

� � � �� �aM�� � aM �u�k � ��

� � � �� �aN � aN���u�k �N �M��

y�k �M � �� � a�u�k�M�����a��a��u�k�M���

� � � �� �aM�� � aM���u�k � ��

� � � �� �aN � aN���u�k �N �M � ���

���

y�k � P � �� � aP�M��u�k �M � ���

�aP�M�� � aP�M���u�k �M � ��

� � � �� �aP�� � aP �u�k � �� � � � �

� �aN � aN���u�k �N � P �� ����

Let the following de�nitions be used�

A � �a� a� � � �aM � �

and�

z� �
�uk
�uk��

� z� �
�uk��

�uk��
� � � � � zM �

�uk�M��
�uk��

�
����

Therefore
 zi are determined as follows�

z� � ��
�

��
aT� l� z� � z� �

�

��
aT� l� � � � �

zM � zM�� �
�

��
aTM l� ����

l is a column vector given as�

l�

�
�����������������

a�z� � a� � a�
a�z� � �a� � a��z� � a� � a�
���
a�zM � �a� � a��zM�� � � � �

� �aM � aM���z� � aM�� � aM
a�zM � �a� � a��zM�� � � � �

� �aM�� � aM �z� � aM�� � aM��

���
aP�M��zM��aP�M�� � ap�M���zM��

�� � ���aP�aP���z��aP���aP

�
�����������������

�
��	�

Substitute for zi in Equation �	 from Equations �� and

with some manipulation
 l is reformulated as follows�

l �

�
�����

a� �
�
��
a�a

T
� l

a� �
�
��
�a�a

T
� � a�a

T
� �l

ap�� �
�
��
�aP a

T
� � � � �� aP�M��a

T
M �l

�
����� �����

Or
 in simple form
 it can be written as�

l � �b�
�

��
�Bl� ����

where�

�b�

�
����

a�
a�
���

aP��

�
���� �

�B�

�
��������

a�a
T
�

a�a
T
� � a�a

T
�

aMa
T
� � � � �� a�a

T
M

aM��a
T
� � � � �� a�a

T
M

���
aP a

T
� � � � �� aP�M��a

T
M

�
��������
� ��
�
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Equation �� can be solved for l�

l � �I�
�

��
AAT ����b� ����

Using the de�nition of A� in the previous section
 since
�I� �

��
AAT ��� � I�A�
 therefore�

l � �I�A���b � �b�A�
�b� ����

From the �rst row of Equation �	
 z� is determined as
follows�

z� �
�

a�
�l� � a� � a��

�
�

a�
�eT� l� a� � a��

�
�

a�
�eT�

�b� eT�A�
�b� a� � a��

�
�

a�
�a� � e

T
�A�

�b�� �	��

Based on the contraction mapping theorem
 closed loop
stability requires z� � �� In other words�

�

a�
eT�A�

�b � �� �	��

Some Special Cases for Stability

�� P � M � �


A� � a��a
�
� � �����a�� �b � a��

�

a�
eT�A�

�b �
�

a�

a��
a�� � ��

a� �
a�a�

a�� � ��
� �

� a�a� � �� �	��

�� M � �� P � �


A � �a�a� � � � aP �
T �

�

a�
eT�A�

�b �
AT �b

AAT � ��
� �

� AT �b � �� �	��

Or
 equivalently


a�a� � a�a� � � � �� aPaP�� �

PX
i��

aiai�� � ��
�		�

�� M � �� P � �

ATA� ��I �


Pp

i�� a
�
i � ��

Pp��
i�� aiai��Pp��

i�� aiai��

Pp��
i�� a�i � ��

�
�
�	��

�

a�
eT�A�

�b �

�Pp��
i�� a�i � �� �

Pp��
i�� aiai��

�
det�ATA� ��l�

�
���

pP
i��

aiai��

p��P
i��

aiai��

�
���

�

�
p��P
i��

a�i���
��

pP
i��

aiai��

�
�

�
p��P
i��

aiai��

��
p��P
i��

aiai��

�

�
pP
i��

a�i���
��

p��P
i��

a�i���
�
�

�
p��P
i��

aiai��

�����
�	��

DMC FORMULATION FOR LINEAR MIMO
SYSTEMS

For the sake of simplicity
 formulations are given for
� � � systems� The same line of calculations is used
to determine formulas for n � n systems� Outputs
of a stable linear time invariant � � � system can
be represented
 using its step response model
 by the
following equations�

y��k� �

NX
i��

ai�u��k � i� � aNu��k �N � ��

�

NX
i��

bi�u��k � i��bNu��k�N����d��k��

y��k� �
NX
i��

ci�u��k � i� � cNu��k �N � ��

�

NX
i��

di�u��k�i��dNu��k�N����d��k��
�	
�

where ui�k� and �ui�k� are the ith input and it�s
variation in sample time k� ai� bi� ci and di are the
step response coe�cients at sample time i� N is the
sample time at which all the step responses reach
their steady state� di stands for any di�erences
between the system output and the one predicted by
the step response model� These errors account for
model�system mismatches and external disturbances�
Future predictions of the system outputs for prediction
horizon P 
 based on control horizon M 
 are given in
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the following matrix�vector relation�

�
���������

y��k���
���

y��k�P �
y��k���

���
y��k�P �

�
���������
�

�
�������������

a�� � � � � b�� � � � �
a�a�� � � � � b�b�� � � � �
���
aPaP�� � � � aP�M�� bP bP�� � � � bP�M��

c�� � � � � d�� � � � �
c�c�� � � � � d�d�� � � � �
���
cP cP�� � � � cP�M�� dP dP�� � � � dP�M��

�
�������������

�
�������������

�u��k�
�u��k � ��
���
�u��k �M � ��
�u��k�
�u��k � ��
���
�u��k �M � ��

�
�������������

�

�
�������������

a� a� � � �
a� a� � � � aN��

���
aP�� � � � aN�� � � �
c� c� � � �
c� c� � � � cN��

���
cP�� � � � cN�� � � �

aN�� b� b� � � � bN��
� b� b� � � � bN�� �

� bP�� � � � bN�� � � � �
cN�� d� d� � � � dN��
� d� d� � � � dN�� �

� dP�� � � � dN�� � � � �

�
�����������

�
�������������

�u��k���
�u��k���
���
�u��k�N���
�u��k���
�u��k���
���
�u��k�N���

�
�������������

�

�
�������������

aN��u��k�N� � bN��u��k�N�
aN��u��k�N��� � bN��u��k�N���
���
aN��u��k�N�P��� � bN��u��k�N�P���
cN��u��k�N� � dN��u��k�N�
cN��u��k�N��� � dN��u��k�N���
���
cN��u��k�N�P��� � dN��u��k�N�P���

�
�������������

�

�
�������������

d��k � ��
d��k � ��
���
d��k � P �
d��k � ��
d��k � ��
���
d��k � P �

�
�������������

� �	��

This can be written
 equivalently
 in vector form as�

ylin � A�u� ypast � d� �	��

dj�k � i� � dj�k�� i � �� �� � � � � P� j � �� �� ����

The control moves
 �u
 are determined
 according to
the solution of the following optimization problem�

J � min
�u

	
ysp � ylin


T 	
ysp � ylin



��uT�T��u�

����

� is the weighting matrix on the control e�ort� Under
unconstraint minimization
 the optimal input is deter�
mined as�

�u �
�
ATA��T�

�
��

AT
	
ysp � ypast � d



�
����

Usually
 the �rst component of each computed input
vector variation is applied to the system and the same
procedure is performed in the next sampling interval�

Convergence in EDMC for MIMO Systems

Results presented in the previous section are extend�
able to MIMO systems as well� Iterations in the �xed�
point method are shown to be convergent �Theorem ��
based on the contraction�mapping theorem� This
requires selection of small � and large �� When Broy�
den�s method �or some other QN family� is employed
instead of the �xed�point iteration method
 locally
super linear convergence is guaranteed because of the
intrinsic characteristic of the method �����

Theorem �

If the MIMO nonlinear system is globally asymptoti�
cally stable for all feasible inputs
 then
 the iteration
�Equation ��� will converge if the sampling time and
the weight on the inputs �� � �I� are chosen large
enough and the relaxation factor
 �
 is selected small
enough�

Proof

Regarding the convergence condition in the �xed�point
iteration method
 the following matrices are de�ned�

AT�� �



a�L b�L
c�L d�L

�
� ����

So


A � AL �



aI bI
cI dI

� 

�L �
� �L

�
� ��	�

The steady state gain matrix of the nonlinear system
is de�ned as follows�

B �
�ynl

��u
�

�
���
a�� � � � � b�� � � � �
� � � � a�P � � � � b�P
c�� � � � � d�� � � � �
� � � � c�P � � � � d�P

�
���
�P��P

�
����

Based on Equation ��
 iterations are convergent if
a norm of the gradient matrix
 f ���d

nl
k �
 is less than
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one� Doing some simpli�cations
 one can derive the
following results �details of similar computations for
SISO systems are given in ������

f ���d
nl��

�f�
�dnl

� I� ��
�ynl

�dnl
�

�yel

�dnl
�

� I� ��
�ynl

��u

��u

�dnl
�A

��u

�dnl
� I�

� ��� ��I� ��B�A�
��u

�dnl

� I� ��B�A��ATA� ��I���AT

������I���BL�AL��LTA
T
AL���I���LTA

T

������I���BA
��
�I�AL�LTA

T
AL���I���LTA

T
�
����

Using the matrix inversion lemma given in Equation �


this relation is rearranged as in Equation ��


u�I� uTu���uT � uuT �I� uuT ���� ��
�

f ���d
nl� � ��� ��I

� ��BA
��
� I�ALLTA

T
���I�ALLTA

T
����
����

Using the following property�

ALLT A
T
� LLT AA

T
� ����

It is further simpli�ed as�

f ���d
nl� � ��� ��I

� ��BA
��
� I�LLT

�
���AA

T
�
��

� LLT ����
����

The maximum singular value of the matrix is consid�
ered as its norm here� Therefore


�
�
	
f ���d

nl�


� �� �

����
�
I�BA

��
�

����L�

���LLT����AA
T
����

������

�
��
���B�

���A�

�
����L�

��
�
�L�� ��

�
��	A


� ����

By selecting a large � and a small �
 the maximum
singular value of f ���d

nl� would be less than � and

therefore
 convergence of the �xed�point iterations in
Equation �� will be guaranteed� For some simpli�ca�
tion
 the following approximation can be used�

�
��L� � �� ��MP � 	MP�

���L� � ������ ����� ����

Stability for MIMO Systems �with In�nite
Sampling Time Assumption�

Stability of a closed loop � � � MIMO system is
guaranteed under above convergence conditions and

the positive de�niteness of D� �



a c
b d

�
G
 which is

stated in Theorem ��

Theorem �

Suppose that the nonlinear � � � MIMO system to
be controlled is globally asymptotically stable for all
feasible inputs
 the weight on the change of the inputs
is larger than zero
 the sampling time is long enough
and the steady state gain
 G
 satis�es the following
criteria
 then the closed loop system is guaranteed to
be nominally stable�

D� �



a c
b d

�
G � �� ����

Proof

As in ����
 closed loop stability can be investigated
via computing singular values of the derivative of the
nonlinear operator
 N
 that is de�ned as�

u�k� � N �u�k � ��� � ��	�

To determine N
 one starts from Equation ��� It is
assumed that dextk � � for a nominal system�

uk �uk�� � eT�
	
ATA� ��I


��

AT �IIyspk�� � IIy
past
k�� � IId

nl
k���� ����

where�

eT� �



� � � � � � � � � � � �
� � � � � � � � � � � �

�
���M

�

and�

� �



�P �
� �P

�
�P��

�

The convergent value of dnlk is calculated in a
similar way to that found in the section of In�nite
Sampling Time and
 then
 it is replaced in Equation ���

�dnlk�� � �I�A��
���ynlk�� � IIy

past
k��

� �I�A��
��A��y

sp
k��� ����

ynlk�� �
�
ynl� �k � �� ynl� �k � ��

�
�

yspk�� �
�
ysp� �k � �� ysp� �k � ��

�
� ��
�



�� M� Haeri and H� Zadehmorshed Beik

Equation �� is simpli�ed as�

�dnlk����I�
�

��
AAT �IIynlk���

�

��
AATyspk���IIy

past
k�� �
����

Substituting �dnlk�� into Equation �� results in the
following relation�

uk � uk�� � eT�
	
ATA� ��I


��
AT

�
�yspk����y

past
k��

�

�
I�

�

��
AAT

�
�ynlk���

�

��
AATyspk����y

past
k��

�
�
����

This relation is further simpli�ed as�

uk � uk�� �
�

��
eT�A

T�
	
yspk�� � y

nl
k��



� �
��

Relations obtained so far are based on open loop
stability and T �� conditions� It can be shown that�

eT�A
T� �



a c
b d

�
P � �AP� �
��

Then
 uk is�

uk � uk�� �
P

��



a c
b d

�
ynlk�� �

P

��



a c
b d

�
yspk��

� uk�� �
P

��
�AGuk �

P

��
�Ayspk��� �
��

�
I�

P

��
�AG

�
uk � uk�� �

P

��
�Ayspk���

or�

uk�

�
I�

P

��
�AG

�
��

uk���

�
I�

P

��
�AG

�
��

P

��
�Ayspk���

�
��

Now
 one can determine N� from Equation 
��

N� �
�uk
�uk��

�

�
I�

P

��
�AG

�
��

� �
	�

It can be seen that when the matrix�

D� �



a c
b d

�
G� �
��

is positive de�nite
 the closed loop system is stable� In
the case of SISO systems
 D� is reduced to ag
 which
implies that sign changes in the steady state gain could
result in the instability of the closed loop system� This
is the same result that is given in the nominal stability
theorem �����

SIMULATION RESULT	 POWER UNIT
NONLINEAR MODEL

A power unit is simulated
 along with a nonlinear
dynamic model of an ��� MW oil �red drum boiler�
turbine�generator unit
 intended for overall wide range
simulation ��	����� This model represents a three�
input
 three�output
 third�order nonlinear system� The
inputs are the position of the valve actuators that
control fuel mass �ow rate �u� in pu�
 steam �ow
rate �u� in pu� and water �ow rate �u� in pu�� The
outputs are the electric power �Pe in MW�
 drum steam
pressure �Pr in kg�cm�� and drum water level �L in
m�� The state variables are electric power
 drum steam
pressure and �uid �steam�water� density �	f�� The
model is given by the following state equations�

dPr
dt

� ���u� � ������u�P
���
r � ����u��

dPe
dt

� ����
�u� � ������P ���
r � ���Pe�

d	f

dt
� ��	�u� � ����u� � �����P �
��� �
��

Drum water level is calculated using the following
algebraic equation�

qe � �����u� � ���	�Pr � 	����u� � ����u� � �����

�cs �
��� �������	f�����Pr � �����

	f������	� �������Pr�
�

L � ���������	f � ����cs � ����qe � �
��
�� �

�

where �cs is the steam quality and qe is the evaporation
rate �kg�s�� The positions of the valve actuators are
constrained to lie in the interval ��
��
 while their rate
of change �pu�s� is limited as follows�

�����
 �
du�
dt

� ����
�

���� �
du�
dt

� �����

����� �
du�
dt

� ����� �
��

At the load level of ����� MW
 pressure of ��� kg�cm�

and �uid density of 	�� kg�m�
 the nominal inputs are
found to be un � ����	 ���� ��	��� These values are
selected as initial points for inputs and state variables�
The responses of the Extended DMC are shown in
Figure �� The graph consists of three outputs and
inputs versus time� As indicated
 good tracking is
obtained for both pressure set point changes in t � ���s

and power demand in t � ���s� Since no change in
drum level set point is required
 the controller tries to
compensate level deviation� Results justify the usage of
an algorithm for computing dnl in a MIMO nonlinear
system with M � ��
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Figure �� Responses of extended DMC for power unit�

CONCLUSION

In this paper
 some extensions on EDMC are intro�
duced� These extensions include application of the
existing method on SISO
 as well as MIMO systems

with longer control �M� and prediction �P � horizons�
Analysis of convergence and closed loop stability
 both
in �nite and in�nite sampling time
 are presented in
detail and summarized in two theorems �Theorems �
and ��� Simple conditions are obtained for some special
cases
 both for SISO and MIMO systems� Results given
here con�rm those in ����
 which were obtained for a
special case �M � P � � and T � ��� Computer
simulation results for a power unit plant indicate that
application of the method has good performances in set
point tracking�
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