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Optimal Production and Maintenance

Control Under a Time Variant Demand

F. Kianfar!

In this paper, optimal production and maintenance planning of a flexible manufacturing system
under a time variant demand is considered. There is a preventive maintenance plan to reduce the
failure rate of the machine. It is assumed that the failure rate of the machine is a function of its
age and its maintenance rate. It is, also, assumed that the demand of the manufacturing product
is time dependent and its rate depends on the level of the advertisement on that product. The
objective is to maximize the expected discounted total profit of the firm over an infinite time
horizon. To solve this optimization problem, first, an optimal control is characterized by a set of
Hamilton-Jacobi-Bellman partial differential equations. Then, since this set of equations cannot
be solved analytically, this stochastic optimal control model is approximated by a deterministic
optimal control problem. By solving this new deterministic problem under practical assumptions,

a set of suboptimal controls can be found.

INTRODUCTION

The simultaneous planning of production and mainte-
nance in a flexible manufacturing system is considered
in this research. The system considered is composed of
one machine producing a single product. The machine
is failure prone and there is a preventive maintenance
plan to reduce its failure rate. The probability of failure
of the machine is supposed to be dependent on its age.
The preventive maintenance actions restore the age of
the machine to a lower level. The failure rate of the
machine is assumed to be an increasing function of its
age and a decreasing function of its maintenance rate.
Recently, there have been many efforts made
to use stochastic optimal control techniques in the
production planning of manufacturing systems. In
most of them, the demand of the product or products
is assumed to be constant over time. In this research,
it is assumed that the demand of the manufacturing
product is time dependent and that its rate depends
on the level of advertisement on that product. The
assumption of a time variant demand is more realistic
and makes the results of this research more practical.
The objective is to determine the production rate
and the maintenance rule of the machine, as well as
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the advertisement cost rate of the product, in order
to maximize the expected discounted total profit of
the firm over an infinite time horizon. In writing the
performance criterion, it is assumed that the revenue
of the firm is equal to the price of the product time
demand. The total cost consists of the cost of the
product surplus, defined as the discrepancy between
total cumulative production and total cumulative de-
mand, the cost of the repair activity after failure, the
cost of the maintenance activity and the cost of the
advertisement. It is also assumed that repair is more
costly than preventive maintenance.

For solving the stochastic optimal control problem
of this paper, first, the necessary conditions are written
as a set of partial differential equations. Then, not
being able to solve these equations in a closed form, it is
possible either to solve them numerically or to propose
an approximation procedure for finding a near optimal
solution. The second method is chosen, i.e. proposing
a deterministic optimal control problem whose solution
approximates the stochastic optimal control. Then,
this deterministic problem is solved to characterize a
suboptimal solution.

The rest of this paper contains the following
sections. First, a literature review in the general
area of this research is presented. Then, the problem
statement containing the mathematical model of the
problem is discussed and the optimal control is char-
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acterized by dynamic programming equations. After
that, the approximate suboptimal control is proposed
and, then the case study of the paper is presented.
Finally, the conclusions of the paper are mentioned.

LITERATURE REVIEW

An interesting feature of many automated production
systems is that they can be considered as determin-
istic systems, as long as no machine breakdowns or
stoppages occur. Therefore, these systems fall into
the category of “piecewise deterministic processes”,
according to the terminology of Davis [1]. A class of
systems closely related to those considered were defined
previously by Sworder [2] and Rishel [3,4] and called
“systems with jump Markov disturbances”. Olsder
and Suri [5] were the first ones to recognize this fact
when they proposed a stochastic control model based
on Rishel’s formalism for the planning of production in
a flexible manufacturing system. In their model, each
machine is subject to random failure, according to a
homogeneous Markov process.

The research of production planning using
stochastic control techniques has drawn much attention
lately. Akella and Kumar [6] formulated a one-machine
one-part-type production problem as a stochastic op-
timal control problem, in which the part demand is
assumed to be a constant, the state of the machine
is assumed to be a two-state continuous-time Markov
chain and the objective function is a discounted in-
ventory/shortage cost over an infinite time horizon. It
was shown that optimal control is given by a single
threshold inventory level. Bielecki and Kumar, then,
treated a long-run average cost [7] and an optimal
hedging point policy was obtained.

According to this policy, at any point in time,
the control guides the production surplus towards a
nonnegative level, depending on the capacity state in
place. This capacity state specific level is known as
the corresponding hedging point. The idea behind
this policy is that some nonnegative production surplus
should be maintained at times of excess capacity to
hedge against future capacity shortages [8].

Although the structure of the optimal policy is
known, analytic solutions of the optimal controller exist
only for single-part-type systems. For multiple-part-
type systems, one has to resort either to discretization-
based numerical techniques, which are practical for
problems of a small size, or approximation tech-
niques [9] that exploit the structure of the optimal
policy and are practical for larger problems. One
of these approximation policies is introduced in [10],
which is parameterized over a finite set of parame-
ters. These parameters define quadratic functional
approximations to the value functions characterizing
the optimal policy [11]. Derivative estimates of the
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objective function, with respect to these parameters,
are obtained via infinitesimal perturbation analyses
and are used to drive a stochastic approximation
algorithm for parameter optimization.

Extensions to the model of Akella and Kumar are
considered by Perkins and Srikant [12], in which they
incorporated a multiple part-type in the model, and
by Liberopoulos and Hu [13], where they studied the
structural properties of the hedging point policies. In
these papers, the objective is to minimize an expected
cost with approximate choices of the production control
variables.

Boukas and Yang [14] extended Akella and Ku-
mar’s model, to allow the simultaneous planning of pro-
duction and maintenance in a flexible manufacturing
system. Their system is composed of a single machine,
which produces a given commodity. The machine
is subject to some random failures. The probability
of machine failure is supposed to be an increasing
function of its age. The commodity demand rate is
assumed to be constant. The objective is meeting the
demand while minimizing the discounted inventory and
maintenance cost. Under some appropriate conditions,
they established similar results to the ones given by
Akella and Kumar.

Sharifnia [15] showed how the optimal hedging
point, in the case of one part-type multiple machine-
states, can be calculated. The problem of the complete
evaluation of the optimal production policy in multiple
part-type multiple machine-states is difficult, because
it requires solving either systems of partial differential
equations or large dynamic programming problems
that easily run into the “curse of dimensionality”.
Therefore, several approximation procedures have been
proposed to obtain near-optimal controllers [16,17].

In most of the manufacturing flow control models
considered, it has been assumed that the machine
failure rates are independent of the production rates
and are constant as long as the system is in one of
its discrete capacity states, or, in other words, the
underlying Markov chain is homogeneous. In reality,
however, this assumption is often violated and the
failure rate of a machine usually depends on many
factors, for example, the age of the machine and the
instantaneous rate of production. In most cases, it
is reasonable to assume that if a machine works at a
faster rate, it is more likely to fail. Very few studies
have been done for systems with operation dependent
failure rates.

Boukas and Haurie [18] considered a system which
has two machines with age-dependent failure rates and
where preventive maintenance is a decision option.
They used a numerical method to evaluate the optimal
control policy and showed that, in their context,
optimal hedging surfaces can be defined to represent
optimal production policies. Hu and Xiang [19] de-
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rived some structural properties of the optimal control
for a system with multiple machine-states and age-
dependent failure rates. They showed that the closer
to the zero capacity state the system is, the larger the
hedging point should be. Rishel [20] studied a machine-
wear model, in which the wear rate (the machine failure
rate) depends on the machine operating speed (the
production rate). Particularly, he considered the case
in which the wear rate is a quadratic function of the
production rate. Hu, Vakili and Yu [21] considered
a one machine one part-type system with operation
dependent failure rates. They assumed that the failure
rate depends on the instantaneous rate of production.
Since one of the desirable features of the hedging point
policy is the simplicity of the policy and its ease of
implementation, they answered the following question:
Under what failure rate functions are hedging point
policies optimal? They derived both necessary and
sufficient conditions for the optimality of a hedging
point policy.

Sethi and Zhang [22] formulated a continuous-
time production and setup scheduling model. Using
the theory of viscosity solutions of Hamilton-Jacobi-
Bellman equations, they were able to establish optimal-
ity conditions. However, a closed form optimal solution
in these cases is an impossible task to accomplish. In
order to be able to use the optimality theory on real
time production control, numerical methods for the
model developed in [22] seem to be the only feasible
approach [23].

The aforementioned papers dealt with infinite-
horizon cost functions, whereas a finite-horizontal
counter part was considered in Zhang and Yin [24],
in which the corresponding optimal control was ob-
tained in terms of the time-dependent turnpike sets
under “traceability” conditions. In addition, it was
demonstrated that as 7' goes to infinity, the infinite-
horizon results of Akella and Kumar are recovered
from those obtained with finite-horizon costs. In
connection with robust control, Boukas, Yang and
Zhang [25] considered a minimax production planning
model with Markov capacity process and deterministic,
but unknown demand rate and optimal control with a
discounted cost criterion was obtained.

A common feature in these papers is that the
optimal control policies are a threshold type, which
is attractive in application because of the simple
structure of hedging. It reveals much insight, such
as dependence on various parameters of the system
under consideration. Furthermore, it can be used to
treat more complex systems via hierarchical decompo-
sitions and hierarchical production planning methods
(see, for example, [26]) by approximating a complex
system with a simpler limit system and by constructing
asymptotic optimal control leading to near optimality.

Due to the complexity of manufacturing systems,
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traditionally, marketing decision making and other
decision related areas, such as productions, are often
treated separately. Clearly, a marketing model with the
addition of production is more realistic and useful from
a practical point of view. In this connection, Abad [27]
proposed a decentralized marketing-production plan-
ning model and solved the problem by applying Pon-
tryagin’s maximum principle. Sethi and Zhang [28]
considered a marketing-production model, in which the
demand is assumed to be a Markov decision process.
The main focus of [24] is a reduction of dimensionality
of the underlying problem via a hierarchical control
approach (see, also, Sogomonian and Tang [29] for
another model concerning interfaces of marketing and
production and Yin and Zhang [30] for further work on
singularly perturbed Markov chains).

In a recent paper [31], Zhang, Yin and Boukas
considered a marketing-production planning model.
Using a stochastic control formulation, the demand
rate is modeled as a finite-state continuous-time
Markov chain. Their objective is to choose the opti-
mal strategy (including the choice of production and
advertising rate), so that the overall expected profit is
maximized. Under reasonable conditions, they derived
the closed-form optimal control. An interesting and
important observation is that the optimal market-
production policy is of the hedging-point type and
the hedging point depends on the amount of marginal
revenue.

PROBLEM STATEMENT

As mentioned earlier, the model in this paper for
production and maintenance planning in a flexible
manufacturing system consists of a single workstation
producing a one part-type through a single operation.
The system considered has a state comprising, both, a
continuous and a discrete component. This production
system has continuous state variables x,a and z,
corresponding to the cumulative production surplus of
parts, the machine age and the demand rate of the part-
type, respectively. Let u(t) be the production rate of
the workstation at time ¢. The state equation of the
surplus is given by:

i(t) = ult) = 2(t), 2(0) = a0, (1)
where x( is a given initial surplus value. The surplus
change rate is equal to the difference between the
workstation production rate and the part-type demand
rate at time ¢.

It is assumed that the aging of the workstation at
time ¢ is an increasing function of its production rate
and a decreasing function of its maintenance rate. Let
v(t) be the maintenance intensity of the workstation at
time ¢t. Thus, the cumulative age of the workstation is
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the solution of the following differential equation:

a(t) = f(u(t),v(t)), a(T)=0,

where T is the last restart time of the workstation
and a(T') = 0 implies that a repair, or a preventive
maintenance job, restores the cumulative age to a zero
value, since the aging rate of the workstation is a
function of its production rate and its maintenance
intensity at time ¢.

The demand rate of the part-type is assumed
to be time variant and is denoted by z(f) at time
t. The dynamic equation of the demand is also a
non-homogeneous differential equation with the input
variable w(t), which is taken to be the cost rate of
advertisement at time ¢. The initial value of the part-
type demand at time O is the given constant, zy. The
equation is:

t>1T, (2)

2(t) = coz(t) + cqw(t), z(0) = zp, (3)
where ¢y and ¢; are constant values, since the part-type
demand change rate is taken to be a linear function of
the demand itself and the advertisement cost at time
t.

The discrete part of the state vector represents
the system operational mode. Let E = {1,2,3}. The
operational mode of the workstation at time ¢ is given
by the random variable, £(t), with value in E. This
mode indicates if the workstation is operational, £(t) =
1, in repair £(¢t) = 2, or in maintenance £(t) = 3, at
time t. Aqp(a,v) is called the transition rate from state
«a € E to state B € E for the workstation at time t,
where:

1
Aiz(a(t) = lim { — [p(&(t + dt) = 2/€(t) = 1)]
(@ b

1
Ao (a(t)) = Tim ¢ —[p(§(t + dt) = 1/¢(t) = 2)] ¢,

1
Ais(v(t)) =v(t) =limi—-[p(&(t + dt) =3/£() =1)]
z b

1
Asi(a(t)) = lim  —[p({(t +dt) = 1/¢(t) = 3)] ¢,
& F o

as dt — 0 and where Ay3 and A3z2 are equal to zero,
because there is no transition between the repair mode
and the maintenance mode of the workstation and vice
versa.

Equation 4 implies that failures occur as a Poisson
process and the failure rate of the workstation depends
on its age. Equation 5 implies that the repair duration
for a failed workstation is an exponential random
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variable whose mean also depends on the age of the
workstation. Equation 6 defines a transition rate
from the mode “operational” to the mode “preventive
maintenance”. This will be a control variable, which
is denoted by v(t). The inverse of this control variable
represents the expected delay between a call for the
technician and his arrival. This modeling of preventive
maintenance is more realistic than the preventive repair
or replacement of a component as an impulsive control.
Equation 7 implies that the duration of a preventive
maintenance job on the workstation may also depend
on its age. The common characteristic of the opera-
tional time, the repair time and the maintenance time
of the workstation is their memory-less property and,
because of this property, the exponential distribution is
the suitable distribution to model these time intervals.
So, their corresponding stochastic processes will be of
the Poisson type. From the rate functions (Equations 4
to 7), one can easily deduce the transition rates,
gos(a,v), for the process £(t), where o and 3 are in
E.

From the initial condition of Equation 2 at a
jump time, 7, for the process £(t), one defines a reset
function, ¢(a,§) : Ry x E — R4, by the following
relation:

Sa.6) = {o,ifg(#) =1 and £(77) #£1,

a(t™),

This function describes the age discontinuity, which
may occur at a jump time of the operating state of
a machine.

The variables x,a, z and & are the state variables
of the system. y = (v,a,2) € R3 is called the
continuous part of the state. The variables u,v and w
are the control variables. The complete control vector
will be denoted by 8 = (u,v,w). Also, the set of all
admissible controls will be called ©(3), which depends
on the operational state of the system and is a compact
set.

otherwise

First, for being able to solve the dynamic pro-
gramming partial differential equation analytically, the
cost rate function is restricted not to depend on
the production rate and the maintenance rate of the
workstation. So, the cost rate function, ©”(a,,u,v),
is taken as a function of the surplus variable and the
operational mode of the system, as follows:

o (a,x,u,v) = h(z) +°, VBEE,
in which:

¢ = el (E(t) = 2) + 31 (&(t) = 3),
where:

I(-) = the indicator function of the
corresponding set,
co = the cost rate of the repair,
c3 = the cost rate of the maintenance, with ¢y > c3.
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Let (2, F) be a measurable space and {F;t > 0}
an increasing class of sigma-fields representing the
history of the (a,z,£) process. A sample value, w,
corresponds to an a-trajectory, having a finite set of
discontinuities on any finite interval, an z-trajectory,
which is continuous and a sequence of £-values without
accumulation points. The set, I', of admissible control
policies is a family of F;-adapted processes with values
in ©(8). The class ' is such that, for a given 3,
the mapping v(.,.,3) : (a,x) — O(F) is piecewise
continuously differentiable. Thus, with each control
policy, v € I is associated with a probability measure,
P,, on (Q,F), such that the process, (a,z,§), is
well defined. An admissible control policy is a set
of feedback controls, each one corresponding to a
different operating state of the system. FEach feed-
back determines the production level, the preventive
maintenance intensity and the advertisement cost as a
function of the surplus level, machine age and product
demand.

The objective of this paper is to find, in I', a
control policy, v*, which maximizes the expected dis-
counted total profit of the firm for each initial condition
(ao, o, B) over an infinite horizon, or, equivalently, to
minimize the negative profit, as follows:

JP(z,a, z,u,v,w) :E{/Ogi”t[gof(t) (a(t), z(t),u(t),v(t))

+w(t) — WZ(t)]dt},

z(0) =x0, a(0) =ao, 2(0)=2z, &0)=p5, (8
where p is a positive discount rate, 7 is the revenue per
unit sale and £(¢), a(t), x(t), u(t), v(t) are the stochastic
processes defined by the control policy, v, and the
initial conditions. As seen in Equation 8, the negative
profit function is equal to the integral of the discounted
cost rate function, plus advertisement cost, minus the
revenue of the manufacturing firm, over an infinite
horizon. The value function, or equivalently the
optimal cost function, is denoted by V(53,a,x). This
optimal cost function is the solution of the dynamic
programming partial differential equation and charac-
terizes the optimal control variables and the optimal

trajectory of the problem.

DYNAMIC PROGRAMMING EQUATION

This optimal control problem belongs to the class of
problems considered by Rishel. Under appropriate
assumptions of smoothness for the control, the follow-
ing set of Hamilton-Jacobi-Bellman partial differential
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equations characterizes an optimal control:

pvw,a,x)=min{¢ﬁ<a,x,u,v>+%v<ﬁ,a,x>f<u,v>

+ V(B a,0)wl0) ~ =(1)

+ 3 gsala,0)[V(a, 6la, @), 2)

aclE
—V(ﬁ,a,x)]}, VﬁEE,

over 6 € O(p). (9)

The cost rate function, ¢”(a,z,u,v), has been
defined as a function of the state variables only. There-
fore, it can be deduced from the dynamic programming
Equation 9 that the control, u, will be chosen to
minimize the trajectory derivative, (£)V (8, a(t), z(t)).

The controls v and w, corresponding to the
preventive maintenance actions and the advertisement
cost, respectively, are determined independently from
w. When the failure rates are not age dependent,
the production rate will be determined according to
a so-called hedging point policy. This means that,
for each operational mode, where the demand rate
can be met by a feasible production rate, the surplus
trajectory will tend to reach as rapidly as possible to a
steady state called the hedging point that corresponds
to the minimum of the value function. In the case
considered here, since the age of the machine is always
increasing when it is used, there cannot be a steady
state and, thus, the concept of a hedging point is not
directly relevant anymore. However, one can define
a related concept, which is defined by the mappings

T = %ﬁ(a),ﬁ € E where:
min V(3. a,2) = V(4,a,% ()

z. (10)

The production rate will determine the age and surplus
trajectories. They will be chosen so as to reach, as
rapidly as possible, the mapping (Equation 10) corre-
sponding to the current operational mode and, once on
the mapping, the trajectory will be maintained on it
if there is enough controlability, as long as the mode
remains the same. Thus, the mapping (Equation 10)
will be a convenient and concise way to represent the
optimal production policy.

However, it is more practical to define the cost
rate function, ¢”(a,z,u,v), as a function of the state
variable, z, and the control variables, v and v. In
such a case, there is no analytic solution to the
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partial differential Equation 9. So, the approach of
researchers in literature, to find any kind of solution
to these equations, is made in one of the following two
alternative ways: They may either solve the equations
numerically, or use an approximation procedure to
find a near optimal solution. In the next section,
such an approximation procedure is proposed to find
a suboptimal control.

AN APPROXIMATE SUBOPTIMAL
CONTROL

The author’s approach to find a suboptimal control is
to approximate this stochastic optimal control problem
by an independent deterministic optimal control prob-
lem in each operational mode of the system. The so-
lution of this deterministic problem gives a suboptimal
control in the corresponding operational mode. So, this
suboptimal control consists of three such deterministic
sets of solution for the three different operational modes
of the system. When the operational mode of the
system jumps from one mode to another, the control
variables also jump from one set of solution to another,
correspondingly.

To start writing the necessary conditions, one,
first, defines the Hamiltonian function in each oper-
ational mode:

HP(z,a,z,u,v,0,p1, P2, 3, t)
= e [p* D (alt), 2(t), u(t), o(t)) + w(t) — 72(1)]
+pa(t)(u(t) — 2(8) + p2 () f(u(t), v(t)) + ps(t)
(coz(t) + crw(t)),
VB € E, (11)
when pi (), p2(t) and ps(t) are the co-state variables.

Then, the necessary conditions for a suboptimal control
in this mode are:

&(t) = u(t) — z(b), (0) = wo,
a’(t) = f(’LL(t),’U(t)), (1,(0) = Qo,
2(t) = coz(t) + cqw(t), z(0) = zp,

g £(t)
i) = = ==

g £(t)
) = = = =25

OHP o

ps(t) = — 5, T "¢ 7+ pi(t) — cops(t),

31
OHPB Qs 9
ou ¢ " gu +p1(t)+p2(t)a—£ -
OHP At of
— Pt . - =

v € v +p2(t) v 0,

HB
ac?—w =e M +eps(t)=0, VBeE. (12)

To solve the mnecessary conditions (Equation 12),
one should assume specific forms for the aging rate
function, f(u,v), and for the cost rate function,
©°(a,x,u,v). In the next section, these specific forms
are assumed to be able to solve the case study of this

paper.

A CASE STUDY

In order to make sure that a solution to the necessary
conditions (Equation 12) exists, this problem should
be converted to a linear-quadratic optimal control
problem, by assuming some linear dynamic equations
and a quadratic performance criterion function. So, a
linear form is assumed for the aging rate function, f,
and a quadratic form for the cost rate function, F.
These assumptions are realistic, since the aging of the
workstation is an increasing function of its production
rate, u, and a decreasing function of its maintenance
rate, v. Also, the cost rate function, ¢”, is an increasing
function of the cumulative surplus, x, the production

rate, u, and the maintenance rate, v. Thus, these
functions are taken to be:

flu,v) =byu —bov, f>0, b >0, by>0,

o (a,x,u,v) = h(z) + g(u) +l(v) +’, VB EE,
when:

h(z) = dz?, d>0,

g(u) = eu”, e>0,

I(v) = fo?, f>0,
and:

&P = eI (E(t) = 2) + e3I(E(t) = 3), ¢ > cs.

The increasing and decreasing forms of the functions
f and ¢”, with respect to their variables, imply
the positive sign of the constants by,be,d,e and f
in the above definitions. Then, the following set of
conditions can be derived from the necessary conditions
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(Equation 12):

#(t) = u(t) — =(b), z(0) = o,
a(t) = byu(t) — bev(t), a(0) = ap,
2(t) = coz(t) + crw(t), z(0) = zp,

pi(t) = —2dz(t)e™"",

P3(t) = me™" + pi(t) — cops(t),

2eu(t)e™"" + pi(t) + bipa(t) = 0,

2fv(t)e™ " — bapa(t) =0,

e "t +eips(t) = 0. (13)
Now, the conditions (Equation 13) can be solved ana-

lytically using direct integration to find the following
set of solutions:

pi(t) = e,
C1
(1) = _ctam—p 2ez
D2 =p2= 1y by
1
t)=——e"",
p3(t) o

2 _ _
a(t) = P amp — Cop

2Cld ’
b - b2p- b2p-
alt) = 1(co +am—p) —( P2 + sz)ept
2ecy 2ep  2fp
bip; | b3ps
— +-="+4a
*2ep T 2p, T
co+am—p bips
t) = - ,
#(t) 2ecy %

cot+tam—p bipe
t) = - o,
u(t) 2ecy 2e €

o(t) = b;%e”t,

2
cy + coc1mp

cobip2 — bip2p
wlt) = et — BH
1

2cie

(14)

The set of suboptimal solutions (Equations 14), which
refers to all of the above nine equations, gives us the co-
states, the state variables and the control variables of
the system as a function of time, ¢, and the parameters
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of the system. By suboptimal solution, one means
that this set of solutions is the best that one can get
under the proposed approximation procedure for each
operational mode of the system, i.e. if the value of
the control variables is kept at the levels provided in
Equations 14, then the state variables will remain at
the levels presented in these equations.

CONCLUSIONS

The simultaneous planning of production and mainte-
nance in a flexible manufacturing system is considered
in this paper, which is different from previous research
in this area in two separate ways. First, the failure
rate of the machine is supposed to be a function of
its age. Second, it is assumed that the demand of
the manufacturing product is time dependent and that
its rate depends on the level of advertisement on that
product. These assumptions are more realistic and
make the results of this research more practical.

In the process of finding a solution to the prob-
lem, first, an optimal control was characterized by
a set of Hamilton-Jacobi-Bellman partial differential
equations. Then, it was realized that under practical
assumptions, this set of equations cannot be solved
analytically. Thus, to find a suboptimal control, the
original stochastic optimal control model was approx-
imated by a deterministic optimal control problem.
Then, this deterministic optimal control problem was
solved under reasonable assumptions and a set of
suboptimal solutions was found.
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