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Stochastic Optimization Using Continuous

Action�Set Learning Automata

H� Beigy� and M�R� Meybodi�

In this paper� an adaptive random search method� based on continuous action�set learning

automata� is studied for solving stochastic optimization problems in which only the noise�

corrupted value of a function at any chosen point in the parameter space is available� First�

a new continuous action�set learning automaton is introduced and its convergence properties

are studied� Then� applications of this new continuous action�set learning automata to the

minimization of a penalized Shubert function and pattern classi�cation are presented�

INTRODUCTION

Optimization with noisy corrupted measurements is a
common problem in many areas of engineering� Con�
sider a system with measurements of g�x� ��� where � is
the parameter and x is the observation� The parameter
optimization problem is de�ned so as to determine
the optimal parameter� ��� such that the performance
function� M��� � E�g�x� ��	� is optimized� Many
e
cient methods� like the steepest descent method and
Newton�s method� are available when gradient� rM � is
explicitly available� Usually� due to the lack of su
cient
information concerning the structure of function M or
because of mathematical intractability� function M to
be optimized is not explicitly known and only the noise�
corrupted value of function M��� at any chosen point�
�� can be observed� Two important classes of algorithm
are available for solving the optimization problem when
only the noise�corrupted observations are available�
Stochastic approximation based algorithms �
	 and
learning automata based algorithms ����	�

Stochastic approximation algorithms are iterative
algorithms in which the gradient of function� M � is
approximated by a �nite di�erence method and using
the function evaluations obtained at points� which are
chosen close to each other �
	� Learning automata
are adaptive decision making devices that operate
in unknown random environments and progressively
improve their performance via a learning process�
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Learning automata are very useful for optimization of
multi�modal functions when the function is unknown
and only noise�corrupted evaluations are available� In
these algorithms� a probability density function� which
is de�ned over the parameter space� is used for selecting
the next point� The reinforcement signal and the
learning algorithm are used by learning automata for
updating the probability density function at each stage�
It is required that this probability density function con�
verge to some probability density function where the
optimal parameter� ��� is chosen with probability as
being as close as possible to unity� The distinguishing
feature of the learning is that probability distribution
of g�x� �� is unknown�

Methods based on stochastic approximation al�
gorithms and learning automata represent two dis�
tinct approaches to learning problems� Though both
approaches involve iterative procedures� updating at
every stage is done in the parameter space in the �rst
method� which may result in a local optimum� and in
the probability space in the second method� Learning
automata methods have two distinct advantages over
the stochastic approximation algorithms� The �rst
advantage is that the action space need not be a metric
space because� as in stochastic approximation algo�
rithms� the new value of the parameter is to be chosen
close to the previous value� The second advantage
is that the methods based on learning automata lead
to global optimization� because� at every stage any
element of the action�set can be chosen�

In this paper� an adaptive random search method
for �nding the global minimum of an unknown function
is studied� In the �rst part of the paper� a new
Continuous Action�set Learning Automaton �CALA�
is introduced and its convergence behavior is stud�
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ied� A strong convergence theorem for this learning
automaton is stated and proven� In the second part
of the paper� algorithms are proposed� which use
the proposed CALA for stochastic optimization of a
penalized Shubert function and pattern classi�cation�
The proposed algorithm is a constant step size learning
algorithm and needs only one function evaluation at
each stage� The proposed algorithm is independent of
the dimension of the parameter space of the function
to be optimized�

The rest of this paper is organized as follows� In
the next section a brief review of learning automata is
presented� Then� a new continuous action�set learning
automaton is given and its behavior is studied� After
that� algorithms for stochastic optimization and the
experiments are given� Finally� the paper is concluded�

LEARNING AUTOMATA

Learning Automata �LA� are adaptive decision making
units that can learn to choose the optimal action from a
set of actions by interaction with an unknown random
environment� At each instant� n� the LA chooses an
action� �n� from its action probability distribution and
applies it to the random environment� The random
environment provides a stochastic response� which is
called a reinforcement signal� to the LA� Then� the LA
uses the reinforcement signal and learning algorithm to
update the action probability distribution�

Learning automata can be classi�ed into two
main groups� Finite Action�set Learning Automata
�FALA� and Continuous Action�set Learning Au�
tomata �CALA� ��	� The action�set of FALA is �nite
and the action probability distribution is represented
by a probability vector that is updated by a learning
algorithm� Several algorithms for learning optimal
parameters have been developed for many discrete
and continuous parameters ��������	� When the FALA
is used for solving optimization problems� one needs
to discretize the parameter space� so that actions
of LA can be possible values of the corresponding
parameter� The accuracy of the solution is increased by
choosing the �ner discretization and� hence� increasing
the number of actions of LA� However� increasing
the number of actions leads to slow convergence of
the learning algorithm� A more satisfying solution
would be to employ an LA model where the action�
set can be continuous� such as a subset of real line�
Such a model of LA is called a continuous action�set
learning automaton� Like FALA� CALA also use a
probability distribution function to choose an action
and the learning algorithm updates this function based
on the reinforcement signal�

Continuous action�set learning automata that are
presented in ��	 at instant n use a normal distribution
with mean� �n� and standard deviation� �n� for action

probability distribution� At each instant� the CALA
updates its action probability distribution by updating
�n and �n� This CALA interacts with the environment
through a choice of two actions at each instant� At
each instant� n� the CALA chooses �n � � at random
from its current distribution� N��n� �n�� Then� it
gets reinforcement from the environment for the two
actions� �n and �n� Let these reinforcements be ����
and ����� Then� the action probability distribution is
updated as�

�n����n�af���n� �n� �n� ����� ����	�

�n����n�af���n� �n� �n� ����� ����	�Ca��n��L	�
�
�

where f����� f���� and ���� are de�ned as below�
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���� � �� � �L�If� � �Lg� �L� ���

and �L � �� C � � and a � ��� 
� are parameters
of the algorithm� The learning algorithm for CALA
is described below� Since the updating given for �n
does not automatically guarantee that �n�� � �n� a
projected version of �n is always used� denoted by
���n	� For this algorithm� it is shown that with an
arbitrary large probability� �n will converge close to
the optimal action and �n will converge close to �L�
provided one chooses � and �L su
ciently small and
C su
ciently large ��	�

Continuous Action Reinforcement Learning Au�
tomaton �CARLA� is introduced in ���
�	� Let
the action�sets of an automaton be a bounded con�
tinuous random variable de�ned over the interval
��min� �max	 � �� CARLA uses a continuous proba�
bility density function� f�n�� to choose its actions� It
is assumed that no information about the actions is
available at the start of learning and� therefore� the
action probabilities have uniform distribution� CARLA
updates f�n� according to the following rule�

f�n� 
� �

�
a�f�n���
��n�H��� �n�	 if �n � ��max� �min	�

� otherwise� ���

where a is a normalization factor� �n � ��� 
	 is
the reinforcement signal and H��� r� is a symmetric
Gaussian neighborhood function centered on r � �n

given by H��� r� � 	e�
�

�
���r

�
�� � where 	 and � are
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parameters that a�ect the height and the width of this
neighborhood function�

Gullapalli proposed a generalized learning au�
tomaton with a continuous action�set� which uses the
context input for selecting its actions and the reinforce�
ment signal for updating its parameters �

	� Vasilakos
et al� introduced a generalized learning automaton
with a continuous action�set and has shown that this
learning automaton �nds the optimal action for each
context vector �
�	� In �
�	� a team of FALA and CALA
is also used for stochastic optimization�

Learning automata have been used successfully
in many applications� such as computer networks �
��

�	� solving NP�complete problems �
��
�	� capacity
assignment �����
	� neural network engineering ������	�
and cellular networks ������	 to mention a few�

A NEW CONTINUOUS ACTION�SET
LEARNING AUTOMATON

In this section� a new Continuous Action�set Learning
Automaton �CALA� is introduced� which will be used
later in the paper for stochastic optimization� For the
proposed CALA� the Gaussian distribution� N��n� �n��
is used for selection of actions� which is completely
speci�ed by the �rst and second order moments� �n
and �n� The learning algorithm updates the mean and
variance of the Gaussian distribution at any instant�
using the reinforcement signal� �� obtained from the
random environment� The reinforcement signal� � �
��� 
	� is a noise�corrupted reinforcement signal� which
indicates a noise�corrupted observation of function
M��� at the selected action� The reinforcement signal�
�� is a random variable whose distribution function
coincides almost with the distribution� H��j��� that
belongs to a family of distributions which depends on
the parameter �� Let�

M��� � E�����j�	 �

Z �

��

����dH��j���

be a penalty function with bound M corresponding to
this family of distributions� It is assumed that M���
is measurable and continuously di�erentiable almost
everywhere� The CALA has to minimize M��� by
observing ����� Using the learning algorithm� one
ideally requires that �n � �� and �n � �� as time
tends to in�nity�

The interaction between the CALA and the
random environment takes place as iterations of the
following operations� Iteration n begins by selection of
an action� �n� by the CALA� This action is generated as
a random variable from the Gaussian distribution with
parameters �n and �n� The selected action is applied to
the random environment and the learning automaton
receives an evaluative signal� ���n�� which has the

mean value� M��n�� from the environment� Then� the
learning automaton updates the parameters �n and �n�
Initially� M��� is not known and it is desirable that
with the interaction of the learning automaton and
the random environment� � and � converge to their
optimal values� which results in the minimum value of
M���� The learning automaton uses the following rule
to update parameters �n and �n� thus� generating a
sequence of random variables� �n and �n�

�n�� � �n � a���n��n��n � �n��

�n�� � f��n�� ���

where a is learning rate and f��� is a function that pro�
duces a sequence of f�ng �described later�� Equation �
can be written as�

�n�� � �n � a��nyn��n�� ���

where�

yn��n� � ���n�

�
�n � �n

�n

�
� ���

An intuitive explanation for the above updating equa�
tions is as follows� One can view the fraction in
Equation � as the normalized noise added to the mean�
Since a� � and � are all positive� the updating equation
changes the mean value in the opposite direction of
the noise� If the noise is positive� then the learning
automaton should update its parameter� so that mean
value increases and vice versa� Since E��j�	 is close
to unity when � is far from its optimal value and is
close to zero when � is near to the optimal value� the
learning automaton updates � with large steps when
� is far from its optimal value and with small steps
when � is close to its optimal value� This causes a
�ner quantization of � near its optimal value and a
grain quantization for points far away from its optimal
value� Thus� one can consider the learning algorithm
as a random direction search algorithm with adaptive
step sizes�

In what follows� the convergence of the pro�
posed learning automaton in stationary environments
is stated and proven� The convergence is proven� based
on the following assumptions�

Assumption �

The sequence of real numbers� f�ng� is such that �n �
��
P�

n�� �
�
n �� and

P�
n�� �

�
n 
��

Note that these conditions imply that �n � �
as n � �� Therefore� in limit� �n of Gaussian
distribution tends to zero and the action of the learning
automaton becomes equal to the mean� The conditionP�

n�� �
�
n � � ensures that the sum of increments to

the initial mean� �	� can be arbitrarily large� so that
any �nite initial value of �	 can be transformed into
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the optimal value� ��� At the same time� the conditionP�
n�� �

�
n 
� ensures that the variance in �n is �nite

and the mean cannot diverge to in�nity� Here� ��

is like the step size� thus� the above is the standard
assumption in stochastic approximation algorithms on
the step size�

Assumption �

M��� has a unique minimum at ��� Let R��� � �M���
�� �

and S��� � �M����
��� � be the �rst and the second

derivative of M���� respectively� M��� has a �nite
number of minima inside a compact set� M���� R���
and S��� have bounds M� R and S� respectively�

Note that this assumption ensures that there is
an optimal action� ��� for the learning automaton for
which E������	 is minimum� Since� in limit� �n � ��
then� this assumption ensures that there is an optimal
mean� ��� for which M is minimized�

Assumption �

M��� is linear near ��� that is sup��j����j� �

�
�� �

���R��� � �� for all � � ��
Assumptions � and � mean that the function

being optimized has a unique minimum and behaves
like a quadratic in the search area and near the
optimum point�

Assumption �

The noise in the reinforcement signal� ����� has a
bounded variance� that is�

E
n
����� �M���	

�
o
� K�

�

 � ��� ����

	
� ���

for some real number� K� � ��
Given the above assumptions� in what follows�

the behavior of the proposed CALA is studied� The
following theorem states the convergence of the random
process de�ned by Equation �� The method used to
prove this theorem is similar to the methods used in
stochastic approximation �
	�

Theorem �

Suppose that Assumptions 
 to � hold� �	 is �nite and
there is an optimal value of �� for �� Then� if �n and �n
are evolved according to the given learning algorithm�
then� limn�� �n � �� with probability 
�

Before the above theorem is proven� �rst� the
following two lemmas are proven�

Lemma �

E �yn��n�j�n	 � �nR��n��

Proof

Let �n denote ���n�� where �n is a random variable
chosen from Gaussian distribution with mean �n and

variance ��n�

E �yn��n�j�n	 � E

�
M��n�

�
�n � �n

�n

�



�n
�
� ���

ReplacingM��n� with its second order Taylor se�
ries expansion around �n and simplifying� one obtains�

E �yn��n�j�n	 �M��n� E

��
�n � �n

�n

�



�n
�

�R��n�E

��
��n � �n�

�

�n

�



�n
�

�



�
E

�
S���

�
��n � �n�

�

�n

�



�n
�
�

where � lies between �n and �n� The �rst and last
terms on the right hand side of the above equation are
zero� because the odd moments of a Gaussian random
variable� �n� are zero� Since M��� has a bounded
second derivative� the above equation can be written
as E �yn��n�j�n	 � �nR��n���

Lemma �

E
�
y�n��n�j�n

	
� K�

�

 � ��n � ����

	
�

Proof

E
�
y�n��n�j�n

	

�

Z �

��

E

��
�n

�
�n � �n

�n

���



�n
�
dN��nj�n� �n�

�

Z �

��

E

�
��n





�n

�

�n � �n

�n

��

dN��nj�n� �n��
���

By substituting Inequality � in the above equation� one
obtains�

E
�
y�n��n�j�n

	

� K�

Z �

��

�

 � ��n � ���� �M���n�

	
�
�n � �n

�n

��

dN��nj�n� �n�

�K�

Z �

��

�

�M���n�

	��n��n
�n

��

dN��nj�n� �n�

�K�

Z �

��

�
��n � �n�

� � ���n � �n���n � ���

� ��n � ����
	��n � �n

�n

��

dN��nj�n� �n��
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Since the odd moments of a Gaussian random variable
are zero� the above equation can be written as�

E
h
y�n��n�j�n

i
� K� � �K��

�
n �K���n � ����

�K�

Z �

��

M���n�

�
�n � �n

�n

��

dN��nj�n� �n��
�
��

Replacing M��n� with its second order Taylor series
expansion around �n and using the fact that M and
its �rst and second derivatives are bounded� the last
term of the above equation is equal to�

Z �

��

M���n�

�
�n � �n

�n

��

dN��nj�n� �n�

�

Z �

��

�
M�R��n � �n� � S

��n � �n�
�

�

��
�
�n � �n

�n

��

dN��nj�n� �n��
�

�

where � lies between �n and �n and R and S are
bounds of the �rst and the second derivative of M����
respectively� Using the fact that the odd moments
of a Gaussian random variable are zero� the above
inequality can be simpli�ed as�

Z �

��

M���n�

�
�n � �n

�n

��

dN��nj�n� �n�

�M� � �R���n � �MS��n �

�

�
S���n�

Substituting the above equation in Equation 
��
one obtains�

E
�
y�n��n�j�n

	
� K� � �K��

�
n �K���n � ����

�K�M
� � �K�R

���n � �K�MS��n

�

�

�
K�S

���n�

Since �n�M�R and S are bounded random variables�
there is a constant K� � �� such that the above
inequality can be written as�

E
�
y�n��n�j�n

	
� K�

�

 � ��n � ����

�
� �
��

�

Proof of Theorem �

Let en � �n � ��� Then using Equation �� en can be
de�ned recursively as�

en�� � en � a��nyn��n�� �
��

Squaring� taking the conditional expectation given in
�	� � � � � �n of both sides of the recursive formula for
en�� and� then� using Lemmas 
 and �� one obtains�

E
h
e�n��j�	� � � � � �n

i

� E

��
en � a��nyn��n�

��



�	� � � � � �n
�

� e�n � a�K��
�
n�
 � e�n�� �a�K��

�
nenR��n�

� e�n � a�K��
�
n�
 � e�n�

� e�n
�

 � a�K��

�
n

�
� a�K��

�
n� �
��

Let�

Zn�e
�
n

�Y
j�n

�

�a�K��

�
j

�
�a�K�

�X
j�n

��j

�Y
i�j��

�

�a�K��

�
i

�
�

�
��

Then� using Equation 
�� it is easy to show that
e�n � Zn and EfZn��j�	� � � � � �ng � Zn� Tak�
ing the conditional expectations given� Z�� � � � � Zn�
on both sides of the above inequality� one obtains
EfZn��jZ	� � � � � Zng � Zn� which shows that Zn
is a non�negative super�martingale� Thus� one has
EfZn��g � EfZng � � � � � EfZ�g � �� Therefore�
using the martingale convergence theorems ���	� Zn
converges with probability 
� Since e�n � Zn� hence
one concludes that e�n converges to 
 with probability 
�
where 
 
� is a random variable� Taking expectation
on both sides of Equation 
�� one obtains�

E
�
e�n��

	
� E

�
e�n
	
� a�K��

�
n

�

 � E

�
e�n
	�

� �a�K��
�
nenR��n��

Adding the �rst n of these inequalities� one gets�

E
�
e�n��

	
� E

�
e��
	
� a�K�

nX
j��

��n
�

 � E

�
e�j
	�

� �a�K�

nX
j��

��j ejR��j��

Adding E
�
e��
	
to both sides of the above inequality� one

obtains�

E
�
e�n��

	
� E

�
e��
	
� a�K�

nX
j��

��n
�

 � E

�
e�j
	�

� �a�K�

nX
j��

��j ejR��j��
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Since E
�
e�n��

	
is positive� the above inequality be�

comes�

E
�
e��
	
�a�K�

nX
j��

��n
�

�E

�
e�j
	�
��a�K�

nX
j��

��j ejR��j����

From the above inequality� using the boundness of
E
�
e�j
	
�for j � �� and Assumption 
� it follows that�

�a�K�

nX
j��

��j ejR��j��E
�
e��
	
�

nX
j��

a�K��
�
n

�

�E

�
e�j
	�


��

Since
P�

j�� �
�
j diverges and� by Assumption �� the

quantity of ejR��j� is positive� one can conclude that
for some sequence� fnjg� one has enjR��nj � � ��
with probability 
� The fact that e�n converges with
probability 
 to some random variable� 
� together
with Assumptions 
 through � and the above equation�
it implies that 
 � � with probability 
� Hence� �n
converges to �� with probability 
�

NUMERICAL EXAMPLES

In this section� the application of the proposed con�
tinuous action�set learning automaton is studied� Two
problems are studied� The �rst problem is to �nd a
minimum of the penalized Shubert function� when the
function evaluations are corrupted by noise� and the
second problem is to �nd an optimal discriminant func�
tion for pattern classi�cations� In both problems� only
the function evaluations are assumed to be available�

Optimization of a Function

In this section� an algorithm is given� based on the
proposed continuous action�set learning automaton�
for optimization of an unknown function� The pro�
posed algorithm can be easily extended to multivariate
functions by using a cooperative game of CALA with
identical payo�� Consider a function F � � � �
to be minimized� At any instant� n� the automaton
chooses an action� �n� using the Gaussian distribution�
N��n� �n�� where �n and �n are the mean and the
standard deviation� respectively� As before� let ����
denote the noisy function evaluation at point � � ��

such that ���� � f������
��

� where 	� and 	� are two
appropriate scaling constants� such that ��a� � ��� 
	
and f��� is a noisy evaluation of F �a�� This is because
of the assumption that � is a bounded and nonnegative
random variable� The signal ���� is used to update �
of the Gaussian distribution �Equation ���

In order to study the behavior of the proposed
algorithm� one must consider the optimization of the
penalized Shubert function� which is borrowed from ��	�

when the function evaluations are noisy� The penalized
Shubert function �Figure 
� is frequently used as one
of the benchmark problems for global optimization
problems� The penalized Shubert function is given
below�

F �x� �


X
i��

i cos��i� 
�x� 
� � u�x� 
�� 
��� ���
�
��

where u is the penalizing function� given by�

u�x� b� k�m� �

���
��
k�x� b�m x � b

� jxj � b

k��x� b�m x 
 �b

� �
��

This function has 
� minima within interval ��
�� 
�	�
where three of them are global minima� The global
minimum value of the penalized Shubert function is
approximately equal to �
���� and is attained at points
close to ����� ��� and ����

The proposed continuous action�set learning au�
tomaton and the automaton proposed in ��	� with
di�erent initial values of the mean and variance param�
eters� are used for �nding the minimum of the penalized
Shubert function� The algorithm given in ��	 is used
with the following values of parameters� The penalizing
constant� C� is equal to �� the lower bound for the
variance� �L � ���
 and the step size a � � 	 
����
The proposed algorithm is used with a � ���
 and
the variance is updated according to the following
equation�

�n �



b n�	c
���

�

where b�c denotes the �oor function� It can be easily
veri�ed that sequence f�ng satis�es the conditions of
Assumption 
� From the de�nition of the reinforcement

Figure �� The penalized Shubert function�
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Table �� The simulation results with noise U ������ ���� added to the penalized Shubert function evaluations�
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signal �� it is clear that the highest expected rein�
forcement is 
�� and the lowest expected reinforcement
is ��� for either evaluation� It is easy to see that
M��� � E��j�	 and � satisfy Assumptions � through
�� The function evaluations are corrupted by a zero
mean noise randomly generated from uniform and
normal distributions� The results of simulation for
two algorithms� when noise is in the range ���������	
with uniform distribution� are shown in Table 
� i�e�
f�x� � F �x� � U ������ ���	� where U �a� b	 is a random
number in interval �a� b	 with uniform distribution� The
results of simulation for two algorithms when noise has
normal distribution are shown in Tables � through 

�
i�e� f�x� � F �x��N��� ��� where N��� �� is a random
number with uniform distribution with zero mean and
the variance of �� The simulation results show that
the mean values of Gaussian distribution used in CALA
always converge to a minimum of the penalized Shubert
function within the interval ��
��
�	� which has a higher
rate of convergence than the algorithm given in ��	�

By comparing the results of simulations for both
algorithms� one concludes that two algorithms have
approximately the same accuracy� but the proposed

Figure �� The convergence of the mean value of the
Gaussian distribution for uniform noise�

Figure �� The convergence of the mean value of the
Gaussian distribution for noise with normal distribution�

algorithm has a higher speed of convergence� Figures �
and � show the changes in � versus n for typical runs
for the proposed algorithm and the algorithm given
in ��	� when noise with uniform or normal distribution is
added to the function evaluations� These �gures show
that the proposed algorithm converges to a minimum
quickly and has oscillations around the minimum point�
However� such oscillations could be decreased by using
a small step size� which results in decreasing the rate
of convergence�

Pattern Classi�cation

In this section� an algorithm� based on the proposed
continuous action�set learning automaton for solving
pattern classi�cation problems is given� A pattern
classi�cation problem can be formulated as follows�
There is a set of patterns that must be classi�ed into
a �nite number of classes� The information about
a pattern is summarized by a d�dimensional vector�
X � �x�� x�� � � � � xd	

T � called a feature vector� Let
m possible pattern classes be ��� ��� � � � � �m� Let
P ��i� denote a priori probability and P �X j�i� �for
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i � 
� � � � �m� be the class conditional densities� The
function of a pattern classi�er is to assign the correct
class membership to each given feature vector�X � Such
an operation can be interpreted as a partition of the d�
dimensional space into m mutually exclusive regions�
The partition boundary can be expressed in terms
of discriminant functions� The forms of discriminant
functions are assumed to be known� except for some
parameter vectors W i �for i � 
� �� � � � �m�� which are
to be identi�ed� Associated with each class� �i� a
discriminant function� di�X�W

i� �for i � 
� �� � � � �m��
is selected� such that if pattern X were from class �i�
then� one would have�

di�X�W
i� � dj�X�W

j�� 
j �� i� �
��

where W i is the parameter vector for discriminant
function di�

In this example� the learning pattern classi�cation
for a ��class ��dimension pattern classi�cation problem
is considered� For this problem� one discriminant
function� denoted by d�X�W � is su
cient� In order
to �nd parameters of the discriminant function� W �
a cooperative game of continuous action�set learning
automata with identical payo� is used� In the proposed
method� the teacher �environment� chooses a pattern�

X � randomly based on a priori probabilities� The
statistical properties of the pattern classes are assumed
to be unknown to the algorithm� The team of learning
automata chooses their actions� which result in the
determination of parameter vector W � The parameter
vector W� together with feature vector X � determine
the classi�cation� The decision rule for pattern classi�
�cation is formulated as�

� �

�
�� if d�X�W � � �

�� otherwise
� �
��

where X � �x�� x�	
T is the feature vector� The

only feedback to the team of continuous action�set
learning automata is the reinforcement signal� which
is computed according to the following rule�

� �

�

 if � �� �w

� otherwise
� ����

where � is the classi�cation of feature vector X � The
objective is to minimize the probability of misclassi��
cation of pattern X �E��jX 	�� where the expectation is
with respect to statistical distribution on the pattern
classes� Note that this criterion is a function of the
parameter vector� W � which is to be identi�ed�
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Table ��� The simulation results for pattern classi�cation problem�

Case Initial Values Sastry	s Algorithm Proposed Algorithm
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��

Let the class conditional densities for the
two classes be given by the Gaussian distributions
P �X j��� � N�m����� and P �X j��� � N�m������
where�

m� � ��� �	T � m� � ��� �	T �

���

�

 �����

����� 


�
� ���

�

�� �����
����� 
��

�
�

The following discriminant function is considered for
this problem�

g�X�

�

�
mx��x���m

� � 
�

�
x	�

b

�
�m��
���

���




 �m�

�

�
x� �

�
x	 �

b

�
 �m��
���

���

�

�
x� �m

�
x	 �

b

�
 �m��
���

���
�

This function is a parabola described by three
parameters� m�x	 and b� The parameters of the
optimal discriminant function for the above pattern
classi�cation problems are m � 
��� x	 � ��� and
a � 
���� For solving this problem� a team of three
CALA are used� where each CALA is associated with
one unknown parameter� The other parameters for
the CALA used in this algorithm are the same as the
parameters used in the previous section� For learning�
��� samples of pattern are chosen from each class�
which are presented repeatedly to the team of CALA
during the training process� Also� a test set consisting
of 
�� samples is generated from the two classes to
�nd errors by the chosen discriminant function� The
results of simulation for the proposed algorithm and
the algorithm given in ��	 are shown in Table 
��
By carefully inspecting Table 
�� it can be concluded
that the proposed algorithm has smaller training and
generalization errors�

CONCLUSIONS

In this paper� a random search algorithm for solving
stochastic optimization problems has been studied�
A class of problems has been considered where the
only available information is noise�corrupted values
of the function� In order to solve such problems�
a new continuous action�set learning automaton was
proposed and its convergence properties were stud�
ied� A strong convergence theorem for the proposed
learning automaton was stated and proved� Finally�
algorithms for two stochastic optimization problems
were given and their behavior was studied through
computer simulations� Computer simulations showed
that the proposed method has a higher performance
compared with existing continuous action�set learning
automata based on optimization algorithms�
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