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Stochastic Optimization Using Continuous

Action-Set Learning Automata

H. Beigy* and M.R. Meybodi'

In this paper, an adaptive random search method, based on continuous action-set learning
automata, is studied for solving stochastic optimization problems in which only the noise-
corrupted value of a function at any chosen point in the parameter space is available. First,
a new continuous action-set learning automaton is introduced and its convergence properties
are studied. Then, applications of this new continuous action-set learning automata to the
minimization of a penalized Shubert function and pattern classification are presented.

INTRODUCTION

Optimization with noisy corrupted measurements is a
common problem in many areas of engineering. Con-
sider a system with measurements of g(x, ), where « is
the parameter and x is the observation. The parameter
optimization problem is defined so as to determine
the optimal parameter, o, such that the performance
function, M(a) = E[g(z,a)], is optimized. Many
efficient methods, like the steepest descent method and
Newton’s method, are available when gradient, VM, is
explicitly available. Usually, due to the lack of sufficient
information concerning the structure of function M or
because of mathematical intractability, function M to
be optimized is not explicitly known and only the noise-
corrupted value of function M («) at any chosen point,
a, can be observed. Two important classes of algorithm
are available for solving the optimization problem when
only the noise-corrupted observations are available:
Stochastic approximation based algorithms [1] and
learning automata based algorithms [2,3].

Stochastic approximation algorithms are iterative
algorithms in which the gradient of function, M, is
approximated by a finite difference method and using
the function evaluations obtained at points, which are
chosen close to each other [1]. Learning automata
are adaptive decision making devices that operate
in unknown random environments and progressively
improve their performance via a learning process.
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Learning automata are very useful for optimization of
multi-modal functions when the function is unknown
and only noise-corrupted evaluations are available. In
these algorithms, a probability density function, which
is defined over the parameter space, is used for selecting
the next point. The reinforcement signal and the
learning algorithm are used by learning automata for
updating the probability density function at each stage.
It is required that this probability density function con-
verge to some probability density function where the
optimal parameter, o, is chosen with probability as
being as close as possible to unity. The distinguishing
feature of the learning is that probability distribution
of g(z,a) is unknown.

Methods based on stochastic approximation al-
gorithms and learning automata represent two dis-
tinct approaches to learning problems. Though both
approaches involve iterative procedures, updating at
every stage is done in the parameter space in the first
method, which may result in a local optimum, and in
the probability space in the second method. Learning
automata methods have two distinct advantages over
the stochastic approximation algorithms. The first
advantage is that the action space need not be a metric
space because, as in stochastic approximation algo-
rithms, the new value of the parameter is to be chosen
close to the previous value. The second advantage
is that the methods based on learning automata lead
to global optimization, because, at every stage any
element of the action-set can be chosen.

In this paper, an adaptive random search method
for finding the global minimum of an unknown function
is studied. In the first part of the paper, a new
Continuous Action-set Learning Automaton (CALA)
is introduced and its convergence behavior is stud-
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ied. A strong convergence theorem for this learning
automaton is stated and proven. In the second part
of the paper, algorithms are proposed, which use
the proposed CALA for stochastic optimization of a
penalized Shubert function and pattern classification.
The proposed algorithm is a constant step size learning
algorithm and needs only one function evaluation at
each stage. The proposed algorithm is independent of
the dimension of the parameter space of the function
to be optimized.

The rest of this paper is organized as follows: In
the next section a brief review of learning automata is
presented. Then, a new continuous action-set learning
automaton is given and its behavior is studied. After
that, algorithms for stochastic optimization and the
experiments are given. Finally, the paper is concluded.

LEARNING AUTOMATA

Learning Automata (LA) are adaptive decision making
units that can learn to choose the optimal action from a
set of actions by interaction with an unknown random
environment. At each instant, n, the LA chooses an
action, a,, from its action probability distribution and
applies it to the random environment. The random
environment provides a stochastic response, which is
called a reinforcement signal, to the LA. Then, the LA
uses the reinforcement signal and learning algorithm to
update the action probability distribution.

Learning automata can be classified into two
main groups: Finite Action-set Learning Automata
(FALA) and Continuous Action-set Learning Au-
tomata (CALA) [4]. The action-set of FALA is finite
and the action probability distribution is represented
by a probability vector that is updated by a learning
algorithm. Several algorithms for learning optimal
parameters have been developed for many discrete
and continuous parameters [2,3,5-7]. When the FALA
is used for solving optimization problems, one needs
to discretize the parameter space, so that actions
of LA can be possible values of the corresponding
parameter. The accuracy of the solution is increased by
choosing the finer discretization and, hence, increasing
the number of actions of LA. However, increasing
the number of actions leads to slow convergence of
the learning algorithm. A more satisfying solution
would be to employ an LA model where the action-
set can be continuous, such as a subset of real line.
Such a model of LA is called a continuous action-set
learning automaton. Like FALA, CALA also use a
probability distribution function to choose an action
and the learning algorithm updates this function based
on the reinforcement signal.

Continuous action-set learning automata that are
presented in [8] at instant n use a normal distribution
with mean, u,, and standard deviation, o, for action
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probability distribution. At each instant, the CALA
updates its action probability distribution by updating
tn and o,. This CALA interacts with the environment
through a choice of two actions at each instant. At
each instant, n, the CALA chooses a,, € R at random
from its current distribution, N(gn,0,). Then, it
gets reinforcement from the environment for the two
actions: p, and a,,. Let these reinforcements be 3(u)
and [(a). Then, the action probability distribution is
updated as:

Hn+41 :Nn+af1 [/J/nvo-nvan7ﬂ(a)7ﬂ(:u’)]7

Un+1 :Un+af2[/“bn7 O'n, O[n, 6(0[)7 ﬁ(:u’)]_ CCL[O'n _aL]v

(1)

where f1(.), f2(.) and ¢(.) are defined as below:
Al o a). ) = | AL 22k,

ol ). ) =| =B Kz(})_l] |

¢(o) = (0 —op)[{o >0} +oyL, (2)

and o, > 0,C > 0 and a € (0,1) are parameters
of the algorithm. The learning algorithm for CALA
is described below. Since the updating given for o,
does not automatically guarantee that o,11 > 0, a
projected version of ¢, is always used, denoted by
¢lon]. For this algorithm, it is shown that with an
arbitrary large probability, u, will converge close to
the optimal action and o, will converge close to oy,
provided one chooses a and o sufficiently small and
C sufficiently large [8].

Continuous Action Reinforcement Learning Au-
tomaton (CARLA) is introduced in [9,10].  Let
the action-sets of an automaton be a bounded con-
tinuous random variable defined over the interval
[@min, ¥max] € R. CARLA uses a continuous proba-
bility density function, f(n), to choose its actions. It
is assumed that no information about the actions is
available at the start of learning and, therefore, the
action probabilities have uniform distribution. CARLA
updates f(n) according to the following rule.

Fln+1) =
alf(n)+(1—B)H (o, an)] i an € [Qmax, Yminls
0 otherwise, (3)

where a is a normalization factor, £, € [0,1] is
the reinforcement signal and H(a,r) is a symmetric
Gaussian neighborhood function centered on r = a,,

given by H(a,r) = )\e*%(a;")Z, where A\ and o are
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parameters that affect the height and the width of this
neighborhood function.

Gullapalli proposed a generalized learning au-
tomaton with a continuous action-set, which uses the
context input for selecting its actions and the reinforce-
ment signal for updating its parameters [11]. Vasilakos
et al. introduced a generalized learning automaton
with a continuous action-set and has shown that this
learning automaton finds the optimal action for each
context vector [12]. In [13], a team of FALA and CALA
is also used for stochastic optimization.

Learning automata have been used successfully
in many applications, such as computer networks [14-
16], solving NP-complete problems [17-19], capacity
assignment [20,21], neural network engineering [22-25],
and cellular networks [26-29] to mention a few.

A NEW CONTINUOUS ACTION-SET
LEARNING AUTOMATON

In this section, a new Continuous Action-set Learning
Automaton (CALA) is introduced, which will be used
later in the paper for stochastic optimization. For the
proposed CALA, the Gaussian distribution, N (u,,0y,),
is used for selection of actions, which is completely
specified by the first and second order moments, u,
and o,,. The learning algorithm updates the mean and
variance of the Gaussian distribution at any instant,
using the reinforcement signal, 3, obtained from the
random environment. The reinforcement signal, § €
[0,1], is a noise-corrupted reinforcement signal, which
indicates a noise-corrupted observation of function
M(.) at the selected action. The reinforcement signal,
0, is a random variable whose distribution function
coincides almost with the distribution, H(f3|a), that
belongs to a family of distributions which depends on
the parameter a. Let:

M(a) = E[f()]a] = / " Bla)dH (),

be a penalty function with bound M corresponding to
this family of distributions. It is assumed that M(.)
is measurable and continuously differentiable almost
everywhere. The CALA has to minimize M(.) by
observing B(«). Using the learning algorithm, one
ideally requires that u, — p* and o, — 0, as time
tends to infinity.

The interaction between the CALA and the
random environment takes place as iterations of the
following operations. Iteration n begins by selection of
an action, «,, by the CALA. This action is generated as
a random variable from the Gaussian distribution with
parameters u,, and o,. The selected action is applied to
the random environment and the learning automaton
receives an evaluative signal, ((a,), which has the
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mean value, M(a,,), from the environment. Then, the
learning automaton updates the parameters u,, and o,,.
Initially, M(.) is not known and it is desirable that
with the interaction of the learning automaton and
the random environment, p and o converge to their
optimal values, which results in the minimum value of
M(.). The learning automaton uses the following rule
to update parameters p, and o,, thus, generating a
sequence of random variables, i, and o,:

Hn+1 = Hn — aﬁ(an)gn(an - Nn)v

On+1 = f(O'n)7 (4)

where a is learning rate and f(.) is a function that pro-
duces a sequence of {0, } (described later). Equation 4
can be written as:

Hn+1 = Hn — a’”iyn(an)a (5)

where:

mlan) = ) (20 (©
An intuitive explanation for the above updating equa-
tions is as follows. Omne can view the fraction in
Equation 6 as the normalized noise added to the mean.
Since a, # and o are all positive, the updating equation
changes the mean value in the opposite direction of
the noise. If the noise is positive, then the learning
automaton should update its parameter, so that mean
value increases and vice versa. Since E[3|a] is close
to unity when « is far from its optimal value and is
close to zero when « is near to the optimal value, the
learning automaton updates p with large steps when
« is far from its optimal value and with small steps
when « is close to its optimal value. This causes a
finer quantization of p near its optimal value and a
grain quantization for points far away from its optimal
value. Thus, one can consider the learning algorithm
as a random direction search algorithm with adaptive
step sizes.

In what follows, the convergence of the pro-
posed learning automaton in stationary environments
is stated and proven. The convergence is proven, based
on the following assumptions.

Assumption 1

The sequence of real numbers, {0, }, is such that o,, >
0,> 07 o2 =o0and ) 7 ot < .

Note that these conditions imply that o, — 0
as n — oo. Therefore, in limit, o, of Gaussian
distribution tends to zero and the action of the learning
automaton becomes equal to the mean. The condition
Yoo o8 = 00 ensures that the sum of increments to
the initial mean, po, can be arbitrarily large, so that
any finite initial value of up can be transformed into
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the optimal value, p*. At the same time, the condition
> ok < oo ensures that the variance in j, is finite
and the mean cannot diverge to infinity. Here, o2
is like the step size, thus, the above is the standard
assumption in stochastic approximation algorithms on
the step size.

Assumption 2

. .. % OM(a
M(«a) has a umqueZmlmmum at pu*. Let R(a) = %,
and S(a) = a]\ga(za), be the first and the second

derivative of M (a), respectively. M(a) has a finite
number of minima inside a compact set. M(a), R(a)
and S(«) have bounds M, R and S, respectively.

Note that this assumption ensures that there is
an optimal action, a*, for the learning automaton for
which E[#(a*)] is minimum. Since, in limit, o, — 0,
then, this assumption ensures that there is an optimal
mean, ¥, for which M is minimized.

Assumption 3
M(a) is linear near p*, that is supgﬂaﬂﬂgé(a —
w*)R(a) > 0, for all £ > 0.

Assumptions 2 and 3 mean that the function
being optimized has a unique minimum and behaves
like a quadratic in the search area and near the
optimum point.

Assumption 4

The noise in the reinforcement signal, ((.), has a
bounded variance, that is:

B{B@) - M@} <K L+ (@=p )], (D)

for some real number, K; > 0.

Given the above assumptions, in what follows,
the behavior of the proposed CALA is studied. The
following theorem states the convergence of the random
process defined by Equation 4. The method used to
prove this theorem is similar to the methods used in
stochastic approximation [1].

Theorem 1
Suppose that Assumptions 1 to 4 hold, ug is finite and
there is an optimal value of ©* for p. Then, if u,, and o,
are evolved according to the given learning algorithm,
then, lim,, o pn, = p* with probability 1.

Before the above theorem is proven, first, the
following two lemmas are proven.

Lemma 1

E [yn(an)|pn] = onR(pn).

Proof

Let 3, denote (a;), where a,, is a random variable
chosen from Gaussian distribution with mean u, and
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variance o2,

Elyn(an)|in] = E [M(O‘“) (%)

] ®

Replacing M («,,) with its second order Taylor se-
ries expansion around g, and simplifying, one obtains:

§

Bl = M) B[ (222

On

+ %E {S({) <7(°‘” — “”)3>

On

/“LTL:| k)

where ¢ lies between a, and p,. The first and last
terms on the right hand side of the above equation are
zero, because the odd moments of a Gaussian random
variable, «,,, are zero. Since M(.) has a bounded
second derivative, the above equation can be written
as B [yn(n)|pn] = onR(py).0

Lemma 2
E [yle(an)mn] <K, [1 + (Nn _ u*)z] '

Proof

E [y5 ()]
g RECSS)]
_ /:E{ﬁi un} <°‘“T_n’“‘”>2d1v(an|un,an).

(9)

By substituting Inequality 7 in the above equation, one
obtains:

E [y7(on)|n]

:U/n} dN(an|/~Ln7 Un)

<K, /00 [1+(an—,u*)2+M2(an)]

— 00

2
(2222 ) N (@l o)

On

—r [T () AN (@i

—co n

+ K, /Oo [(an - Nn)2 + 2(an - :un)(:“n - N*)

— 00

2
® Oy — Un
+ (,Un — K )2] <TN> dN(O‘n|Nann)~

n
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Since the odd moments of a Gaussian random variable
are zero, the above equation can be written as:

B[y (an)lun] < Ky +3K10% + Ky — p)?

00 _ 2
+Kl/ M?(ov,) (%) dN(an|Mn,an()~ :

Replacing M(a,,) with its second order Taylor series
expansion around pu, and using the fact that M and
its first and second derivatives are bounded, the last
term of the above equation is equal to:

/ZMZ(an) (M>2 AN (|, )

n

~ (an_ﬂn)2 2

— 00

2
(M) AN (i, 00),

On

(11)

where ¢ lies between «, and u, and R and S are
bounds of the first and the second derivative of M(.),
respectively. Using the fact that the odd moments
of a Gaussian random variable are zero, the above
inequality can be simplified as:

/_O;M2(an) (M)Z AN (i, o)

Un
2 2 2 2, 19 4
<M* 43R0, + 3MSo;, + ZS o,.
Substituting the above equation in Equation 10,

one obtains:

E [y2(an)|pn] < K1+ 3K10) + Ki(pn — p*)?
+ Ky M? + 3K, R20% + 3K, MSo?

15
+ ZK71820';1L.

Since ¢,,, M, R and & are bounded random variables,
there is a constant K5 > 0, such that the above
inequality can be written as:

E [yi(an”:un] < K» (1 + (pn — N*)Z) : (12)
|

Proof of Theorem 1
Let e, = u, — 1. Then using Equation 5, e, can be
defined recursively as:

€ntl = €n — aoiyn(an)' (13)
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Squaring, taking the conditional expectation given in
o, -+, n of both sides of the recursive formula for
en+1 and, then, using Lemmas 1 and 2, one obtains:

E[ei+1|l”’07 o 7/~’/nj|

=E {(en — omiyn(Oén))2

Mo, - - 7/~’/n:|

< 4 @ Eaod (L4 ) — 202 Koo, R(j)

< ei + a2K20i(1 + ei)

=¢2 (14 d’Ky0p) + a’ Koo (14)
Let:
Zn:efLH(1+a2K20?) +a2K2Za§ H (1+a2K20;-1) .
j=n j=n i=j+1 (15)

Then, using Equation 15, it is easy to show that
e2 < Z, and E{Z,i1lpo, - ,pn} < Z,. Tak-
ing the conditional expectations given, Zi,---,Z,,
on both sides of the above inequality, one obtains
E{Z.+1|Z0, - ,Z,} < Z,, which shows that Z,
is a non-negative super-martingale. Thus, one has
E{Z,+1} < E{Z,} < --- < E{Z;} < 0. Therefore,
using the martingale convergence theorems [30], Z,
converges with probability 1. Since e? < Z,, hence
one concludes that e2 converges to  with probability 1,
where 17 < o0 is a random variable. Taking expectation

on both sides of Equation 14, one obtains:
E [eiﬂ] -E [ei] < a’Kqo? (1 +E [ei])
—2a* K03 e, R(jt,,).
Adding the first n of these inequalities, one gets:

E[e%,,] —E[e]] <a’K> Zaﬁ (L+E[e7])
j=1

— 24’ K> Z ole; R(py).
j=1

Adding E [ef] to both sides of the above inequality, one
obtains:

E[e%,,] <E[e]] + a’K> Zai (L+E[e3])

J=1

- 2d*K, Z ole; R(p;).

j=1
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Since E [eiH] is positive, the above inequality be-
comes:

E [e%]+a2K2ZUi (1 +E [e?] )— 2a2K2ZU]36]-R(,u]-)Z 0.

j=1 j=1

From the above inequality, using the boundness of
E [e2] (for j > 0) and Assumption 1, it follows that:

22K 3 o, Rlyuy)<B []+3 ot (14 B [¢2])

Jj=1 Jj=1
< 0.

Since ) 77, 0% diverges and, by Assumption 3, the
quantity of e;R(p;) is positive, one can conclude that
for some sequence, {n;}, one has e, R(j,,) — 0,
with probability 1. The fact that €2 converges with
probability 1 to some random variable, 7, together
with Assumptions 1 through 4 and the above equation,
it implies that 7 = 0 with probability 1. Hence, u,
converges to u* with probability 1.

NUMERICAL EXAMPLES

In this section, the application of the proposed con-
tinuous action-set learning automaton is studied. Two
problems are studied: The first problem is to find a
minimum of the penalized Shubert function, when the
function evaluations are corrupted by noise, and the
second problem is to find an optimal discriminant func-
tion for pattern classifications. In both problems, only
the function evaluations are assumed to be available.

Optimization of a Function

In this section, an algorithm is given, based on the
proposed continuous action-set learning automaton,
for optimization of an unknown function. The pro-
posed algorithm can be easily extended to multivariate
functions by using a cooperative game of CALA with
identical payoff. Consider a function FF : 8 — R
to be minimized. At any instant, n, the automaton
chooses an action, a,,, using the Gaussian distribution,
N(un,0n), where u, and o, are the mean and the
standard deviation, respectively. As before, let G(a)
denote the noisy function evaluation at point a € R,
such that B(«a) = ,0(03371—&7 where \; and Ay are two
appropriate scaling constants, such that 3(a) € [0,1]
and f(.) is a noisy evaluation of F'(a). This is because
of the assumption that 3 is a bounded and nonnegative
random variable. The signal 3(«) is used to update u
of the Gaussian distribution (Equation 4).

In order to study the behavior of the proposed
algorithm, one must consider the optimization of the
penalized Shubert function, which is borrowed from [§],
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when the function evaluations are noisy. The penalized
Shubert function (Figure 1) is frequently used as one
of the benchmark problems for global optimization
problems. The penalized Shubert function is given
below:

5
F(z) = icos((i + 1)z + 1) + u(x, 10,100,2),
i=1 (16)

where u is the penalizing function, given by:

k(x =b)™ ax>b
w(z,b,k,m) =140 |z] <b . (17)
K=z —b)™ < —b

This function has 19 minima within interval [—10, 10],
where three of them are global minima. The global
minimum value of the penalized Shubert function is
approximately equal to -12.87 and is attained at points
close to -5.9, 0.4 and 6.8.

The proposed continuous action-set learning au-
tomaton and the automaton proposed in [8], with
different initial values of the mean and variance param-
eters, are used for finding the minimum of the penalized
Shubert function. The algorithm given in [8] is used
with the following values of parameters: The penalizing
constant, C, is equal to 5, the lower bound for the
variance, oy, = 0.01 and the step size a = 2 x 1074,
The proposed algorithm is used with ¢ = 0.01 and
the variance is updated according to the following
equation:

1
On = Tni11/3°
EEE
where |.| denotes the floor function. It can be easily
verified that sequence {0, } satisfies the conditions of
Assumption 1. From the definition of the reinforcement
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f(z)

-10

-16
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Figure 1. The penalized Shubert function.



20

H. Beigy and M.R. Meybodi

Table 1. The simulation results with noise U[—0.5,0.5] added to the penalized Shubert function evaluations.

Case | Initial Values Proposed Algorithm Old Algorithm
Ho Oo 18000 08000 F(Msooo) 8000 08000 F(Msooo)

1 6 6.716046 0.1 -12.861304 | 2.534 0.01 -3.578

2 10 0.436827 0.1 -12.848987 | 0.4308 | 0.01 -12.87

3 5 7.805426 0.1 -3.5772 5.364 0.01 -8.5

4 3 6.704283 0.1 -12.868272 | 6.72 0.01 -12.87

5 12 6 5.460669 0.1 -8.476369 | 1.454 0.01 -3.58

6 -10 5 -8.107043 0.1 -3.749682 -7.1 0.01 -8.5

7 -10 6 -7.09686 0.1 -8.507154 -5.8 0.01 -12.87
signal 3, it is clear that the highest expected rein- 70
forcement is 1.0 and the lowest expected reinforcement o SRS
is 0.0 for either evaluation. It is easy to see that e
M(a) = E[f|a] and  satisfy Assumptions 2 through 6.2
4. The function evaluations are corrupted by a zero g
mean noise randomly generated from uniform and '
normal distributions. The results of simulation for 1 5.4
two algorithms, when noise is in the range [-0.5,0.5]
with uniform distribution, are shown in Table 1, i.e. 50
f(z) = F(x) + U[-0.5,0.5], where Ula,b] is a random 4.6
number in interval [a, b] with uniform distribution. The ,
results of simulation for two algorithms when noise has 4.2 A - rsfhet proposed algorithm
normal distribution are shown in Tables 2 through 11, 55 m DRIV S RO
ie. f(z)=F(x)+N(0,0), where N(0,0) is a random -1000 1000 3000 5000 7000 9000

number with uniform distribution with zero mean and
the variance of o. The simulation results show that
the mean values of Gaussian distribution used in CALA
always converge to a minimum of the penalized Shubert
function within the interval [-10,10], which has a higher
rate of convergence than the algorithm given in [§].
By comparing the results of simulations for both
algorithms, one concludes that two algorithms have
approximately the same accuracy, but the proposed

13 —~—r—r—T7—r—r—r— —rrT T
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== The proposed algorithm
== Sastry’s algorithm

11k

T n&._.A \\“-__

e
R ey

?1000 10‘00 30.00 5600 70.00 9000
n

Figure 2. The convergence of the mean value of the

Gaussian distribution for uniform noise.

n

Figure 3. The convergence of the mean value of the
Gaussian distribution for noise with normal distribution.

algorithm has a higher speed of convergence. Figures 2
and 3 show the changesin u  versus n for typical runs
for the proposed algorithm and the algorithm given
in [8], when noise with uniform or normal distribution is
added to the function evaluations. These figures show
that the proposed algorithm converges to a minimum
quickly and has oscillations around the minimum point.
However, such oscillations could be decreased by using
a small step size, which results in decreasing the rate
of convergence.

Pattern Classification

In this section, an algorithm, based on the proposed
continuous action-set learning automaton for solving
pattern classification problems is given. A pattern
classification problem can be formulated as follows:
There is a set of patterns that must be classified into
a finite number of classes. The information about
a pattern is summarized by a d-dimensional vector,
X = [z1,29,--- ,xd]T, called a feature vector. Let
m possible pattern classes be wi,wa, - ,wn,. Let
P(w;) denote a priori probability and P(X|w;) (for
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Table 2. The simulation results with white noise N(0,0.1) added to the penalized Shubert function evaluations.

Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho 0o 8000 08000 F(Hsooo) 18000 08000 F(Hsooo)
1 6 6.725683 | 0.107958 | -12.82271 | 6.735791 | 2.204917 | -12.75081
2 10 6.727295 | 0.107958 | -12.813384 | 9.213571 | 0.624627 | 2.763267
3 5 -5.84428 | 0.107958 | -12.840563 10 0.038636 | -0.002154
4 3 0.45588 | 0.107958 | -12.720715 | 9.561054 | 0.188162 | -0.731982
5 12 6 -5.86847 | 0.107958 | -12.853415 10 0.014074 | -0.002154
6 -10 5 6.714694 | 0.107958 | -12.864359 | -9.610859 | 0.251364 | 2.879572
7 -10 6 -5.86368 | 0.107958 | -12.865793 | -9.612072 | 0.085958 | 2.875568
Table 3. The simulation results with white noise N(0,0.2) added to the penalized Shubert function evaluations.
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho Oo 8000 08000 F(Hsooo) 8000 08000 F(Hsooo)
1 6 4.449063 | 0.107958 | -3.739168 | 6.774669 | 2.23965 | -12.185001
2 10 6.729869 | 0.107958 | -12.79681 10 0.059367 | -0.002154
3 ) 0.427261 | 0.107958 | -12.87015 10 0.023405 | -0.002154
4 8 3 6.696855 | 0.107958 | -12.84972 10 0.023574 | -0.002154
5 12 6 -8.10426 | 0.107958 | -3.749953 | 9.999982 | 0.021554 | -0.002484
6 -10 ) 6.704349 | 0.107958 | -12.86835 | -9.630264 | 0.261474 | 2.795851
7 -10 6 -5.84628 | 0.107958 | -12.84872 | -9.624987 | 0.234517 | 2.822746

Table 4. The simulation results with white noise N(0,0.3) added to the penalized Shubert function evaluations.

Case | Initial Values Proposed Algorithm Sastry’s Algorithm

Ho g0 8000 J8000 F(pso00) H8000 98000 F(pso00)
1 4 6 5.46562 | 0.1079 -8.4960 6.6935 | 2.103081 -12.8358
2 4 10 6.70878 | 0.1079 -12.8701 10 0.037497 -0.00215
3 8 5 -8.1126 | 0.1079 -3.7457 10 0.04331 -0.00215
4 8 3 -5.8514 | 0.1079 -12.8638 10 0.017517 -0.00215
5 12 6 -7.1112 | 0.1079 -8.4467 10 0.021286 -0.00215
6 -10 5 6.72450 | 0.1079 -12.829 -9.6049 | 0.200885 2.898331
7 -10 6 -5.8533 | 0.1079 -12.8673 -9.6325 0.2594 2.783257

Table 5. The simulation results with white noise N(0,0.4) added to the penalized Shubert function evaluations

Case | Initial Values Proposed Algorithm Sastry’s Algorithm

Ho 0o 18000 08000 F(Hsooo) 8000 08000 F(Hsooo)
1 6 2.50023 | 0.107958 | -2.639112 | 6.728462 | 2.145234 | -12.806131
2 10 4.461055 | 0.107958 | -3.74998 10 0.04247 | -0.002154
3 ) 6.699889 | 0.107958 | -12.859456 | 9.999959 | 0.02963 | -0.002901
4 3 6.726413 | 0.107958 | -12.818587 10 0.01885 | -0.002154
) 12 6 -5.842592 | 0.107958 | -12.832664 10 0.02052 | -0.002154
6 -10 ) -8.114598 | 0.107958 | -3.743393 | -9.615798 | 0.10445 2.862235
7 -10 6 -9.088435 | 0.107958 | -2.728742 | -9.622422 | 0.15321 2.834708
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Table 6. The simulation results with white noise N (0, 0.5) added to the penalized Shubert function evaluations.

H. Beigy and M.R. Meybodi

Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho 0o 18000 08000 F(Hsooo) 8000 08000 F(Hsooo)
1 4 6 4.458778 | 0.107958 | -3.749498 | 6.697289 | 2.232019 | -12.851302
2 4 10 0.426808 | 0.107958 | -12.870432 | 9.999987 | 0.02776 | -0.002397
3 8 5 6.716193 | 0.107958 | -12.860938 10 0.027162 | -0.002154
4 8 3 6.693639 | 0.107958 | -12.836154 | 9.692181 | 0.064142 | -2.462594
5 12 6 0.42047 | 0.107958 | -12.867394 10 0.015932 | -0.002154
6 -10 5 -5.85382 | 0.107958 | -12.868017 | -9.604689 | 0.116198 | 2.897376
7 -10 6 6.710624 | 0.107958 | -12.870028 | -9.634266 | 0.259708 | 2.773433
Table 7. The simulation results with white noise N(0,0.6).
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho 0o H8000 08000 F(Nsooo) H8000 08000 F(Nsooo)
1 4 6 5.480349 | 0.089604 | -8.517418 | 4.055911 | 20.009987 | 2.400759
2 4 10 0.435484 | 0.089604 | -12.85371 | 4.054561 | 20.00997 | 2.415684
3 8 5 6.726655 | 0.089604 | -12.81718 | 8.006934 | 20.009995 | -0.62230
4 8 3 6.709202 | 0.089604 | -12.87075 | 8.003345 | 20.009943 | -0.70354
5 12 6 9.756602 | 0.089604 | -2.727776 | 9.999975 | 20.009989 | -0.00260
6 -10 5 -9.98241 | 0.089604 | -2.205438 | -9.93990 | 20.009995 | -1.70987
7 -10 6 -7.09524 | 0.089604 | -8.510625 | -9.94036 | 20.009991 | -1.71605
Table 8. The simulation results with white noise N(0,1.3).
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho g0 H8o00 J8000 F(p18000) H8o00 98000 F(p18000)
1 6 6.70339 | 0.089604 | -12.8669 | 4.05304 | 20.009989 | 2.432262
2 10 0.43157 | 0.089604 | -12.8642 | 4.05334 | 20.009985 | 2.428998
3 5 6.72627 | 0.089604 | -12.8193 | 8.01151 | 20.009995 | -0.51832
4 3 6.72909 | 0.089604 | -12.8020 | 7.99121 | 20.009989 | -0.97549
5 12 6 9.76507 | 0.089604 | -2.72765 | 9.99998 | 20.009995 | -0.00251
6 -10 5 -9.9842 | 0.089604 | -2.22347 | -9.9406 | 20.009995 | -1.72048
7 -10 6 -9.9838 | 0.089604 | -2.21967 | -9.9455 | 20.009995 | -1.78518
Table 9. The simulation results with white noise N (0,1.9).
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho 0o 8000 08000 F(Hsooo) 18000 08000 F(Hsooo)
1 6 6.731426 | 0.089604 | -12.78577 | 4.05399 | 20.009993 | 2.421903
2 10 6.685631 | 0.089604 | -12.78776 | 4.05446 | 20.009977 | 2.416788
3 5 6.723327 | 0.089604 | -12.83486 | 8.00724 | 20.009989 | -0.61527
4 3 6.715631 | 0.089604 | -12.86230 | 7.99826 | 20.009981 | -0.81798
5 12 6 9.760613 | 0.089604 | -2.728751 | 9.99999 | 20.009993 | -0.00232
6 -10 5 -9.98213 | 0.089604 | -2.202685 | -9.9434 | 20.009998 | -1.75658
7 -10 6 -9.98342 | 0.089604 | -2.215217 | -9.9444 | 20.009991 | -1.77056
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Table 10. The simulation results with white noise N (0, 2.6).
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho [es] 8000 08000 F(Hsooo) 18000 08000 F(Hsooo)
1 6 5.47063 | 0.089604 | -8.50962 | 4.054261 | 20.00998 | 2.418973
2 10 5.45497 | 0.089604 | -8.44608 | 4.053005 | 20.00997 | 2.432638
3 5 6.70863 | 0.089604 | -12.8708 | 8.005559 | 20.01000 | -0.65347
4 3 6.72332 | 0.089604 | -12.8348 | 8.004089 | 20.00998 | -0.68673
5 12 6 9.77867 | 0.089604 | -2.71016 | 9.999991 | 20.00999 | -0.00231
6 -10 5 -9.9827 | 0.089604 | -2.20913 | -9.94208 | 20.01001 | -1.73909
7 -10 6 -5.8538 | 0.089604 | -12.8679 | -9.94117 | 20.00996 | -1.72688
Table 11. The simulation results with white noise N (0, 3.2).
Case | Initial Values Proposed Algorithm Sastry’s Algorithm
Ho 0o Hgooo 08000 F(Nsooo) Hgooo 08000 F(Nsooo)
1 4 6 6.703756 | 0.089604 | -12.8675 | 4.056128 | 20.010014 | 2.398347
2 4 10 5.465978 | 0.089604 | -8.49724 | 4.054752 20.01 2.413582
3 8 5 6.711122 | 0.089604 | -12.8696 | 8.011147 | 20.010033 | -0.52657
4 8 3 6.725053 | 0.089604 | -12.8261 | 7.995277 | 20.009974 | -0.88493
5 12 6 5.471429 | 0.089604 | -8.51119 | 9.999896 | 20.010052 | -0.00404
6 -10 5 -8.10843 | 0.089604 | -3.74913 | -9.93915 | 20.010021 | -1.69975
7 -10 6 -9.98857 | 0.089604 | -2.26330 | -9.94576 | 20.009981 | -1.78738
t = 1,---,m) be the class conditional densities. The X, randomly based on a priori probabilities. The

function of a pattern classifier is to assign the correct
class membership to each given feature vector, X. Such
an operation can be interpreted as a partition of the d-
dimensional space into m mutually exclusive regions.
The partition boundary can be expressed in terms
of discriminant functions. The forms of discriminant
functions are assumed to be known, except for some
parameter vectors W (for i = 1,2,---,m), which are
to be identified. Associated with each class, w;, a
discriminant function, d;(X,W?) (for i = 1,2,--- ,m),
is selected, such that if pattern X were from class w;,
then, one would have:

di(X, W) > d;j(X,W7),  Vj#i, (18)
where W? is the parameter vector for discriminant
function d;.

In this example, the learning pattern classification
for a 2-class 2-dimension pattern classification problem
is considered. For this problem, one discriminant
function, denoted by d(X,W) is sufficient. In order
to find parameters of the discriminant function, W,
a cooperative game of continuous action-set learning
automata with identical payoff is used. In the proposed
method, the teacher (environment) chooses a pattern,

statistical properties of the pattern classes are assumed
to be unknown to the algorithm. The team of learning
automata chooses their actions, which result in the
determination of parameter vector W. The parameter
vector W, together with feature vector X, determine
the classification. The decision rule for pattern classi-
fication is formulated as:

if d( X, W 0
w:{“’l i d(X, W) >0 (19)
wo otherwise
where X = [21,29]7 is the feature vector. The

only feedback to the team of continuous action-set
learning automata is the reinforcement signal, which
is computed according to the following rule:

5= 1 fw#w
)0 otherwise’

where w is the classification of feature vector X. The

objective is to minimize the probability of misclassifi-
cation of pattern X (E[§|X]), where the expectation is
with respect to statistical distribution on the pattern
classes. Note that this criterion is a function of the
parameter vector, W, which is to be identified.

(20)
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Table 12. The simulation results for pattern classification problem.

Case Initial Values Sastry’s Algorithm Proposed Algorithm
peot oyt |us oy ug o'g Error|#Iterations|Training Error|Test Error|Training Error|Test Error
1|6 104/6 (6|4 32% 3400 11% 11% 7.3% 8.15%
6 26124 45% 6400 12% 11% 7.4% 7.85%
41626 [12|4]| 42% 3400 12% 11% 7.5% 8.15%
Let the class conditional densities for the CONCLUSIONS

two classes be given by the Gaussian distributions
P(X|w1) = N(ml,El) and P(X|(U2) = N(mz,zz),
where:

m; = [272]T7 mo = [474]T7

1 —0.25]7 22:[ 1.5 —0.25}

21 :{—0.25 1 025 15

The following discriminant function is considered for
this problem:

9(X)

2
1

1+ m?

mas+ax;—(m? + 1) (xo—

)
(14+m2)'/?

oo
T arme)

r 2
b
'f“_m<“+ﬁiﬁﬁﬁﬂ~

This function is a parabola described by three
parameters, m,xo and b. The parameters of the
optimal discriminant function for the above pattern
classification problems are m = 1.0,z0 = 3.0 and
a = 10.0. For solving this problem, a team of three
CALA are used, where each CALA is associated with
one unknown parameter. The other parameters for
the CALA used in this algorithm are the same as the
parameters used in the previous section. For learning,
300 samples of pattern are chosen from each class,
which are presented repeatedly to the team of CALA
during the training process. Also, a test set consisting
of 100 samples is generated from the two classes to
find errors by the chosen discriminant function. The
results of simulation for the proposed algorithm and
the algorithm given in [8] are shown in Table 12.
By carefully inspecting Table 12, it can be concluded
that the proposed algorithm has smaller training and
generalization errors.

In this paper, a random search algorithm for solving
stochastic optimization problems has been studied.
A class of problems has been considered where the
only available information is noise-corrupted values
of the function. In order to solve such problems,
a new continuous action-set learning automaton was
proposed and its convergence properties were stud-
ied. A strong convergence theorem for the proposed
learning automaton was stated and proved. Finally,
algorithms for two stochastic optimization problems
were given and their behavior was studied through
computer simulations. Computer simulations showed
that the proposed method has a higher performance
compared with existing continuous action-set learning
automata based on optimization algorithms.
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