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Abstract. In the present paper, the asymmetrical nonlinear response of a clamped
functionally-graded shallow spherical shell is subjected to uniform external pressure. It
considers the e�ects of thermal stresses by both of the theories: Classical Laminate Theory
(CLT) and First-order Shear Deformation Theory (FSDT). Material properties are graded
in the thickness direction according to the power-law distribution in terms of the volume
fraction of the constituents. Mechanical and thermo-mechanical properties are assumed
to be temperature-independent and linear elastic. All of the governing equations are
derived by aid of �rst-order transverse shear deformation theory considering geometrical
nonlinearity. The nonlinear di�erential equation system is solved by Galerkin method.
Buckling and post-buckling analyses have been done according to one-term deformation
mode by the closed-form relation of load-de
ection that shows the equilibrium path.
Parametric studies are conducted to bring out the e�ects of shear deformation on the
equilibrium path in di�erent geometries and boundary conditions. Numerical results are
presented in graphical arrangement, showing the geometrical nonlinear equilibrium paths.
The e�ects of shear deformation on the equilibrium path are considered by comparing the
results of FSDT and CLT, and they are veri�ed by nonlinear �nite-element method.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Shallow spherical shells make one of the most impor-
tant structural elements group in many engineering
structures. They can �nd their applications in many
industrial structures such as power-plants, aerospace
structures, building constructions, underground struc-
tures, and shipping. One of the most important studies
of shallow spherical shells is their nonlinear response to
uniform external pressure. Because of this importance,
many researchers have noticed nonlinear buckling of
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such structural types. Many di�erent theories exist in
the literature with special hypothesis. The classical
shell theory is based on the thin shell theories, and it
can be generalized to thin and thick shells by means of
higher-order shear deformation theories. All of these
theories can be compared to experimental results for
validation. Yamada et al. [1] did an experimental
investigation of the buckling of the clamped thin,
shallow spherical shells under uniform external pressure
in thermo-vacuumed process considering distributed
geometrical imperfection. There are several theories
for analysis of shells in the literature. Some of
them are based on thin shell theories and the others
can make accurate results for thin and moderately
thick shells like �rst-order and higher-order shear
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deformation theories. According to this important
di�erence, to increase the accuracy of results, especially
in moderately thick shells, many studies on shells are
based on these theories. Buckling of isotropic �rst-
order shear deformable shallow spherical shell by an
analytical modi�ed interaction method in boundary
value problem was studied by Li et al. [2]. Lei et al. [3]
presented an explicit fundamental solution of isotropic
shallow spherical shells. Buckling modes of anisotropic
cylindrical shells and sandwich spherical caps em-
ploying subspace interaction methods were studied by
Cohen [4]. The equation of in-plane buckling and free
vibration of anisotropic doubly curved shells on the
basis of Fl|gge's approximations incorporating shear
deformation e�ects were investigated by Carrera [5].
Asymptotic buckling analysis of imperfect shallow
spherical shells supported by nonlinear elastic founda-
tion employing the asymptotic interaction method was
investigated by Nie [6]. The requirements for progress,
structural pro�ciency in many engineering industries
such as nuclear power-plants or aerospace structures
resulted in developing a new class of materials called
composite materials. Using this kind of material makes
it possible to obtain di�erent aims (i.e., mechanical
and thermo-mechanical resistance and stability) by
means of di�erent sub-materials for unit structure
simultaneously. One of the most important of these
kinds of material is laminated materials like plates and
shells laminated by orthotropic layers. Because of the
existence of weak surface between two layers, transverse
shear deformation is so important in this kind of struc-
tures. So, a higher-order transverse shear deformation
theory of laminated elastic shells was investigated by
Reddy and Liu [7] by using a modi�ed Sander's theory,
which accounts for parabolic distribution of transverse
shear strains through the thickness of the shells. Also,
Ferreira et al. [8] investigated the Modelling cross-
ply laminated elastic shells by a Higher-order the-
ory. To progress structural pro�ciency of laminated
composites, a new class of composite material has
been developed, called Functionally Graded Materials
(FGMs). FGMs are microscopically inhomogeneous,
commonly manufactured from a blend of metals and
ceramics with continuous composition gradations from
pure ceramic on one surface with pure metal on the
other surface. Many kinds of structural elements can
be manufactured from FGMs like beams, spherical or
cylindrical, or conical shells. Many researchers have
studied these kinds of structures. Eslami and Hafeza-
lkotob [9] studied linear thermo-mechanical buckling
of simply supported FGM shallow spherical shells
with temperature-dependent material. An analytical
approach using the �rst-order shell theory of Love and
Kirchho� was employed. The calculus of variations is
used for developing the geometrical linear equations
in this study [9]. The non-linear axisymmetric re-

sponse of FGM shallow spherical shells under uniform
external pressure, including temperature e�ects using
the classical shell theory and Galerkin method, was
studied by Bich and Tung [10]. Also, the nonlinear
dynamic response for FGM shallow spherical shells
under low velocity impact on thermal environment
was studied by Mao et al. [11]. FGMs can be used
in di�erent forms. Zenkour and Sobhy [12] studied
thermal buckling of various types of FGM sandwich
plates. These studies incorporate dynamic buckling
of suddenly loaded imperfect hybrid FGM cylindrical
shells. Buckling control of imperfect hybrid FGM
plates with temperature-dependent material properties
under thermo-electro-mechanical loads was studied by
Shariyat [13,14]; FGMs are sometimes used with ho-
mogenous material simultaneously. Bending behaviour
of FGM-coated and FGM-undercoated plates with two
simply supported opposite edges and two free edges
was studied by Chung and Chen [15]. Mechanical
and thermal buckling analyses of functionally-graded
plates were done by Zhao et al. [16]. In the present
paper, nonlinear analysis of stability, consisting of
buckling and post-buckling using �rst-order transverse
shear deformation for FGM shallow spherical shells
incorporating thermal e�ects has been done. It is
possible to obtain the most accurate results for thin
and thick spherical shells in comparison to Bich and
Tung study [10] that is just for thin spherical shells by
means of classical theory.

2. De�nition of geometry and material
properties

Consider a functionally-graded shallow spherical shell
with radius of curvature R, based on radius a and
thickness h, as shown in Figure 1. The shell is made
from a mixture of ceramics and metals and is de�ned
in spherical coordinate system (�; �; ') whose origin is
located in the centre of the complete shell; ' and �
are in the meridional and circumferential directions,
respectively. The thickness of the shell is constant and
the shell is shallow. So, it can be possible to make
some changes in the coordinate system to make the
following solution easier. So, z is de�ned in the form

Figure 1. Functionally-graded shallow spherical shell.
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of z = ��R and z is perpendicular to the shell middle
surface and represents the thickness direction and could
change from �h=2 to +h=2.

According to the prior assumption, outer surface
is made of pure ceramic; the inner surface is made of
pure metallic materials; the material changes gradually
along the thickness of the shell by the following simple
power law distribution of ceramic and metal volume
fractions as:

Vc =
�

1
2

+
z
h

�k
; Vm = 1� Vc; (1)

where Vc and Vm are ceramic and metal volume frac-
tions, respectively, which vary continuously through
the thickness; k is the volume fraction exponent that
shows the kind of distribution of constituents depend-
ing on the form of manufacture of FGM; for instance,
for k = 1, the distribution of constituents is linear.
Depending on the volume fraction of constituents, it is
possible to de�ne the material properties by linear rule
of mixture as [10]:

Xe� = XcVc +XmVm; (2)

Xe� represents all of the e�ective mechanical and
thermo-mechanical properties such as Young's modu-
lus, E, density, �, thermal expansion, �, and thermal
conductivity, K. According to Eqs. (1) and (2):

[E(z);K(z); �(z)] = [Ecm;Kcm; �cm]
�

1
2

+
z
h

�k
+ [Em;Km; �m] : (3)

With reference to Eq. (3), the shell is assumed to be
a mixture of ceramic and metal, where the mechanical
properties depend on z, and it is measured along with
the thickness direction and positive outward and varies
between �h=2 and +h=2.

3. The basic governing equations

In this section, all of the basic equations, such as
equilibrium, compatibility, and constitutive equations,
will be derived. According to the FSDT, the normal
and shear strains at a distance z from the middle
surface of the shell are [9]:

"r = "mr + z�r; "� = "m� + z��: (4)

Due to the existence of axis-symmetrical loading, all
of the in-plane shear forces, torsional moment, and
derivatives of � will be zero. So, normal strains of
the middle surface of the shell (strain-displacement
relations), considering the shallowness of the shell,
are [10]:

"mr = u0 � w
R

+
1
2

(w0)2;

"m� =
u
r
� w
R
;


rz = �r + w0;

�r = �0r �� =
�r
r
: (5)

�r and �� are middle surface bending curvatures
and ()0 is d()=dr. �r represents the rotation of the
cross section of the shell where u, v, and w are the
meridional, circumferential, and radial displacements
of the shell middle surface, respectively. Geometrical
non-linearity in the case of small strain is accounted for.
According to Hooke's law, the stress-strain relations for
the spherical shell are:

�r =
E(z)

1� v2 ("r + v"�)� (1 + v)��T;

�� =
E(z)

1� v2 ("� + v"r)� (1 + v)��T;

�rz =
E(z)

2(1 + v)

rz: (6)

The forces and moment resultants based on the �rst-
order transverse shear deformation theory are:

Nr =
Z h=2

�h=2
�rdz;

N� =
Z h=2

�h=2
��dz;

Mr =
Z h=2

�h=2
�r:zdz;

M� =
Z h=2

�h=2
��:zdz

Qr = �:
Z h=2

�h=2
�rzdz; (7)

where � denotes the transverse shear correction coef-
�cient that is equal to 5/6 for isotropic shells [2], but
it is di�erent for functionally-graded materials and is
given by [16]:

� =
5

6� (v1:V1 + v2:V2)
; (8)

where V1 and V2 represent the volume fractions; and v1
and v2 are the Poisson ratios of the two constituents.
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Substituting Eqs. (3) and (6) into Eqs. (7), constitutive
relations yield as:

Nr = D1:("mr + v:"m� ) +D2:(�r + v:��)� Fm
1� v ;

N� = D1:("m� + v:"mr ) +D2:(�� + v:�r)� Fm
1� v ;

Mr = D2:("mr + v:"m� ) +D3:(�r + v:��)� Fb
1� v ;

N� = D2:("m� + v:"mr ) +D3:(�� + v:�r)� Fb
1� v ;

Qr =
�(1� v)

2
D1(
rz); (9)

where:

D1 =
Z h=2

�h=2
E(z)

1� v2 dz;

Fm =
Z h=2

�h=2
�T:E(z):�(z):dz;

D2 =
Z h=2

�h=2
z:E(z)
1� v2 dz;

Fb =
Z h=2

�h=2
�T:E(z):�(z):dz;

D3 =
Z h=2

�h=2
z2:E(z)
1� v2 dz: (10)

Introducing Eq. (3) into Eqs. (10) yields the following:

D1 =
1

1� v2

�
Emh+

Ecmh
k + 1

�
;

D2 =
Ecmh2

1� v2

�
1

k + 2
� 1

2(k + 1)

�
;

D3 =
1

1� v2

�
Emh3

12
+ Ecmh3

�
1

k + 3
� 1
k + 2

+
1

4(k + 1)

��
;

Fm =
Z h=2

�h=2
�T:

�
Em + Ecm:

�
0:5 +

z
h

�k�
:
�
�m + �cm:

�
0:5 +

z
h

�k�
:dz;

Fb =
Z h=2

0h=2
�T:

�
Em + Ecm:

�
0:5 +

z
h

�k�
:
�
�m + �cm:

�
0:5 +

z
h

�k�
:z:dz: (11)

The non-linear equilibrium equations of a perfect shal-
low spherical shell based on the �rst-order transverse
shear deformation theory are given by [2,10,11]:

(i) :
d(rNr)
dr

�N� = 0;

(ii) :
d(rMr)
dr

�M� � rQr = 0;

(iii) :
d2(rMr)
dr2 � d(M�)

dr
+
r
R

(Nr +N�)

+
d
dr

�
rdw
dr

�
+ rq = 0; (12)

where q is uniform external pressure positive inwards.
The �rst part of Eqs. (12) will be satis�ed by introduc-
ing a potential force function f as:

Nr =
f 0
r
; N� = f 00: (13)

From the constitutive relations Eqs. (9), one can write:

"mr =
1
E1

(Nr � v:N�)� E2

E1
(�r) +

Fm
E1

;

"m� =
1
E1

(N� � v:Nr)� E2

E1
(��) +

Fm
E1

: (14)

The axsisymmetric geometrical compatibility equation
of a shallow spherical shell is written as [10]:

�1
r
d("mr )
dr

+
1
r2

d
dr

�
r2d("m� )
dr

�
= ��(w)

R
�r��; (15)

where:

�() = ()00 + 1
r

()0 =
1
r
d
dr

�
r
d()
dr

�
;

�2() = ()(4) +
2
r

()000 � 1
r2 ()00 + 1

r3 ()0

=
1
r
d
dr

�
r
d
dr

�
1
r
d
dr

(r
d()
dr

)
��

: (16)

Substituting Eqs. (14) into Eq. (15), with the aid of
Eqs. (5) and (13), yields the compatibility equation of
a perfect FGM shallow spherical shell as:

1
D1(1� v2)

�2(f) = ��(w)
R

=
1
r
�r:�0r: (17)
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By inserting Eqs. (5), (9), and (17) into the second
and third parts of Eqs. (12), the bending equilibrium
equation is obtained as follows:

�Di�2(�)�D2(1� v)
�
w0w00
r
� �r:�0r

r

�
� 1
R

�(f)� 1
r

(f 0w0)0 = q

�v(1� v2)
D2

D1

(f 0)� v:D2:w0:

�
r
R

+
w0
2

�
+Di
(�r)� �:(1� v):D1

2
(rw0+r�r)=0;

(18)

where:

Di = D3 � D2

D3
D2; � =

Z
�rdr;


() = r()00 + ()0 � 1
r

(): (19)

Eqs. (17) and (18) are the compatibility and equilib-
rium equations of functionally-graded shallow spher-
ical shells which make three equations in terms of
three dependent unknowns that are de
ection of the
shell (w), rotation of the shell cross section (�r),
and potential force function (f). These three non-
linear di�erential equations are basic equations used
to consider the nonlinear stability functionally-graded
shallow spherical shells incorporating e�ects of thermal
stresses and shear deformation by means of �rst-order
shear deformation theory.

4. General solution and boundary conditions

In this section, an analytical approach is employed
to consider the non-linear axis-symmetric stability
of functionally-graded shallow spherical shells under
uniform external pressure with and without thermal
stresses and investigate the e�ects of transverse shear
deformation. The Galerkin method [10] is adopted to
solve the non-linear di�erential equation system given
in Eqs. (18). By employing appropriate weighting
functions which satisfy all of the static and dynamic
boundary conditions, this method is actually an ac-
curate method. Labelled Cases (1) and (2), as two
investigated cases of boundary conditions, often are
encountered in engineering applications [2,10]:

- Case (1): The edge is clamped along the periphery
and is freely movable in the meridional direction.
This boundary condition is described by [2,11]:

r = 0 w = W w0 = 0 'r = 0;

r = a w = w0 = 'r = 0 Nr = 0: (20)

- Case (2): The edge is clamped along the periphery
and is freely immovable in the meridional direction.
This boundary condition is described by [2,11]:

r = 0; w = W; w0 = 0; ' = 0;

r = a; w = w0 = 'r = 0; Nr = Nr0; (21)

where W is the maximum of de
ection (i.e., out
of plane de
ection) located at the summit of the
FGM shallow spherical shell and Nr0 is a meridional
reaction force of the edge which belongs to immov-
able edge. Considering the boundary conditions de-
scribed by Eqs. (20) and (21), weighting functions for
w and �r are approximately assumed as follows [10]:

w = W
(a2 � r2)2

a4 ; �r = C
r(a2 � r2)

a4 ; (22)

where C=a represents the maximum rotation of the
cross section of the shell. Solution form Eq. (22) is
similar to the solution presented in [10] for thin FGM
shells by aid of classical theory. Present solution
is a generalization of describing a solution for thin
and thick shells by aid of �rst-order transverse shear
deformation theory.

Introducing Eqs. (22) into Eq. (17) and con-
secutive integration of the resulting equation yield a
potential force function f with:

f 0 = � (1� v2)D1W
R:a4

�
r5

6
� a2r3

2

�
� (1� v2)D1C2

a6

�
r7

96
� a2r5

24
+
a4r3

16

�
� C1r

2
ln(r) +

C2r
2

+
C3

r
; (23)

where C1; C2; and C3 are constants of consecutive
integration. Due to the existence of limited value of
the stresses, strains, and forces at r = 0, coe�cients
of ln(r) and 1=r, i.e. the constants C1; and C3, must
be zero. The constant C2 will be obtained by the
aid of in-plane (i.e., Meridional) restrain boundary
condition, i.e. Nr(r = a) = Nr0. After determining
the constants, potential force function, f , will be
obtained, such that:

f 0 =� (1� v2)D1W
R:a4

�
r5

6
� a2r3

2

�
� (1� v2)D1C2

a6

�
r7

96
� a2r5

24
+
a4r3

16

�
� (1�v2)D1W

3:R
r +

(1� v2)D1:C2

32
r+Nr0:r:

(24)

For the movable boundary condition described in
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Eq. (20), Nr0 must be zero. Substituting Eqs. (22)
and (24) into Eqs. (18), while employing Galerkin
method, yields a non-linear equilibrium path in the
form of two relations as:

(1) q =
�

3:(1� v2):D1hC2

40a4 +
(1� v2):D1h

3R2

+
24:h:Nr0

5:a2

�
�W �

�
32h2(1� v2):D1

35a2R

+
32:(1� v):h2D2

5a4

�
�W 2 +

�
16:Di

a3

�
: �C

+
�

2:(1� v):D2

5a2 � 3:(1� v2)D1

112:R

�
: �C2

� 2
R
Nr0;

(2)
�
v:D2

21

�
: �C2 �

�
16:v:D2h2

a2

�
: �W 2

�
�
�:a:(1� v):D1

15
+

8Di

5a

�
: �C

+
�

4:�(1�v):D1:h
15

�
: �W =0; (25)

where �W and �C are dimensionless parameters of
de
ection described as:

�W = W=h �C = C=a: (26)

Using Eqs. (25), it is possible to determine the
buckling loads and non-linear equilibrium paths of
FGM shallow spherical shells under uniform exter-
nal pressure with and without the thermal e�ects,
considering the transverse shear deformation. The
second part of Eqs. (25) is used to determine �C
in terms of �W . Substituting �C obtained from the
second part of Eqs. (25) into the �rst part yields an
equilibrium path in form of q � �W relation.

5. Mechanical and thermo-mechanical
Stability analysis

In this section, nonlinear stability of functionally-
graded shallow spherical shells, including buckling
and post-buckling, by incorporating thermal stresses
and transverse shear deformation, are investigated by
exposition of equilibrium path. Figure 2 shows the
schematic equilibrium path obtained from Eqs. (25).
The equilibrium paths are stable, that is, the de
ection
is monotonically increasing when the pressure rises.
The equilibrium path indicates that extremum points
of q( �W ) curve determine the unstable zone. Unstable

Figure 2. Schematic form of q � �W relation.

zone is between the minimum and maximum points of
q( �W ) curve. In this zone, by increasing the inward
de
ection (i.e., inward de
ection is positive), uniform
external pressure is negative (i.e., pressure is outward).
So, sti�ness application is negative and snap-through
behaviour will appear.

Considering constitutive relations in Eqs. (9) and
compatibility equation (Eq. (15)), it is evident that the
thermal stresses appear in terms of Nr0 in �rst part of
Eqs. (25). As mentioned, considering freely movable
edge results, Nr0 = 0, e�ects of thermal stresses appear
when the boundary edge is immovable. The condition
to express the immovability on the boundary edge, i.e.
u = 0 on r = 0, is represented in an average form as:Z a

0

@u
@r
dr = 0: (27)

From Eq. (5) and using Eqs. (13) and (14), the
following relation can be obtained:

Nr0 =
�

64(1 + v)D1

805a2

�
:W 2 �

�
(1 + v)D1

3R

�
:W

+
�

29(1 + v)D1

1680:a2

�
:C2 � Fm

1� v ; (28)

where Fm represents the term related to thermal
e�ects, obtained by aid of Eqs. (11). Therefore,
there are two di�erent conditions to investigate: freely
movable and immovable boundary edges; the second
condition is divided into two conditions: existence
of external pressure with and without temperature.
Thermal e�ects can be considered in two di�erent
conditions: uniform temperature rise and temperature
gradient along the thickness. In the �rst condition, the
temperature changes between top and bottom surfaces
�T = Tc � Tm and is uniform across the thickness. In
the second condition, temperature varies with the rate
of power-law distribution along the thickness. Substi-
tuting �T resulted from each of these conditions into
Eqs. (11), thermal parameter, Fm, will be obtained.
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5.1. Uniform temperature rise
In this case, change of temperature is assumed to be
uniformly distributed along the thickness. Substituting
constant �T into Eqs. (11) results in Fm as follows:

Fm = Ph�T; (29)

where [10]:

P = Em�m +
Em�m + Ecm�cm

k + 1
+
Ecm�cm
2k + 1

: (30)

This calculation is similar to the calculation of refer-
ence [10]. The present study is based on �rst-order
shear deformation theory for thin and moderately thick
shells, and the base of study in reference [10] is a
classical theory for thin spherical shells; however, the
calculation of the thermal parameter Fm, presented in
Eqs. (11), is based on CLT theory; therefore, the results
could be veri�ed with those given in [10].

5.2. Temperature gradient along the thickness
In this case, change of temperature is assumed to
be variable along the thickness according to the one-
dimensional Fourier equation of steady-state heat-
conduction established in a spherical coordinate sys-
tem, as described in [10,11]. The origin of this
coordinate system is the centre of a complete sphere
as:

d
d�

�
K(�)

dT (�)
d�

�
+

2K(�)
�

dT (�)
d�

= 0;

T (� = R� h=2) = Tm; T (� = R+ h=2) = Tc: (31)

The thermal boundary conditions and frequent inte-
gration of the di�erential Fourier equation of steady-
state heat-conduction in Eqs. (31) yield function of
temperature change along the thickness based on radius
direction:

�T (�) =
�TR R+h=2

R�h=2
d�

�2K(�)

Z �

R�h=2
d�

�2K(�)
: (32)

As mentioned, the calculation of thermal parameter
Fm does not depend on the base theory (i.e., CLT or
FTSD); therefore, in this case, it is possible to use
the results from [10]. Because of the di�culties in
the calculations in this case, only linear distribution
of metal and ceramic constituents, i.e. k = 1, is
considered:

K(�) = Km +Kcm:
�

2(��R) + h
2h

�
; (33)

where z is replaced by � � R. By plugging Eq. (33)
into Eq. (32) and making integration, temperature

distribution along the thickness direction will be given
as [10]:

�T (z) =
�T
I

�
4Kcm

(Kc +Km + 2KcmSh)2�
ln

(Kc +Km)h+ 2Kcmz
2hKm

� ln
2(R+ z)
2R� h

�
+

2(2z+h)
(Kc+Km�2KcmSh)(R+z)(2R�h)

�
;
(34)

where Sh = R=h and � is replaced by z +R and [10]:

I =
4Kcm

(Kc +Km � 2KcmSh)2 ln
Kc(2Sh� 1)
Km(2Sh+ 1)

: (35)

Introduction of Eq. (34) into Eq. (11) gives the thermal
parameter Fm as [10]:

Fm =
�ThL
I

; (36)

where [10]:

L =
Kcm�
J2

�
�
�
Sh+

1
2

�
� 1
�
� �

2J

�
� � 2

2Sh� 1

�
+

�
J2

�
Km �Kc +Kc ln

Kc

Km

�
� Kcm�

J2

�
Sh�

�
Sh2 � 1

4

�
�
�
� �
J

(1� Sh�)

� �
2J2Kcm

�
K2
m �K2

c + 2KmKc ln
Kc

Km

�
+
KcmEcm�cm

J2

�
1
9

+
4Sh2

3
� �

�
1
6

+
4Sh3

3

��
+

2Ecm�cm
J

�
1

6(2Sh� 1)
+ Sh� Sj2�

�
+
Ecm�cm
9J2K2

cm

�
4(K3

m �K3
c )

+ 3Kc(K2
c + 3K2

m) ln
Kc

Km

�
; (37)

and:

J = Kc +Km � 2KcmSh � = ln
2Sh+ 1
2Sh� 1

� =(Ec + Em)(�c + �m) � = Ecm(�c + �m)

+ �cm(Ec + Em): (38)
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By the aid of Eqs. (36) to (38), thermal parameter,
Fm, is obtained considering the one-dimensional and
the linear thermal gradient across the thickness.

Nr0 is obtained by introducing the thermal pa-
rameter, Fm, obtained from Eqs. (29) or (36). In-
troducing Nr0 into Eq. (25) completes the equa-
tion of equilibrium path which contains buckling and
post-buckling of functionally-graded shallow thin and
moderately-thick spherical shells subjected to uniform
external pressure considering thermal e�ects incorpo-
rating two described boundary conditions.

6. Validation of closed form results

In this section, validation of results using the analyti-
cal formulation for mechanical and thermo-mechanical
buckling and post-buckling of functionally-graded shal-
low spherical shells based on �rst-order transverse
shear deformation theory is investigated by numerical
simulation with the aid of �nite elements software
ABAQUS-6.10.1. The kind of elements used for
modelling of the FGM shallow spherical shell is S4R
elements, i.e. elements with 4 nodes and reduced inte-
gration considering transverse shear deformation based
on �rst-order transverse shear deformation theory [17].
In this section, the accuracy of nonlinear �nite-element
method was carried out by its comparison with the
experimental results, as indicated in [1] for isotropic
shallow shells. Material and geometrical properties
of the experimental specimens from [1] used in this
section are demonstrated in Table 1.

In the present validation, Figures 3 and 4 demon-
strate the accuracy of employed �nite-element method
in comparison with experimental results. Note that
based on the assumption, the analytical manipulation
in the current work is limited to the linear elastic
behaviour. However, the experimental work in [1]
requires incorporating both elastic and plastic phases
of material properties. In the numerical analysis, the
obtained result can be checked by experiments. The
term qcr means classical buckling pressure (qcr =
2Ef3(1 � v2)g�1=2[t=R]2). Negligible di�erence be-

Table 1. Geometrical and mechanical properties of
experimental models.

Model
Properties

a
(mm)

R
(mm)

h
(mm)

T
(�c)

E
(g/cm2)

B96 170 1853 1.98 20 3.1E+7
E90 170 1908 2.97 25 3.1E+7

Figure 3. Comparing equilibrium path using the
�nite-elements method with experimental method in B-96
model [1].

Figure 4. Comparing equilibrium path using the
�nite-element method with experimental method in E-90
model [1].

tween the equilibrium paths obtained by employing
the �nite-element method and existing experiments
indicates su�cient accuracy of numerical simulation in
the current study.

To illustrate the validity of the closed-form results
obtained in the last part, it is proposed to consider
the ceramic-metal functionally-graded shallow spheri-
cal shell with the properties mentioned in Table 2 [10].

The Poisson ratio is chosen to be constant and
equal to 0.3. Two di�erent conditions, i.e. thin and
moderately thick FGM shells are considered in this
section.

Figures 5 and 6 indicate the validation of
the closed-form equilibrium path formulation using
Eq. (25) for thin and moderately thick spherical with
the numerical FEM. It is seen that the FSDT brings the

Table 2. FGM Material properties used for numerical studies and discussion.

Em Ec �m �c Km Kc

70 (Gpa) 380 (GPa) 23� 10�6(�C�1) 7:4� 10�6 (�C�1) 204 (W/mK) 10.4 (W/mK)
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Figure 5. Comparison of results using the �rst-order
shear deformation theory (FSDT), classical theory
(CLT) [10], and �nite-elements method for thin shell.

Figure 6. Comparison of results using the �rst-order
shear deformation theory (FSDT), classical theory
(CLT) [10], and �nite-elements method for thick shell.

results closer to the numerical estimation as validated
by the existing experiments in Figures 3 and 4.

7. Numerical results and discussion

To illustrate the proposed method, consider a metal-
ceramic FGM shallow spherical shell. The geometry
and loading of the shell are demonstrated in Figure 1.
The combination of materials consisting of steel and
ceramic with temperature-independent Young's mod-
ulus, the thermal expansion coe�cients, and thermal
conductivity are supposed with those information as
given in Table 2; Poisson's ratio is assumed to be
0.3 for the steel and ceramic. Clamped movable and
clamped immovable supported boundary conditions are
assumed. All of the results are presented in the form of
load-de
ection curves that show the equilibrium path.

Figures 7 and 8 show the load-de
ection curves for
thick and moderately thick shells (R=h = 53:33 and
70). The e�ect of the transverse shear deformation
on equilibrium path is evident in both cases as it is
more pronounced in the thick shell as was expected.

Figure 7. Comparison of results using the �rst-order
shear deformation theory (FSDT), and classical theory
(CLT) [10] for the thick shell.

Figure 8. Comparison of results using the �rst-order
shear deformation theory (FSDT), and classical theory
(CLT) [10] for the moderately thick shell.

In these cases, the range of unstable zone obtained by
the �rst-order theory is longer than classical ones, but
the intensity of instability, i.e. di�erence between the
maximum and minimum of load-de
ection curves, is
lower than the classical one due to the more 
exibility
in the FSDT case.

The above-mentioned di�erence is less distinct in
the thin spherical shells as it is observable in Figure 9
for (R=h = 140).

Figure 10 indicates the e�ects of a=R ratio on
equilibrium path. Increasing the a=R exhibits growing
the di�erence between upper and lower limit buckling
loads and range of the unstable zone.

Figure 11 illustrates the e�ects of transverse shear
deformation on equilibrium paths in di�erent cases of
relative depth ratio (a=R) and constant mechanical
properties and relative thickness (R=h) by means of
FSDT in comparison to CLT. In all of the cases, it is
clearly seen that by increasing the ratio of the nonlinear
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Figure 9. Comparison of results using the �rst-order
shear deformation theory (FSDT), and classical theory
(CLT) [10] for the thin shell.

Figure 10. E�ects of relative depth (a=R) on equilibrium
path.

Figure 11. Comparison of the �rst-order transverse shear
deformation theory (FSDT) and classical theory (CLT) in
di�erent relative depth (a=R) for moderately thick shells.

behavior, results obtained by present study would be
more evident. These di�erences are remarkable when
the de
ection of the shell is in the unstable zone, which
is addressing the geometrical nonlinearity.

Figure 12 displays the e�ects of relative thickness
on equilibrium paths in di�erent cases of relative

Figure 12. E�ects of relative thickness on equilibrium
path.

Figure 13. Comparison of the �rst-order transverse shear
deformation theory (FSDT) and classical theory (CLT) in
di�erent relative thickness (R=h).

thickness ratio (R=h), while the mechanical properties
and relative depth (a=R) are considered to be constant
in FSDT approach. In all of the cases, it is clear that by
increasing the relative thickness (R=h), the di�erence
between upper and lower limit buckling loads would
grow up as the intensity of snap-through behaviour
becomes dominant. These di�erences are remarkable
when the relative thickness is increasing.

Figure 13 compares the FSDT and CLT ap-
proaches for estimation of load de
ection equilibrium
path for di�erent (R=h) ratios. It is seen that as R=h
increases, the di�erences between the results obtained
from two theories approach each other. It is observed
that in all of the cases, that is, thin and moderately
thick FGM shells, the main di�erence between results
of the CLT and FSDT is in the unstable zone, such
that the geometrical nonlinear behaviour is noticeable
even in thin shells.

Figure 14 denotes the e�ects of transverse shear
deformation on equilibrium paths in di�erent arbitrary
values for volume fraction indices (k) while keeping
constant the other mechanical and geometrical proper-
ties. As k values increase, the di�erence between equi-
librium paths obtained by CLT and FSDT approaches
each other.

By considering the temperature-independent me-
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Figure 14. Comparison of the �rst-order transverse shear
deformation theory (FSDT) and classical theory (CLT) in
di�erent r volume fraction index (k).

Figure 15. E�ects of temperature on equilibrium path in
uniform distribution of temperature along the thickness.

chanical properties, in the case of �xed clamped
edges, rising the environment temperature prior to
applying external pressure results outward de
ection
(negative de
ection). This negative de
ection results
in bifurcation-type buckling behaviour due to the
presence of temperature �eld. This bifurcation point
is located at intersection of equilibrium path's curve
with q axis, where the negative de
ection �nishes and
the positive de
ection begins. Figure 15 displays this
e�ect in case of uniform distribution of temperature
across the thickness, whereas Figure 16 displays this
e�ect in the case of existence of temperature gradient
along the thickness. All of the curves in Figures 15
and 16 are plotted for 6 di�erent temperature changes.
As it is shown in these �gures, rising the environment
temperature results in increasing the upper limit and
decreasing the lower limit. It is interesting to note that
the severity of this e�ect in the case of existence of
temperature gradient along the thickness is lower than
the case of uniform temperature distribution along the
thickness because of the low value for the ceramic
thermal conductivity (Kc).

Equilibrium paths in the case of uniform distribu-
tion of temperature along the thickness in comparison
with the case of existence of temperature gradient

Figure 16. E�ects of temperature on equilibrium path
through the thickness temperature gradient.

Figure 17. Equilibrium path in the case of uniform
distribution of temperature along the thickness in
comparison with the case of existence of temperature
gradient.

are demonstrated in Figure 17. It is evident that
the intensity of snap-through behaviour, upper limit
buckling load, and the de
ection of the unstable zone in
the uniform temperature distribution is notably more
than the case of temperature gradient.

Figures 18 and 19 compares the FSDT and CLT
estimations of the upper and lower limit loads in
the load de
ection equilibrium path when the thermal
e�ects are considered for thin and moderately thick
FGM shells. The curves are plotted for �T = 200�C.
It is important to note that di�erences between the
FSDT and CLT for the thick shell theories are more
important than for the thin shell theories, especially in
the unstable zone that the equilibrium path has been
experiencing geometrical nonlinearity behaviour.

8. Conclusion remarks

In the current paper, the axsisymmetrical nonlinear re-
sponse of a clamped functionally-graded shallow spher-
ical shell subjected to uniform external pressure, con-
sidering the e�ects of thermal stresses, is investigated
using First-Order Shear Deformation Theory (FSDT).
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Figure 18. E�ects of transverse shear deformation on
equilibrium path obtained by �rst-order transverse shear
deformation theory (FSDT) in comparison with classical
theory (CLT) considering thermal e�ects (uniform
temperature distribution) for thick FGM shells.

Figure 19. E�ects of transverse shear deformation on
equilibrium path obtained by �rst-order transverse shear
deformation theory (FSDT) in comparison with classical
theory (CLT) considering thermal e�ects (uniform
temperature distribution) for thin FGM shells.

E�ects of considering the degree of freedom related to
the transverse shear deformation on the equilibrium
path incorporating the buckling and post-buckling of
the mentioned shell is the main novelty of the present
study. To investigate the e�ects of shear deformation
on equilibrium path, all of the cases obtained by �rst-
order shear deformation theory are compared with the
classical results obtained in [10]. On the other hand,
by mentioning the assumptions, the equilibrium path
is presented in the closed-form formula depending on
mechanical and geometrical properties and boundary
condition of the shell. The analytical solution was
veri�ed by the numerical simulation using the FEM
approach in the ABAQUS6.10.1. The numerical results
were also validated by existing experiments as found
in [1]. Numerical results showed that di�rerences be-

tween CLT and FSDT are more visible in unstable zone
by changing the mechanical and geometrical properties.
Decreasing the relative thickness (R=h) and volume
fraction index (k) results in more di�erent equilibrium
paths. This phenomenon is so because of the e�ect of
transverse shear deformation that is more e�ective in
cases that the sti�ness of the shell is in higher levels.
For this condition, the use of the CLT results in more
intensive unstability, because one of the rotational
degrees of freedom of the shell is restricted and the
unstabale deformations are more intensive. But, by
using the FSDT, this restricted rotational degree of
freedom is controlled by considering the transverse
shear strain, and the intensity of unstability will be
decreased.

Increasing the relative depth ratio (a=R) and
temprature change (�T ) resultsin di�erent equilibrium
paths for CLT and FSDT. These di�erences can be
vindicated using the last explanation.
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