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Abstract. Vertical cuts are prone to several types of failure such as piping, ground
heaving, and deep-seated or base failure. The latter is the subject of this study and
probably attracts less attention in comparison to other types of failure. Although it is
commonly believed that such a failure is rare in normal conditions; in presence of the
seepage ow, deep-seated failure is much likely to initiate and advance prior to other types
of failure. In this paper, the stability analysis of vertical cuts in granular soils in presence
of the seepage ow is studied against the deep failure. To do so, the stability analysis is
made by the use of the well-known method of stress characteristics with inclusion of the
seepage ow force. This nonuniform ow �eld renders the stability analysis quite complex.
A semi-analytical approach, based on complex algebra, is presented to �nd the ow �eld,
which is accurate and much faster for calculation of the seepage force at arbitrary points in
the �eld. The solution of the ow �eld is a background solution for the stress �eld which
is to be found to assess the stability.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Stability problems in soil mechanics may be stemmed
from historical contributions of Coulomb (1776) and
Rankine (1857) including the slope stability, bearing
capacity, and lateral earth pressure problems as clas-
sical problems [1,2]. For stability analysis of vertical
cuts, some of such problems are involved and should be
checked. In this regard, according to Terzaghi (1943),
two major types of failure of vertical cuts are the
slope failure and the base (or deep-seated) failure [3].
As vertical cuts in granular soils are often supported
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by either exible or rigid retaining structures, the
�rst kind of failure, i.e. the slope failure, is seldom a
problem; instead, conventional approaches are focused
on the estimation of the lateral earth pressure and/or
stability against the deep-seated failure. In many cases,
vertical cuts are excavated below the groundwater table
or adjacent to rivers or banks. As a result, there will
be another type of failure beside the slope or the base
failure, which is attributed to the piping or ground
heaving due to the seepage ow.

The literature review behind the stability analysis
for problems addressed above is rather long and rich
with contributions including the force limit equilibrium
methods (classically Coulomb, 1776; more recently Ku-
mar and Subba Rao, 1997; Subba Rao and Choudhury,
2005; Barros, 2006; Ghosh, 2008; Ghosh and Sharma,
2012; Barros and Santos, 2012; Ling et al., 2014) [1,4-
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10], method of stress characteristics (Sokolovskii, 1965;
Larkin, 1968; Sabzevari and Ghahramani, 1972 and
1973; Houlsby and Wroth, 1982; Kumar, 2001; Kumar
and Chitikela, 2002) [11-17] or the limit analysis (Chen,
1969; Lysmer, 1970; Chen and Davidson, 1973; Collins,
1973; Chen, 1975; Arai and Jinki, 1990; Soubra,
2000; Soubra and Macuh, 2002; Shiau et al., 2008;
Jahanandish et al., 2010; Veiskarami et al., 2014) [18-
28], among others. Attempts to include the e�ect of
the groundwater ow in the stability analysis may date
back to Terzaghi (1943) who studied the stability of the
soil mass in the vicinity of sheet pile walls [3]. Many
similar problems have been studied so far which include
the e�ect of the groundwater ow on the bearing
capacity and the earth pressure on retaining walls [9,29-
31]. In 1999, Soubra and his coworkers studied the
important problem of the passive earth pressure on
sheet pile walls subjected to the seepage ow and
associated hydraulic gradients [32]. In this regard,
Barros (2006) [6], Benmebarek et al. (2006) [33],
Barros and Santos (2012) [9] and most lately, Santos
and Barros (2015) [34] investigated active and passive
earth pressures problems in presence of the seepage.
Recently, Veiskarami and Zanj (2014) made an attempt
to include the seepage force in the stress characteristics
equations and compute the passive earth pressure on
sheet pile walls subjected to the groundwater ow [35].
They employed the �nite element technique to solve
the ow �eld as a background solution which is
assumed to remain uninuenced by the stress �eld
at the limiting equilibrium. The background �nite
element mesh was then used to interpolate the seepage
force through the stress �eld at the limiting equilib-
rium.

Although evidence indicated that both the bear-
ing capacity and earth pressure problems in presence
of the seepage ow are investigated by researchers,
no attempt is known to the authors dealing with the
particular problem of the deep-seated failure adjacent
to the supported vertical cuts. In this research, this
is the matter of focus. The stability analysis involves
complexities due to the complex form of the seepage
ow behind vertical cuts. The general methodology to
investigate this problem is based on the assumptions
made by Veiskarami and Zanj (2014) [35] who formally
assumed that the seepage ow �eld is only a function
of the geometry of the problem domain and does not
change with the formation of the failure mechanism at
the limiting state. Therefore, the solution of the ow
�eld can be found independent of the solution of the
stress �eld. Moreover, an analytical solution of the
ow �eld will be presented which obviates any further
need for numerical solutions like that of Veiskarami
and Zanj (2014) [35]. What comes next comprises the
statement of the problem, �eld equations, and solution
techniques.

2. Statement of the problem

A vertical cut in a granular matter cannot be ad-
vanced without a lateral support. Such supports are
often provided with exible walls with a series of
struts and wales as a bracing system, internal ground
anchor supports, mechanically stabilized soil system
with facing elements, facing elements, and external
supports or other systems [36,37]. Figure 1 shows a
number of techniques which can be applied to low-
depth and deep excavations. For excavations where
the height of the wall is small, a cantilever sheet pile
can be used with additional depth extended into the
ground to provide the required exural sti�ness which
is schematically depicted in Figure 1(a). Such walls
can be enhanced with ground anchor (Figure 1(b))
to increase their sti�ness and reduce their deection
and lateral displacement. For deep excavations, sheet
pile walls must be internally or externally supported
as illustrated in Figure 1(c) and (d). In staged
construction, as the excavation advances into the
ground, facing elements, often consisting of a welded
wire mesh faced with shotcrete, steel sheets, etc., are
installed at each stage. The wall (facing) is sequentially
supported by external or internal support system.
This is schematically shown in Figure 1(e) and (f).
Unlike the cantilever retaining walls, in many cases,
the wall is not extended into the ground in other soil
supporting and wall construction techniques, or the
extension length can be ignored in comparison to the
wall height or due to its exibility. Therefore, it will
be of particular importance to analyze the stability of
such systems against a deep-seated (bearing capacity)
failure, especially when the seepage ow exists towards
the bottom of the cut.

Figure 1(g) schematically represents the simpli-
�ed problem (a braced or supported excavation in the
vicinity of a bank or a river) which coincides with most
cases where the excavation is performed with sheet
pile walls or facing elements. In this problem, the
existence of the seepage ow should be paid special
attention. The seepage ow towards the bottom of the
cut is a serious problem as it causes the increase in the
lateral earth pressure on the supporting system and
may lead to piping or heaving failures. In addition, the
deep-seated or the bearing capacity failure becomes a
serious problem as the seepage force not only multiplies
the actuating downward forces, but it also reduces the
mobilized strength in the passive zone beneath the
bottom of the cut.

Figure 1(h) illustrates the statement of the prob-
lem which is investigated theoretically. In this �gure,
the formation of a failure mechanism in terms of a
deep-seated (or bearing capacity) problem is presented
within a shaded area BCDQ. This area contains a
mass of soil, which is assumed to be at plastic limiting
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Figure 1. Supported excavations in granular soil: (a) Low-depth excavation with cantilever sheet pile wall, (b) low-depth
excavation with cantilever sheet pile wall and internal support, (c) deep excavation with internal supports (ground anchor)
and exible sheet pile wall, (d) deep excavation with external support system (struts), (e) deep excavation with facing
units, internally reinforced soil and staged construction, (f) deep excavation with facing units, external support system,
and staged construction, (g) simpli�ed and idealized problem, and (h) statement of the solved problem.

equilibrium. The seepage force with a downward
direction behind the wall increases the unbalancing
force in ABQP soil block. On the other hand, it
is evident that the seepage ow in the plastic region
causes a reduction in the resistance against deep-seated
failure. Therefore, the problem that should be analyzed
is similar to a bearing capacity problem involving

a seepage force �eld, for which there is no simple
solution.

To analyze this problem, one should determine
the ability of soil to withstand the unbalancing force
which is received from both the submerged weight of
the soil in ABQP region intensi�ed by a downward
seepage ow force. Moreover, the existence of the
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seepage ow in the plastic region causes a rather
complex problem which is required to be solved to �nd
a factor of safety. In this regard, according to Terzaghi
(1943) [3], the failure is caused by the weight of the
soil block within ABQP region. In addition to the shear
resistance within the plastic region BCDQ, some lateral
shear resistance is mobilized along the nearly vertical
side AB (which is proportional to lateral earth pressure,
PA). One should note that the exible nature of the
wall and its lateral deections permit mobilization of
any signi�cant shear resistance at the interface of the
soil block ABQP and the equivalent footing BQ at
its base. This is also stated by Terzaghi (1943) [3].
Moreover, the lateral earth pressure can be assumed to
obey the active condition. Therefore, the global factor
of safety against deep-seated failure, as also expressed
by Terzaghi (1943) [3], can be de�ned as follows:

FS=
Sum of resisting forces
Sum of driving forces

=
Qult

W 0ABQP+Ffd�S ; (1)

where Fs is the factor of safety against deep-seated
failure, W 0ABQB is the submerged weight of soil block,
ABQP, Ffd is the downward seepage ow force through
the soil block ABQP, S is the lateral shear resistance
acting along boundary AB, and Qult is the capacity
of the equivalent footing BQ at the bottom of the soil
block, ABQP. The ultimate pressure tolerable by the
soil mass can be reasonably computed by conventional
bearing capacity equation for a surface footing on a
granular material as follows:

Qult = f0B02N : (2)

In this equation, 0 is the submerged unit weight of
the soil, B0 is the width of the equivalent footing (BQ,
yet unknown), N is the third bearing capacity factor
which includes the e�ect of weight, and f is a correc-
tion factor which accounts for the e�ect of the seepage
ow and is equal to unity when the seepage ow does
not exist. This correction factor has been presented by
Kumar and Chakraborty (2012) [30] or Veiskarami and
Habibagahi (2013) [38] for a horizontal seepage ow or
by Veiskarami and Kumar (2013) [31] for inclined ow.
However, for this very complex form of the seepage
ow, there is no such factor available. Fortunately, a
particular procedure may involve direct solution to the
problem described above without requiring the bearing
capacity factor, N , and the correction factor, f , to
be computed separately. In the procedure presented in
this research, the ultimate resistance, Qult, is computed
directly which automatically contains the e�ect of the
seepage ow force. In essence, the factor of safety,
Fs, will be the direct outcome of this research which
involves all necessary and still unde�ned parameters
like the pattern and intensity of the seepage ow, the
width of the equivalent footing, B0, and so on.

As stated earlier, one should notice that in spite
of possible extension of the sheet pile deeper into the
ground, deep-seated failure would still be possible as
such a exible wall may not be able to properly provide
a lateral sti�ness and/or su�cient embedment depth
against the plastically deforming mass. Therefore, the
case under study can be regarded as the critical case
which can be applied to cases with or without extension
of the sheet pile into the ground. Therefore, as the most
critical case, such an extended depth (if it probably
exists) is ignored.

3. Solution of the ow �eld

The statement of the ow problem can be easily
understood with regard to Figure 1. This is mathemat-
ically equivalent to a mixed Dirichlet-Neumann type
problem where either the potential head or the ux
is prescribed along di�erent boundaries. For instance,
the bedrock or any impervious layer is assumed to be
reasonably deep into the soil. Thus, the statement of
the problem can be mathematically expressed as a ow
problem through a \degenerated" semi-in�nite domain
consisting of three di�erent boundaries: (i) along the
boundary P0P, i.e. from minus in�nity to the top of the
wall, the potential head or the water head is prescribed,
i.e., it is equal to Hw, and hence, this is a Dirichlet-
type boundary condition; (ii) along the boundary PQ,
i.e. along the wall, there is no ux which is equivalent
to a Neumann-type boundary condition; (iii) along the
boundary QQ0, i.e. from the bottom of the cut to the
plus in�nity, the water head is zero (datum) and again,
a Dirichlet boundary condition exists. The steady-state
ow equation can be expressed as follows:

r2h = 0; (3)

where h = h(x; y) is the water head at arbitrary
point within the problem domain as the main �eld
variable and r2 (or equivalentlyr:r) is the Laplacian
operator.

For this problem, di�erent solutions exist [34,39-
43]. Basic elements for the analytical solution can be
separately found in text books on complex analysis and
also in Harr (1962) [39]. Here, we present only the
important details.

The ingredients of computational procedures are
to �nd a solution to the Laplace equation (governing
equation to the steady state ow) for a simple domain
with a known solution in terms of a complex function,
and then transforming the domain, the solution and
the gradient of the solution into the domain of interest
(main problem domain). To show the procedure, the
steady-state ow problem in a semi-in�nite plane with
Dirichlet and Neumann boundary conditions is pre-
scribed along the boundaries, as shown in Figure 2(a).
Note that the problem is de�ned in the complex plane.
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Figure 2. Problem domains: (a) Upper half-plane and
(b) main problem domain (transformed).

The boundary conditions are comprised of a con-
stant unit hydraulic head distributed along the semi-
in�nite line from �1 to -1 (Dirichlet type); isolated
line segment from -1 to +1 (Neumann type); and a
constant zero hydraulic head from +1 to +1 (Dirichlet
type). Therefore, the solution function, h(z) = h(x; y),
can be mathematically expressed as follows:

r2h = 0: (4a)

Subject to:8>>><>>>:
h = 1 from �1 to � 1

h = 0 from + 1 to +1
rh:ey = @h

@y = 0 from � 1 to + 1

(4b)

where ey is the unit base vector along the y-axis or
normal to the x-axis.

This is now necessary to �nd the solution in the
upper half plane, and then transform it to the main
problem domain shown in Figure 2(b). To handle
this problem and others like this, it is convenient
to employ the conformal mapping technique of the
complex algebra. A mapping in complex plane, w =
f(z), is said to be conformal at some arbitrary point,
zc, if it is both analytic and its derivative is nonzero at
that point:

f 0(zc) 6= 0: (5)

One important property of conformal mapping is that
it transforms orthogonal curves into orthogonal curves.
This is useful when the steady-state seepage ow is

studied. Another important property of such transfor-
mations is their ability in the transformation of func-
tions satisfying the Laplace equation. Such functions
are real valued functions of z = x + iy and known as
harmonic functions which possess continuously the �rst
and second partial derivatives and satisfy the Laplace
equation. An important theorem in complex analysis
states that if an analytic function (f(z)) transforms
some domain (Dz) in the z-plane onto another one
(Dw) in the w-plane, then if a function hw (w) =
hw(u; v) is harmonic in Dw, the function hD(z) =
hD(x; y) = hw (u(x; y); v(x; y)) will be also harmonic
in Dz [44]. This enables the application of conformal
mapping in solution of Laplace equation in all domains
obtained by conformal mapping. To further advance
this problem, the solution to the Laplace equation
in the upper half-plane is sought �rst, and then it
will be extended to the domain of interest. To do
so, consider the semi-in�nite strip in w3-plane, shown
in Figure 3(a), with its base isolated and its sides
involving Dirichlet boundary conditions as follows:8>>><>>>:

h = 1 from 0 to + i1
h = 0 from �=2 to 1 + i1
rh:ev3 = @h

@v3
= 0 from 0 to �=2

(6)

where w3 = u3 + iv3, and e(v3) is the unit base vector
normal to u3-axis and h = h(w3). The complete
solution to this problem, e.g. by inspection, can be
simply expressed as the following unique closed-form
solution satisfying both the equation and boundary
conditions in w3-plane:

h(u3; v3) = 1� 2
�
u3; (7)

Now, a series of successive transformations will provide
the solution in the upper half-plane of the complex
plane, i.e. in z-plane. With reference to Figure 3(a)
through (d), these transformations will eventually lead
to the transformation of both the geometry and the
solution onto the complex z-plane.

Appendix A represents all successive transforma-
tions with details found in texts on complex analy-
sis [44,45]. Note that in all these equations wk =

Figure 3. The problem domain under di�erent transformations in complex plane.
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uk + ivk, where k denotes any of the kth planes within
which a solution is sought. Therefore, the solution of
the problem can be transformed to the upper half-plane
in the complex z-plane as follows (see Appendices):

h(u3; v3) = h(u3) = h (u3(u2; v2))

= h (u3 (u2(u1; v1); v2(u1; v1))) = :::

= h (u3(x; y)) ; (8)

or equivalently:

h(x; y) =1� 2
�

sin�1
�q

(u2(x; y) + 1)2 + v2(x; y)2

�
q

(u2(x; y)� 1)2 + v2(x; y)2
�
:

(9)

Finally, the solution in the main problem domain
can be found by the following appropriate conformal
mapping from the z-plane onto w-plane (Churchill et
al. 1974) [44]:

w(z) =
Hs

�

hp
(z2 � 1) + cosh�1 z

i
: (10)

One should notice that this function is a double-valued
complex function, owing to the presence of the square
root term. To make a proper transform, it is vital to
choose a suitable branch cut. To do so, the argument
of z � 1 can be restricted to [0; 2�] and the argument
of z + 1 can be restricted to [��; �]. In this way,
the function will become a single-valued function along
the line segment [�1;+1]. These branch cuts are also
shown in Figure 2(a) by two dashed lines extended from
these two points towards �1.

Note that the solution is obtained for a unit
hydraulic head di�erence between the upstream and
the downstream. Since the Laplacian operator is linear
(also homogeneous), this normalized solution can be
multiplied by Hw to obtain the solution for any actual
condition.

As it is necessary to �nd the gradient of the
hydraulic head, rh, in the w-plane to calculate the
seepage ow force, this can be achieved by making use
of the chain rule in partial derivatives of a function
which requires the geometrical properties of the trans-
formation of the problem domain from the z-plane onto
the w-plane by the Jacobian of the transform:8<:@w

@x = @w
@u

@u
@x + @w

@v
@v
@x

@w
@y = @w

@u
@u
@y + @w

@v
@v
@y

)
�@w
@x
@w
@y

�
=
�@u
@x

@v
@x

@u
@y

@v
@y

��@w
@u
@w
@v

�
= [J ]

�@w
@u
@w
@v

�
; (11)

or equivalently:�@w
@u
@w
@v

�
= [J ]�1

�@w
@x
@w
@y

�
; (12)

where [J ] is the well-known Jacobian matrix. Thus, the
seepage ow gradient at every point within the main
problem domain in w-plane will be:

rh =
@h
@u

eu +
@h
@v

ev =
�@h
@u

@h
@v

� �eu
ev

�
=
�@h
@u

@h
@v

�
[J ]�T

�
eu
ev

�
; (13)

where eu and ev are unit base vectors of the complex
w-plane with details of equations in Appendix B. Now,
the gradient of the ow �eld, rh, can be directly
related to the seepage ow force as follows:

ff = �iw = �
�
@h
@u

eu +
@h
@v

ev

�
w; (14)

or equivalently in the matrix form:�
ffu
ffv

�
= �w �@h@u @h

@v

�
[J ]�T

�
eu
ev

�
: (15)

In these equations, i is the hydraulic gradient vector,
w is the unit weight of the water, and ff (with
components ffu and ffv) is the vector of the unit
seepage force, i.e. seepage force per unit volume. The
seepage force acts as �eld of body force with variable
magnitude and direction corresponding to the complex
nature of the seepage ow pattern through the soil.
Figure 4 presents the solution of the ow �eld for a unit
value of Hw=Hs along with the associated hydraulic
gradient vector �eld. In the next part, this vector
�eld is incorporated into equations of the stress �eld
to establish all necessary equations.

4. Solution of the stress �eld

So far, the solution of the ow force �eld has been pre-
sented. Now, the stress �eld can be computed through-
out the region within which failure would occur. This is
done by making use of the well-known method of stress
characteristics. The technical literature behind this
method and its development date back to Sokolovskii
(1960, 1965) [11,46] and later works by a number
of authors who employed this method to deal with
the bearing capacity or retaining wall problems (Harr,
1966; Houlsby and Wroth, 1982; Bolton and Lau,
1993; Anvar and Ghahramani, 1997; Kumar, 2001;
Kumar and Chitikela, 2002; Martin, 2003 and 2005;
Veiskarami et al., 2014) [15-17,28,47-51]. We present
only the necessary elements of this method as most of
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Figure 4. The ow �eld solution in (a) upper half plane and (b) main problem domain.

the parts can be found in the literature. With notation
compatible with traditional ones, a combination of the
equilibrium and yield equations yields the necessary
stress characteristics equations:

Equilibrium equations:8<:@�xx
@x + @�xy

@y = Bx
@�yy
@y + @�xy

@x = By
(16)

Mohr-Coulomb yield criterion:

� = c+ �n tan�: (17)

Components of stress in terms of new variables, � and
� (according to K�otter, 1903) [52]:8>>><>>>:

�xx = �(1 + sin� cos 2�) + c cos� cos 2�

�yy = �(1� sin� cos 2�) + c cos� cos 2�

�xy = � sin� sin 2� + c cos� sin 2�

(18)

Equations of the stress characteristics directions:8<: dy
dx = tan(� + �) Positive direction (�)
dy
dx = tan(� � �) Negative direction (�)

(19)

Final forms of the equilibrium-yield equations along the
stress characteristics:8>>>>>>>>><>>>>>>>>>:

d� + 2(� tan�+ c)d� =
�Bx(tan�dy � dx)
+By(tan�dx+ dy) Along �

d� � 2(� tan�+ c)d� =
+Bx(tan�dy + dx)
�By(tan�dx� dy) Along �

(20)

In these equations, �xx, �yy, and �xy are components
of the stress tensor at an arbitrary point within the
soil mass; Bx and By are components of the body
force; c and � are soil shear strength parameters

de�ning the Mohr-Coulomb yield criterion; � and �n
are components of the shear and normal stress on a
failure plane along which the Mohr-Coulomb criterion
is satis�ed; � = (�xx + �yy)=2 is the mean stress; � is
the direction of the major principal stress with x-axis
and � = �=4� �=2.

One should note that in solution of the stress
characteristics equations, the body force includes the
submerged unit weight of the soil, 0, as well as the
seepage ow force. Assuming that the seepage force
encompasses components ffx and ffy along x and y
directions, respectively, components of the body force
will be:8<:Bx = �ffx

By = 0 � ffy
(21)

In addition, the stress measures should be expressed
in terms of e�ective stresses and unit weights in terms
of submerged unit weights when the seepage ow is
included. The stress �eld should be then obtained
numerically when some appropriate stress boundary
conditions are prescribed. With reference to Fig-
ure 1(b), there will be two distinct stress boundaries:

Stress boundary along the ground surface, QQ0:
In general, the boundary condition along the ground
surface (traction free boundary) in presence of a general
state of body force, should be de�ned as follows:

�g =
1
2

�
sin�1

�
sin�
sin�

�
� sin�

�
; (22)

where �g is the value of � along the ground surface
and tan� = Bx=By. In the absence of the lateral
component of the body force along the ground surface,
�g = 0. For more details, one can refer to Kumar
(2001), Kumar and Mohan Rao (2002), or Veiskarami
and Kumar (2012) [16,30,53].

In addition, �g will be:

�g =
1
2
qg
�

1 + tan2
�
�
4

+
�
2

��
; (23)
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where qg is the surcharge pressure along the ground
surface. It is notable that it is convenient to de�ne a
very small qg to prevent trivial solution in the stress
characteristics equations. Referring to Bolton and Lau
(1993) [48], it is often chosen, such that a dimensionless
ratio = qg=0B0 becomes a very small value, say, less
than 0.01.

Stress boundary along the equivalent footing
base, BQ: Along this boundary, there is only the
value of � = �f which should be de�ned. As stated
earlier, it can be assumed that no signi�cant shear
stress is mobilized at the equivalent footing interface
with the top soil block, APQB, and hence, it is equal
to zero.

5. Veri�cations

Now, the solution strategy obtained so far should be
veri�ed. There is no available technique or similar
results on the analysis of deep-seated failure in presence
of the seepage ow, at least known to the authors.
However, a simple and rational procedure was sug-
gested by Terzaghi (1943) [3] for cases without seepage
ow which is presented to make preliminary checks.
Moreover, this procedure can be extended to the case
of the seepage ow by arti�cial techniques based on
simpli�ed assumptions. As an example problem, an
arbitrary case of a supported vertical cut into a layer
of uniform sand with and without seepage ow is
analyzed. Since all dimensions are normalized to the
height of the cut, Hs, thus, it is automatically equal
to 1. Soil characteristic parameters are 0 = 10 kN/m3

and �0 = 25�. Analyses were made by using Eq. (1) for
the factor of safety.

Results of the analyses are presented in Table 1.
In Case 1, the hydraulic head di�erence, Hw, between
the upstream and downstream water levels is zero. In
other cases, this di�erence grows to a critical value.
In addition, when applying the method of Terzaghi

(1943) [3] to cases with seepage ow, it is conservatively
assumed that the hydraulic head is linearly dissipated
along the wall length. Therefore, a very rough and
conservative estimate of the hydraulic gradient has
been made. The hydraulic gradient obtained by this
way is reasonably higher than the average hydraulic
gradient within the soil block which is simply id =
Hw=Hs. This hydraulic gradient is then used to
amplify the weight of the soil block to be supported
by the equivalent footing. Instead, no correction is
accounted for the seepage ow through the plastic
region beneath the equivalent footing and conventional
bearing capacity factor, N , implemented. In addition,
Terzaghi (1943) [3], based on numerical results for cases
without inclusion of the seepage ow, showed that the
width of the equivalent footing, i.e., the B0=Hs ratio,
falls within the range of 0.18 to 0.19. For those cases
analyzed by Terzaghi's method, this ratio is assumed
to be 0.19.

In application of Eq. (1) when using Terzaghi
(1943) method, the third bearing capacity factor, N ,
was taken as 9.7 [3]. In addition, another try was made
based on the numerical results of N by Bolton and
Lau (1993) [48] by the method of stress characteristics
which gave N = 3:51. The downward seepage ow
force (to be added to the weight of the soil block), Ffd,
was equal to 0:19 idH2

s . Also, the shear resistance, S,
mobilized along the soil block was assumed to be:

S =
1
2
0H2

sKA tan�0; (24)

where KA is the active earth pressure coe�cient. This
latter assumption on S was also chosen as suggested by
Terzaghi (1943) [3].

In the present approach, however, neither of the
abovementioned assumptions is made. A more precise
calculation based on the present procedure can be
performed where the average of the hydraulic gradient
through the soil block can be calculated. Moreover,
the bearing capacity of the equivalent footing has been

Table 1. Results of the stability analysis for example problem.

Method
Case 1:

Hw=Hs = 0 (no ow)
Case 2:

Hw=Hs = 0:25
Case 3:

Hw=Hs = 0:50
B0cr Fmin

s B0cr Fmin
s B0cr Fmin

s

Conventional approach
(Terzaghi, 1943)

0.19 3.699 0.19 3.466 0.19 3.283

Conventional approach
(Bolton and Lau, 1993)

0.19 1.329 0.19 1.254 0.19 1.188

Present study1 0.19 1.267 0.27 1.079 0.31 0.941

Present study2 0.19 1.267 0.26 1.243 0.29 1.040
1 Variable seepage force; 2 Constant seepage force (averaged value).
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Figure 5. Solution of the stress �eld: (a) Without seepage ow (Hw = 0) and (b) with seepage ow (Hw=Hs = 0:25).

calculated with inclusion of the seepage ow e�ects.
It is notable that the critical width of the equivalent
footing, B0cr, has been obtained corresponding to the
least factor of safety, Fmin

s . Figure 5 shows the solution
of the stress �eld (failure pattern) for two cases in the
absence and in presence of the seepage ow with the
zone of failure being enlarged. It is obvious that the
size of the plastic region grows when the intensity of the
seepage ow increases. This is logical as a larger passive
zone is required to withstand the unbalancing force at
the limiting equilibrium with increasing seepage force.

Another important point in computation of the
stress �eld in the present approach is that the ow force
is a non-uniform vector �eld. The variation in the direc-
tion and magnitude of the ow force from point to point
renders the required numerical computations for the
stress �eld di�cult and much more mesh re�nements
may be required to get a rational result. To avoid this
disadvantage, another simpli�ed approach is suggested,
that is, to use the averaged values of the ow force,
as an equivalent constant ow �eld within the entire
plastic region. To do so, an iteration approach can be
made to calculate the ow force at every nodes of the
stress characteristics network and to take an average
value for the next round of iteration. It was done,
and fortunately two interesting results were observed.
First, the convergence was achieved very quickly (in
most cases, a total number of 5 to 10 iterations make
the results stable). Second, the di�erence between
the variable ow �eld and the equivalent constant ow
�eld is not practically signi�cant. Table 1 presents the
results of both approaches for the example problem
outlined before. The �rst approach, i.e. the variable
ow �eld is denoted by a superscript 1; the second
approach, i.e. using an equivalent constant ow �eld, is
denoted by a superscript 2. The di�erence is about 10%
which is practically negligible and makes the simpli�ed
approach a more e�cient alternative.

It is important to note that the convergence
criterion in the simpli�ed approach has been checked

by not only the stability of the solution for the factor of
safety, but also for other di�erent factors. In essence,
the convergence was checked by convergence of the
stress �eld at each computational step, i.e. through
the stepwise solution of the stress �eld as well as the
convergence of the geometry of stress characteristics
network. Therefore, the convergence criterion was
achieved when the extent of the plastic region as well
as the stress �eld was computed. The last criterion was
the convergence of the factor of safety.

6. Stability charts

In this section, a number of analyses were made to
present the results in a more practical manner. With
reference to Figure 6, which reects the results of these
analyses, two di�erent charts were developed. One of
them is the variation of the least factor of safety, Fs,
with Hw=Hs for a certain soil friction angle. The other
is the critical value of the relative dimension of the
equivalent footing size, B0=Hs, i.e. the one with the
lowermost factor of safety. In all these analyses, the
soil submerged unit weight as well as the unit weight
of the water were assumed to be 10 kN/m3 which seems
to be practically reasonable. In addition, the minimum
factor of safety was obtained by an iterative analysis to
�nd the equivalent footing size for which the factor of
safety becomes a minimum.

In the �rst plot shown in Figure 6(a), variations
of the safety factor, Fs, is plotted against the nondi-
mensional ratio, Hw=Hs, for a range of friction angles
between 20� and 40�. It is evident that for higher
friction angles, the factor of safety is very high, and
hence, there is no signi�cant risk of deep seated failure.
In contrast, in lower friction angles, the deep-seated
failure is prone to occur, even in the absence of the
seepage ow. For example, the factor of safety is always
below 1 when �0 = 20� and less, which means the deep-
seated failure is always a major concern. When the
friction angle ranges between 20� and 30�, the deep-
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Figure 6. Variations of the factor of safety (a) and the critical value of the equivalent footing width (b) versus Hw=Hs.

seated failure may or may not be critical, depending
on the Hw=Hs ratio. It is worth noting that the
last points of these charts mark the point beyond
which the numerical analyses became unstable and no
rational solution could be found, since such a numerical
instability seems to have a physical meaning, e.g. local
instability in a portion of the soil mass in terms of
\static liquefaction" (even for Fs > 1); therefore, the
last points of these charts could be regarded as a
critical limit for the Hw=Hs. Beyond these points, the
factor of safety drops very quickly as Hw=Hs increases.
Therefore, it seems that no extrapolation of these
charts is admissible.

In the second plot shown in Figure 6(b), variations
of the equivalent footing width, B0=Hs, are shown
versus Hw=Hs for a practical range of friction angles
between 20� and 40�. According to Terzaghi (1943) [3],
this ratio often ranges between 0.18 and 0.19 for
common range of the soil friction angle when there is
no seepage ow. However, an insight into the results
indicates that the equivalent footing size increases as
the non-dimensional ratio, Hw=Hs, increases. This
can be interpreted in accordance with the nonlinear
nature of the equation for the factor of safety. This
equation depends on both the body forces (which have
their magnitude and direction changed throughout the
problem domain) and the equivalent footing width in
a nonlinear fashion; hence, its extrema change with
changing Hw=Hs and friction angle. However, in spite
of its mathematical meaning, its physical meaning will
be of greater importance. It is clear from the �gures
that as the soil friction angle becomes smaller, the
size of the equivalent footing becomes larger. This

indicates that if a deep-seated failure occurs, the size
of the failure zone becomes larger with certainly more
catastrophic e�ects. Therefore, not only is the factor
of safety against deep-seated failure lower in soils
possessing lower friction angles, but also the zone of
inuence of the collapse is larger.

In addition, a rule of thumb indicates that when
the ratio Hw=Hs reaches around unity, the soil may
experience the critical hydraulic gradient at the edge
of the cut. Although this fact may initiate a local
progressive failure, the edge of the cut is a singular
point where neither the stress nor the ow �eld cannot
be properly computed. Therefore, the computational
procedure can advance until the hydraulic gradient
reaches some critical value within the plastic region
(not at the singular point).

With reference to the presented charts, another
important note should be pointed, i.e. the numerical
solution to the stress �eld cannot be achieved when
the hydraulic gradient exceeds some critical value (even
at just one point within the �eld). Beyond this critical
value, the solution will not converge. Note that this can
be regarded as a disadvantage to the procedure outlined
here. In fact, if only one point does not converge, the
computational e�orts cannot be completed, although
this might be just a local failure without necessarily a
total loss of strength in the entire soil mass. The critical
value of the hydraulic gradient in a horizontal seepage
ow with regard to the Coulomb failure criterion can be
found as icr w=0 = tan�0 [30]. However, in a complex
form of the seepage ow, it cannot be easily computed
unless numerically. Therefore, it is not surprising
that the graphs representing variations of Fs with
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Figure 7. Variations of the equivalent footing width,
B0=Hs with �0.

Hw=Hs are terminated at some point di�erent from
Fs = 0. These points are denoted by a small square
(i.e., was not converged) in the presented graphs. In
addition, these points have a physical meaning, i.e.
when the soil becomes unstable at some point within
the plastic region, this instability becomes the onset of
a progressive failure starting just from that particular
point. Furthermore, as soon as this instability is
reached, the initiation of a failure should be expected in
spite of the overall factor of safety (which may be still
higher than unity). Thus, it is not su�cient to have a
factor of safety higher than unity, but it is necessary
to avoid approaching such critical points following a
progressive failure.

Finally, variations of the equivalent footing width,
B0=Hs, with the soil friction angle are plotted in
Figure 7. One should note that a small part of these
graphs has been produced back by extrapolation of the
results (for �0 = 20� and 25� only). Such curves could
not be produced with su�cient accuracy for friction
angle �0 below 20� due to convergence error. These
plots are useful for a simpli�ed approach based on an
average of the hydraulic gradient.

7. Conclusions

A semi-analytical study was performed to include
the e�ect of the seepage ow on the stability of a
supported vertical cut against deep-seated (or base)
failure in waterfront excavations. This is a problem for
which no analytical solution is available and numerical
techniques involve complications. In the presented
semi-analytic procedure, the e�ect of the seepage ow
has been included by solution of the ow �eld as
an independent and analytical solution (background
solution) and the solution of the stress �eld at the
limiting equilibrium as the main solution (by numerical
techniques). In this procedure, it is formally assumed
that the ow �eld pattern is not inuenced by the

formation of a failure mechanism. Such an assumption
does not seem to be too much restrictive; hence, the
solution of the ow �eld can be found independently.
The solution of the ow �eld was found by succes-
sive applications of conformal mappings in complex
planes and the simple solution of the steady-state ow
problem in a semi-in�nite strip in the complex plane.
The presented approach has several advantages over
other fully numerical methods, e.g. higher accuracy and
speed.

Analyses showed that the deep-seated failure is of-
ten a critical criterion to design supported excavations,
which deserves more attention. In fact, for practical
range of friction angle for most sands, the probability
of failure increases signi�cantly when the cut is exposed
to the seepage ow. In cases with low friction angle, like
�ne sands, such a failure may dominate the design and
may precede other types of failure such as the slope
failure (often not a major concern), wall failure (due
to insu�cient passive pressure and increased active
pressure) or piping, and heaving failures. In addition,
results revealed that the size of the collapse pattern
grows signi�cantly as the soil friction angle decreases.
Thus, it can be concluded that not only the probability
of failure can increase for such soils, but also the type of
failure can be more catastrophic which requires further
serious provisions in practice.
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Appendix A

Successive transformations from w3-plane to
z-plane
The problem domain and the solution can be trans-
formed from w3-plane to z-plane by the following
successive conformal mappings. With reference to
Figure 3:

w3 = sin�1 w2 or inversely: w= sinw3: (A.1a)

Moreover:

w2 =u2 + iv2 = sin(u3 + iv3) = sinu3 cosh v3

+ i cosu3 sinh v3: (A.1b)

Therefore:

u2 = sinu3 cosh v3 and v2 = cosu3 sinh v3: (A.1c)

However, according to trigonometric relationships:�
u2

sinu3

�2

�
�

v2

cosu3

�2

= 1: (A.1d)

Thus:

u3 =sin�1
�q

(u2+1)2+v2
2�
q

(u2�1)2+v2
2

�
;
(A.1e)

which is required for the rest of calculations.
Transformation between w1-plane and w2-plane is

obtained by:

w2 = w1=2
1 or inversely w1 = w2

2: (A.2a)

Consequently:

u1 + iv1 = (u2 + iv2)2: (A.2b)

which yields:(
u2 = � 1p

2

q
u1 �pu2

1 + v2
1

v2 = v1
2u2

= v1
2u2

(A.2c)

Transformation between z-plane and w1-plane is ob-
tained by:

w1 =
z + 1

2
or inversely: z = 2w1 � 1: (A.3a)

Therefore:

u1 =
x+ 1

2
and v1 =

y
2
: (A.3b)

These transformations can be directly used to transfer
both the geometry and the solution of the problem;
hence, the solution will be available in complex z-plane.
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Appendix B

Solution of the hydraulic gradient in complex
w-plane
The gradient of the hydraulic head required to compute
the seepage ow force can be found as follows.

First of all, one should obtain the Jacobian
of the transformation which requires some arti�cial
manipulations by the aid of functions Re(w(z)) and
Im(w(z)) which bring the real and imaginary parts of
a complex function and can be easily programmed in
MATLAB or other similar environments:

[J ] =
�@u
@x

@v
@x

@u
@y

@v
@y

�
; (B.1)

@u
@x

=�1
�
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�

2x+2iy
2
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(x+iy)2�1
+

1p
(x+iy)2�1

�
; (B.2)
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2ix�2y
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Im
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2x+2iy
2
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(x+iy)2�1
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=�1
�

Im
�

2ix�2y
2
p

(x+iy)2�1
+

ip
(x+iy)2�1

�
: (B.5)

Having known the coordinates of an arbitrary point, in
the main problem domain, the inverse of the Jacobian
matrix can be found for the rest of calculations.
In addition, the components of the gradient of the
hydraulic head, rh, can be calculated by Eqs. (B.6)
to (B.8) as shown in Box I.

It is notable that the inverse problem, i.e. map-
ping from the w-plane onto the z-plane, may be a
little complicated and long; however, the location of

every arbitrary point in the w-plane can be found by a
numerical technique like the Newton-Raphson method
as the entire problem, i.e. solution of the ow �eld and
later, solution of the stress �eld, should be traditionally
recast in a computer code.
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