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1. Introduction

Abstract. In geostatistical analysis, spatial interpolation at any unmeasured point is done
using the parameters of a variogram model that matches the experimental data. Several
variogram models can be used, and the accuracy of the spatial map produced depends on
the selection of the most appropriate variogram model that fits the spatial distribution
of the experimental data. Therefore, in this study, a multiple-criteria decision-making
method, i.e. Analytical Hierarchy Procedure (AHP), is used to evaluate and select the best
variogram model for mapping spatial rainfall in the upper reaches of the Kelang River basin
in Malaysia. Using daily rainfall data from 71 rain gauge stations, geostatistical analysis
was done by the Ordinary Kriging interpolation method and 5 alternatives to variogram
models, namely Spherical, Tetraspherical, Pentaspherical, Exponential, and Gaussian for
spatial rainfall mapping. The accuracy of the spatial rainfall map was evaluated using
four criteria of spatial interpolation error indicators, which are Root-Mean-Square Error
(RMSE), Average Standard Error (ASE), Mean Standardized Error (MSE), and Root-
Mean-Square Standardized Error (RMSSE). The results showed that the spherical model
was ranked at the top for producing the best spatial rainfall map of the study area.

(© 2017 Sharif University of Technology. All rights reserved.

the Kriging technique variant that requires a variogram
model to compute data estimation at the interpolation

In hydrological science, the visualization of spatial
rainfall from point-based rainfall for water related
analysis is very important. It is generated using a
spatial interpolation method via either a deterministic
or geostatistical approach.

Recently, the advanced development of the Geo-
graphical Information System (GIS) has facilitated the
common use of the geostatistical method for producing
spatial rainfall distribution. The availability of sev-
eral interpolation methods in geostatistical analysis,
namely built-in GIS applications, is an advantage for
analyzing spatial rainfall data. Omne such method is
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point.

The Kriging technique is quite similar to Inverse
Distance Weight (IDW) method that needs the weight
of the observed data to estimate the value at certain
location. The IDW derives the weight based on the
distance of the interpolated point to the observed data
point only. However, the Kriging incorporated the
distance with the spatial correlation of the observed
data arrangement. The spatial correlation is evaluated
using the variogram model before the estimation at
unobserved point can be done. Furthermore, several
variogram models are available in ArcGIS tools for use
in spatial interpolation using the Kriging technique and
the most popular models are Spherical, Tetraspherical,
Pentaspherical, Exponential, and Gaussian.

The diversity of geostatistical methods has en-
couraged researchers to study the comparative per-
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formance of interpolation. For instance, Meng et
al. [1] conducted a comparative performance study
of 7 interpolation techniques in GIS. In their study,
the regression Kriging was evaluated as the best in-
terpolation method based on 4 performance indica-
tors, i.e. Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Pearson correlation coefficient,
and Bayes factor. Another study on the Kriging
interpolation method was conducted by Bargaoui, and
Chebbi [2], but the research scope was to suggest the
3-D estimation of the variogram rather than a 2-D
perspective.

In terms of the variogram, there are a few models
that can be fitted to experimental data and practi-
cally only one should be selected for all experimental
datasets [3]. Ly, et al. [3] studied seven variogram
models to fit the daily rainfall data and evaluated the
variogram models using a cross-validation technique
and the RMSE factor. It was concluded that the
Gaussian model was able to fit most of the daily rainfall
data. The same finding was drawn by Othman et al. [4],
whose analysis was conducted in a tropical river basin
using the spatial correlations Geary’s C and Moran’s
I as performance indicators. The both indicators were
the statistical measurement of autocorrelation between
observed spatial data. The Geary’s C indicator was
a measurement of local spatial autocorrelation of the
observed data. In contrast, the Moran’s I test was for
global autocorrelation.

In the literature, many performance indicators
can be considered to justify variogram model selec-
tion. However, fulfilling them concurrently remains
questionable. This has made researchers only consider
the most achievable indicator in their analyses. In
GIS application, 5 performance indicators of spatial
mapping are available: mean error, root-mean-square
error, average standard error, mean standardized error,
and root-mean-square standardized error [5]. It is
recommended that all indicators be emphasized to
evaluate the accuracy of spatial interpolation as well
as the smoothness of the produced map.

To conduct such a task, multi-criteria decision-
making tool is needed which is able to incorporate
the indicators in the decision-making process such as
Analytical Hierarchy Process (AHP). The AHP is a
simple structured approach of the criterion, and the
alternative decisions in hierarchy are formed to analyze
the decision-making process. It is able to consider
both numerical and non-numerical forms of criterion.
Based on this reason, the AHP has been applied in
vast application either to technical or non-technical
fields.

In this study, the AHP method was applied
to analyses of the decision-making process to justify
the best variogram model that produced an accurate
spatial rainfall map by the geostatistical method. By

the Kriging interpolation technique, 5 alternatives to
variogram models, namely Spherical, Tetraspherical,
Pentaspherical, Exponential, and Gaussian are struc-
tured for evaluation based on 4 spatial interpolation
indicators (root-mean-square error, average standard
error, mean standardized error, and root-mean-square
standardized error).

2. Location and datasets

2.1. Location

To present the AHP application to select the variogram
model for spatial rainfall mapping, a rain gauge net-
work in the upper Klang River basin was selected for
this study as illustrated in Figure 1.

The upper Klang River Basin is mainly located in
the Federal Territory of Kuala Lumpur and some parts
of Selangor State. The upper part of this study area is
virgin forest with an elevation of about 1200 m above
sea level. Meanwhile, the downstream area is almost
flat with an elevation of more or less 100 m above sea
level. This area is fully developed and has high density
of residential population.

The climate in the study area is influenced by the
monsoon system, which is categorized in 4 seasons: two
main monsoons and two transitional monsoons. The
main monsoon seasons occur from December to March
(also known as the northeast monsoon) and from June
to September (also known as the southwest monsoon).
The transitional monsoons occur from March to June
and September to December. Usually, the study area
receives heavy convective rainfall in March, April,
October, and November. However, the mean annual
and monthly rainfall is relatively uniform with about
2,400 mm per year and 280 mm per month.

2.2. Rainfall datasets
Within the study area, there are 3 rain gauge networks
developed by the Drainage and Irrigation Department
of Malaysia (DID), which uses the same type of rain
gauge instrument but for different hydrological pur-
poses. The main rain gauge network, the National
Network, was established for water resource studies in
the 1970s. This network consists of 30 rainfall stations
that are unevenly distributed throughout the area. As
for flood monitoring, a network was developed consist-
ing of 19 stations in the study area. This network
is equipped with a telemetry system for hydrological
data transmission to the monitoring server. Besides,
there is another network specifically constructed for the
Stormwater Management and Road Tunnel (SMART)
project of Kuala Lumpur city center that has 22
stations. The distribution of station locations is shown
in Figure 1.

The total number of rain gauge stations in the
study area is 71 stations. Within the study area,
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Figure 1. Study area and locations of rainfall stations used in this study.
Table 1. List of daily rainfall data events used in this study.
Minimum Maximum Mean Standard
Year Date rainfall rainfall rainfall deviation
2008 24 March 2008 0 109 13.5 23.44
9009 3 February 2009 100 19.1 25.15
3 March 2009 134 38 28.01
2011 13 December 2011 142 36.1 30.47
18 September 2011 0 87 31.1 24.08
7 March 2012 0 239.5 78.4 55.09
2012 18 April 2012 0 111 19.3 25.49
2 May 2012 0 137.5 65.5 32.14
21 August 2012 0 130 24.5 27.74

the information of flood events that occurred recently
back in the 5 years are determined from the DID.
The availability of the rainfall data for each station
is assessed for the flood events. Based on these two
criteria, there are 9 flood events that are significant

to use them in this study. The rainfall data in daily
format were extracted from these 71 rainfall stations to
perform the spatial rainfall mapping of the study area.
The rainfall events selected in this study are tabulated
in Table 1.
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3. Methodology

The methodology of selecting the most appropriate
variogram model for spatial rainfall mapping using
the AHP is presented. First of all, geostatistical
analysis is performed on 9 daily rainfall data to
obtain the variography parameters (spatial variance,
distance, nugget effect, and sill) for 5 variogram model
candidates (Spherical, Tetraspherical, Pentaspherical,
Exponential, and Gaussian). These parameter values
are used to generate a spatial rainfall map with the
prediction error indicators (root-mean-square error,
average standard error, mean standardized error, and
root-mean-square standardized error). The prediction
error indicators are set as criteria in the AHP method
and serve to evaluate the variogram model’s perfor-
mance to produce the best spatial rainfall map. To
select the best variogram model for spatial rainfall
mapping, the AHP method is used to rank the best
variogram models for the final decision.

3.1. Geostatistical analysis
Geostatistical analysis is a way to study the envi-
ronmental datasets related to space and time or the
distribution of the datasets. Fundamentally, it consists
of three main elements. First, the candidate data
are characterized based on the correlation of spatial
data distribution using the variogram model. Second,
the variogram model is applied to estimate the space-
based data through an optimal interpolation method.
Then, the distribution is simulated to generate the
datasets for the space domain using the variogram
model. Further details of geostatistical analysis are
explained by Journel and Huijbregts [6], Goovaerts [7],
and Chiles and Delfiner [8].

In modeling the space correlation of an experi-
mental dataset (in this study, it is daily rainfall data)
using geostatistical analysis, Eq. (1) is used:

(b = =3 [ga) = glo + B)?, (1)

T

where y(h) is the semivariance, [g(z) — g(z + k)] is
the difference in dataset pair value, and n is the size
of the dataset. Eq. (1) calculates the semivariance
since the product on the right side is divided by 2.
The semivariance is plotted against lag to produce the
semivariogram.

Then, the experimental dataset is fitted to a curve
that represents the spatial correlation of the variog-
raphy parameters. In this study, the experimental
semivariogram is fitted to the 5 variogram model candi-
dates used to calculate the variography parameters for
spatial rainfall mapping using the Kriging interpolation
method.

The Kriging interpolation variants, namely Or-
dinary, Simple, Universal, Indicator, Probability, Dis-
junctive, and Co-Kriging, are associated with the

geostatistical method. All of these Kriging variants
quantify the spatial structure of the data and the
prediction error [5]. The selection of the Kriging
method is dependent on the dataset used in this study.
Since there is only one variable, that is, the rainfall data
used, and the constant mean of the dataset is assumed
to be reasonable [5]. Then, the Ordinary Kriging (OK)
method is adapted to the spatial interpolation stage.
The geostatistical analysis is done using the ArcGIS
9.3 software toolbox.

3.1.1. Ordinary Kriging (OK) and variogram

The OK method is used to estimate the value of spatial
interpolation based on assumption that the observed
data has constant mean but unknown within the study
area. The OK models the observed data using Eq. (2):

R(s) = p+<(s), (2)

where R(s) is the value for a location of (s) in
coordinate of (z,y), u is the constant mean, and =(s)
is a random error.

To estimate the value R.s at prediction location,
(s0), OK uses the weighted average A; of the observed
value, R(s;), as formed in Eq. (3). The weight A;: is
calculated based on the distance of observed data to
the prediction location and their spatial variation using
variogram model. The sum of weight A;: must be equal
to one to ensure that the predicted value is unbiased:

Ret(80) = Z X R(s:). (3)

In this study, 5 variogram models (Spherical, Tetras-
pherical, Pentaspherical, Exponential, and Gaussian)
are evaluated to produce the best spatial rainfall map.
Basically, the variogram models have similarity on the
variography properties such as sill, range, and nugget
as illustrated in Figure 2.

Theoretically, the semivariogram started at zero
value. The measurement will be raised up to the sill
where the line will be off or almost flat. However, due

4
v(h, ¢)

— Sill
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S
>

}Nugget
1 Distance, h

Range, @,

Figure 2. A typical structure of semivariogram.
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Table 2. Mathematical equations for variogram models.

Variogram Mathematical model
model
BIIAlL _ 1 <nhn>3} for 0 < [|h]] <
Ps | = : or () Iy
Spherical v(h,$) = {2 s 2\ 2r < |Inll <
s for h < ||h]]
2 2 %
2%s |arcsin <M> 11 Ty (”h”> + 21kl (1 _ <Hh|\> )‘ for 0<Ihll < o
Tetraspherical ~ y(h,¢) = ¢ 7 |: R o, Iz 39, & <|ln|] <
s for @, < |hl|
o {ﬁl\hl\ _5 (Hh\l)?’ 43 (thﬂ for 0 < [|h]|2,
Pentaspherical  v(h,¢)=¢{ L% 2 4\, 8 \ @, <
Ds for h < ||A||
Exponential v(h,d) = ¢ [1 — exp (_ 3\1!7sz )]
2
Gaussian v(h, ¢) = ¢ |:1 — exp (_3 (H;,,‘,l) >:|

to the measurement error, the semivariogram has offset
value at the origin called nugget effect. This Nugget is a
value of initial variability in the smallest group distance
(lag). The sill value can be read at where the line off
and partial sill value can be calculated by the residual
of the sill and the nugget value. Range is the lag value
extracted from the diagram at the sill location on the
diagram which beyond this range, the autocorrelation
measure is zero.

The dissimilarity between the variogram models
is that how their mathematical equation presents the
experimental data. The mathematical equation of
variogram models are tabulated in Table 2. The spher-
ical model presents the semivariogram curve linearly
increasing at the early distance or lag and gradually
change before it reaches the range. In contrast, the
Gaussian model presents the parabolic form within the
range value up to the sill. The Exponential model’s
curve is quite similar to Spherical model at the early
distance, but exponentially increases the sill value as
the distance increases the range. The Tetraspherical
and Pentaspherical are differentiated by the mathe-
matical formula from others variogram model. The
Gaussian can be unstable numerically in the kriging
interpolation if the nugget effect is not considered.

3.1.2. Spatial interpolation indicator

The accuracy of the spatial rainfall map produced by
the geostatistical method is evaluated by spatial in-
terpolation error using cross-validation approach. For
this purpose, hold-one-out cross-validation technique
is applied, where a station is removed one by one and
the rainfall magnitude is estimated using the variogram
parameters. Then, the spatial interpolation errors

are computed by Root-Mean-Square Error (RMSE),
Average Standard Error (ASE), Mean Standardized
Error (MSE), and Root-Mean-Square Standardized
Error (RMSSE). The respective equations for each
indicator are listed as below:

n _ 2
RMSE — \/Zil(Rest Robs) 7
n

ASE = ) 2=1%
n

2
Zn Rest—Robs
=1 o;

(4)

MSE = - , (6)
s ( (Rest—Ror) ) 2
RMSSE = - , (7)
n
where:
Rops : Observed rainfall value at the rain
gauge;
Reg - Interpolation estimate rainfall value at
the rain gauge;
o Standard error of estimated value at
the rain gauge;
n: Number of rain gauge station.

The best spatial rainfall map produced by the
geostatistical method should have appropriate value
of each indicator. The MSE should be close to zero,
but the RMSSE is near to 1. However, the RMSE
should be small and the ASE nears the RMSE value.
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Table 3. Comparative weighting score for pairwise matrix comparison.

Criteria Comparative weighting score Criteria
More important than Equal Less important than
C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C2
C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C3
C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4
C2 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C3
Cc2 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4
C3 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4

Most researchers considered one or 2 indicators in their
study, because these criteria are rarely achieved. In this
study, this problem is solved using the multi-criteria
decision-making tool.

3.2. Analytical Hierarchy Procedure (AHP)

The Analytical Hierarchy Process (AHP) was proposed
by Saaty in the 1970s. The AHP is a methodology of
multi-criteria decision-making for qualitative or quanti-
tative study through an evaluation of a set of variables
in the hierarchical structure [9]. It consists of 4 evalua-
tion stages in the hierarchical structures, i.e. modeling,
assessment, ranking, and conclusion. In the modeling
stage of the hierarchical structure, the study objective
is placed at the top of the structure. Meanwhile, the
criteria, sub-criteria, and alternatives are structured at
the bottom. To rank the alternatives for a decision, the
criteria and sub-criteria are evaluated to set the priority
weights used to assess the alternatives’ attributes.

3.2.1. Priority weight of criteria

The goal of this study is to select the best variogram
model from 5 candidate models based on 4 prediction
error criteria of spatial rainfall mapping. The AHP
model used in this study is shown in Figure 3. Prior
to executing AHP, the preference for each criterion is
compared using the pair-wise matrix comparison [10].
A comparative scale with numerical values of 1 to 9
represents the influence of one criterion on another [11].
The criteria are labeled as C1 for RMSE, C2 for ASE,
C3 for MSE, and C4 for RMSSE. These criteria are

Average

R OO["111(‘2111’5([11211'(,‘
standard error

compared and tabulated in Table 3, and the assignment
of numerical values is based on the best output of
spatial rainfall mapping. To achieve the best spatial
rainfall mapping [5], criterion C2 must be the same as
C1, which is the smallest value. Criterion C4 must be
nearest to 1, but criterion C3 must approach 0.

In a real case, spatial rainfall mapping that fulfills
all these criteria is difficult to achieve. Furthermore,
the Consistency Ratio (CR) of the pairwise matrix
must be less than 0.1 to ensure that the Priority
Weights (PW) of the criteria are reliable for analysis,
and it is the measurement of the consistency of the
decision as structured by the AHP. The PW are calcu-
lated by first assigning the comparative numerical value
of the criterion. For instance, in Set 1, a comparative
numerical value 4 is assigned for C1 over C3. This
means that C1 is more important than C3. In contrast,
a comparative numerical value 0.11 (or 1/9) is assigned
to C1 over C4. This means that the C4 is greatly
more important than Cl. After the pairwise matrix
is created, each comparative value is normalized using
the sum of each column according to Eq. (8), where X;
is the normalized comparative numerical value, Cj; is
the comparative numerical value, .7 | C;; is the sum
of columns for the comparative value, and notations of
1 and 7 are the row and column, respectively:

__ Gy
VX Cy
Then, the PW are calculated by averaging the nor-
malized value of comparative value for each row using

X (8)

variogram model

Selecting J

Mean

standardized

Root-mean-square
standardized

{ Spherical J

Tetraspherical

\. J

[ Pentaspherical ‘

Exponential ’

Gaussian J

4 A% J \

Figure 3. AHP model for variogram model selection.



34 M.Z. Muhamad Ali and F. Othman/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 28-39

Table 4. Random index for number of criteria [10].

Nl‘lmb‘er of 1 2 3 4 5 6 7
criteria, n
RI 0 0 058 09 1.12 1.24 1.32
Eq. (9):
21 X
pw,, = £ 70 (9)

where the Z;;l X ; is the sum of normalized compar-
ative value of row, and n is number of criterion.

The CR value is computed using Eq. (10), where
the CI is the Consistency Index which is calculated
using Eq. (11) and the RI is the Random Index. The
RI value represents the random cousistency of the
developed pairwise matrix, and the value is based on
the number of criteria in AHP structure as tabulated
in Table 4. Since there are 4 criteria in this study, the
RI value is 0.9. The Apax in Eq. (11) is the largest
eigenvalue of PW of each criterion:

CI

Anlax_n
Il=——. 11
C P (11)

The numerical value selection of a pairwise matrix
is crucial, because it determines the consistency and
robustness of the decision made. To achieve this,
the pairwise matrix comparison using comparative
numerical is simulated until the CR value is less than
0.1. As a result, there are 3 sets of pairwise matrices
with different comparative numerical values, and the
associated priority weights are used in the analysis.
A detailed calculation of PW and the CR is given
by Coulter et al. [12], Ishizaka and Lusti [13], and
Saaty [14].

3.2.2. Alternative evaluation

The alternatives (variogram models) are evaluated
using the criterion value and the PW value. To rank
the alternatives for decision making, Eq. (12) is used
to calculate the Alternatives’ Weighted Priority (AWP)
value, where I; is the normalized criterion value, and
n is the number of criterion. The I; value for each
criterion is calculated by dividing the criterion value
with the respective mean, thus transforming the values
to dimensionless. The alternatives’ rank position is
produced by sorting the AWP values from the highest
to the lowest:

AWP = > "I, PW,. (12)

=1

The AHP method produced a rank for decision making
for a single data set. However, in this study, 9 rainfall

Table 5. S, value for each rank position.

Rank Position,r 1 2 3 4 5
Sy 5 4 3 2 1

data sets are used to select the best variogram model.
The AHP results in a different rank set for each data
set, and it is unable to make a decision from multi-data
sets. To overcome this problem, a new set of scores is
introduced by multiplying the probability (f.) of the
alternatives placed at a rank position by S, value. The
value of f,. is computed by counting the frequency of
the alternatives placed at a rank position divided by
the total number of datasets (9 in this study). The S,
value is a factor that consists of a set of numbers in a
descending order from 5 (number of alternatives) to 1.
The S, value is assigned according to rank position as
tabulated in Table 5. The Final Score is then calculated
by summing up the scores as in Eq. (13), where r is
the rank position. The Final Score value is sorted in a
descending order to produce the final rank for decision-
making. The alternative ranked in the top place is the
best model to use for spatial rainfall mapping:

Final score = Z fr.Sr. (13)

r=1,2,3...

4. Results

4.1. Priority weight of criteria

The results of priority weights in pairwise matrix anal-
ysis for criteria versus goal in the study are presented
in Table 6. As mentioned earlier, there are 3 sets
of priority weights employed in this study. All sets
indicate satisfactory Consistency Ratio values of less
than 0.1 to ensure the consistency of calculated priority
weight. These 3 weight sets were used to observe the
results of different levels of influence among the criteria.
The CR value in Set 1 is 0.095, i.e. 9.5% inconsistency
in decision, which is the highest; in Set 2, the CR value
is the lowest (0.012 or 1.2% inconsistency). Whereas
CR value in Set 3 has moderate CR value that is 0.039
(3.9% inconsistency).

In Set 1, criterion C4 had 71.3% influence on the
decision, but criterion C3 had the least influence with
only 4.6%. Criteria C1 and C2 had the equal influence
of 12.1%. However, in Sets 2 and 3, criterion C4 still
had the greatest weight, but criterion C3 increased up
to 26.7% in Set 2 and 20.6% in Set 3. Meanwhile,
criteria C1 and C2 had influences of only 6% and
8.5% on the decision, respectively. In other words,
in Set 1, the dominant criterion was C4 (Root Mean
Square Standardized Error), and there was no emphasis
on criterion C3 (Mean Standardized Error). On the
other hand, in Sets 2 and 3, criterion C4 remained
important with the same contribution as criterion C3
on the evaluation process. These 3 scenarios were
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Table 6. Results of priority weight and its associated comparative numerical value and consistency ratio of pairwise

matrix comparison of the criteria versus objective.
Set  Priority Factor C1 C2 C3 C4 Consistency
no. weight ratio
0.121 C1 1.00 1.00 4.00 0.11
1 0.121 C 1.00 1.00 4.00 0.11 0.095
0.046 C3 0.25 0.25 1.00 0.11
0.713 C4 9.00 9.00 9.00 1.00
0.060 C1 1.00 1.00 0.20 0.11
9 0.060 C 1.00 1.00 0.20 0.11 0.012
0.267 C3 5.00 5.00 1.00 0.33
0.612 C4 9.00 9.00 3.00 1.00
0.085 C1l 1.00 1.00 0.33 0.17
= ‘ .
3 0.085 C2 1.00 1.00 0.33 0.17 0.039
0.206 C3 3.00 3.00 1.00 0.20
0.623 C4 6.00 6.00 5.00 1.00

35

employed to ensure the robustness of the decision made
by AHP.

4.2. Candidate model performance

The alternatives are evaluated using the final score
value. Based on the final score value, the variogram
models are ranked for decision-making. The results of
the variogram model rank based on the Final Score
value for each set are tabulated in Table 7. Based on
the table, each set unanimously resulted in the same
model ranke at the top, that is, the Spherical model.
The minimum Spherical model’s score value is 3.56
(in Set 2) compared with the maximum score in this
study that is 5. This means that the Spherical model
demonstrates a good performance to fulfill all criteria
with at least 71.2%, and the maximum performance is
75.6% (score of 3.78 in Set 1).

The Gaussian and Tetraspherical models are
ranked second and third in Set 2 and Set 3, respectively.
In contrast, for Set 1, the Pentaspherical ranked second
followed by the Gaussian model in the third place. The
Gaussian model’s score recorded is equal to 3.56 in
Set 2 and Set 3 . This score is equal to the minimum
score of the Spherical model. This result signifies that
the Spherical and Gaussian models perform well in

producing a spatial rainfall map that fulfills the criteria
explained by Johnson et al. [5]. As for the rest, the
performances of the variogram models are average and
are ranked by the AHP method in the bottom place.

This result was compared with the findings by
Othman et al. [4]. They conducted an analysis of
a storm event on spatial rainfall distribution in the
same study area. By using a total of 28 rain gauge
stations, they found that the Gaussian model had a
slightly better performance in producing spatial rainfall
estimation compared to the Spherical and Exponential
models. There is good agreement in the findings
regarding the performance of the Gaussian and Ex-
ponential models. But, contradiction arises for the
Spherical model. Applying the AHP method ranked
the Spherical model at the top, indicating that the
model has a good performance.

This is possibly due to 2 reasons, one of which
is the number of rain gauge stations selected. There
are 71 stations selected in this study, and at least
55 stations were used in the analysis based on data
availability, which is twice more than the study by
Othman et al. [4]. Thus, network density in this study
is much greater. In geostatistical analysis, the accuracy
of spatial rainfall distribution relies on the density of

Table 7. Results of variogram model ranking based on the final score value.

Pairwise matrix set Set 1 Set 2 Set 3
1 Spherical 3.78 Spherical 3.56 Spherical 3.67
2 Pentaspherical  3.11 Gaussian 3.56 Gaussian 3.56
Variogram model . . .
.. 3 Gaussian 2.89  Tetraspherical ~ 3.00  Tetraspherical  2.78
rank position
4 Tetraspherical  2.89 Exponential 2.56  Pentaspherical = 2.67
5 Exponential 2.33  Pentaspherical  2.33 Exponential 2.33
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Table 8. Results of variography parameter values from geostatistical analysis.

Date Variogram Range Nugget Semi
model (km) variance/sill
94 March 2008 Spherical 38.974 231.19 931.97
Gaussian 38.974 367.72 993.35
. o =4
3 February 2009 Spherical 14.714 205.05 652.8
Gaussian 12.592 272.31 654.89
3 March 2009 Spherical 11.949 127.07 861.10
Gaussian 10.245 252.02 862.73
. 1 G S 33
18 September 2011 Spherical 18.956 385.66 658.18
Gaussian 16.772 429.15 662.97
Lo FERR D T g
13 December 2011 Spherical 7.144 585.02 1069.82
Gaussian 6.085 660.12 1070.51
. 4 ¢ e
7 March 2012 Spherical 13.535 272.92 3776.92
Gaussian 11.162 719.44 3768.34
. . = .
18 April 2012 Spherical 16.057 44.624 712.594
Gaussian 14.160 150.79 722.88
Spheri . 196.. R
2 May 2012 pherical 9.381 696.38 1078.51
Gaussian 8.350 751.74 1084.02
i 14.55 38.02 917.
91 August 2012 Spherical 14.557 38.027 917.687
Gaussian 13.317 182.77 941.37

the network used [15]. The higher the density of the
rain gauge network is, the more accurate the spatial
rainfall map produced will be.

The second reason is the storm event selected for
analysis. In this study, the rainfall data were extracted
based on recent flood events on a cumulative, daily
basis covering the years 2008 until 2012. This is to
ensure that the data extracted for analysis are data
with a good response from a hydrological perspective.
However, Othman et al. [4] selected storm events from
the same year. According to the findings of Kamel
et al. [16], the estimated variance and interpolation
system in geostatistical analysis are sensitive to season
and region. As aforementioned, the climate feature in
this study area is influenced by the monsoon seasons.

The different performances between the Spherical
and Gaussian can be explained by how the model
presents the correlation of the semivariogram within
the range value. The Gaussian has high response to
the nugget effect, but the Spherical is not. The nugget
effect contributes to high error, while the model is used
in spatial interpolation process at unmeasured points.
This factor caused the Gaussian to perform less than
Spherical model. Thus, it is important to assess the

variography structure of these two models that is repre-
sented by variography parameters to justify the result.
The variography parameters values of the data
sets for Spherical and Gaussian models are tabulated
in Table 8. The nuggets recorded by Gaussian are
higher than Spherical, but the sill values are not much
different. The range values are higher for Spherical
model. This result shows that the Spherical model has
better variography structure than Gaussian, because
the Spherical has lower nugget and higher range value.
This means that the Spherical has more spatial corre-
lation at longer distance and less measurement error.
By using the variography structure, semivariogram of
Spherical and Gaussian for two selected data sets is
plotted in Figure 4. It shows that the Spherical model
fits the data set slightly better than Gaussian model.
A good spatial rainfall map can be produced by
a good semivariogram structure. Apparently, based
on the semivariogram structure, the Spherical model
is able to produce good spatial rainfall map. Spatial
rainfall maps for the same selected events are generated
and shown in Figure 5. It is found that the spatial
rainfall map produced using the Spherical model is
smoother than with the Gaussian model, especially
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Figure 4. Semivariogram generated by Spherical and Gaussian models: (a) Rainfall data on 3 March 2009, and (b)

rainfall data on 18 April 2012.
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Figure 5. Spatial rainfall map generated by (a) spherical model for rainfall data on 3 March 2009, (b) Gaussian model for
rainfall data on 3 March 2009, (c) spherical model for rainfall data on 18 April 2012, and (d) Gaussian model for rainfall

data on 18 April 2012.

in the area marked with red boundary. The smooth
line in Spherical is produced from the accurate spatial
interpolation. The smooth line justifies that the model
has better spatial interpolation as explained in the
previous paragraph.

5. Conclusion

This study was conducted to present the application
of a Multi-Criteria Decision-Making method, namely
the AHP, to evaluate the performance of a variogram

model in producing the best spatial rainfall map.
Geostatistical analysis was applied to study the spatial
structure of cumulative daily rainfall data in the upper
Klang River basin. Four criteria were determined
as performance indicators of a spatial rainfall map:
root-mean-square error, average standard error, mean
standardized error, and root-mean-square standardized
error, to assess the five variogram model candidates, i.e.
Spherical, Tetraspherical, Pentaspherical, Exponential,
and Gaussian.

The AHP results indicate that the Spherical and
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Gaussian models have good performances to produce
a spatial rainfall map that fulfills the performance
indicators. Two out of three sets of priority weight
used in this study had both these models ranked at
the top place with scores of at least 3.56. Moreover,
the Spherical model was found to be slightly better
than the Gaussian model because all priority weight
sets had similar results that ranked the Spherical model
in the first place. The smoothness of the contour map
represents the spatial rainfall distribution generated by
the Spherical model, justifying its performance.
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