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Abstract 

The nature of routing and scheduling problems for providing services to patients called 

home health care problems would include a remarkable level of uncertainty. These 

uncertainties may be due to the traffic congestion, the accessibility levels to staff 

members, and the service times to the patients. This paper presents a robust formulation 

aimed at the daily/weekly/monthly routing and scheduling of staff members under 

uncertainty for home health care services, which simultaneously optimize the cost factors 

and the service quality measures. Different requirements and preferences of patients, 

diverse vehicles, different skills for staff, temporal inter-dependencies between services, 

Continuity Of Care (COC), and blood sampling requirements are considered to construct 

the Robust Optimization (RO) model. The robust solutions obtained through the mixed-

integer linear programming model are compared to those obtained through the 

deterministic and Stochastic Optimization (SO) model using some randomly small- and 

medium-size generated instances to evaluate the performance of the RO model. Finally, 

we present some efficient managerial insights to substantiate the importance of 

considering uncertainty in the optimization models ending up with proper routing and 

scheduling policies. 
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1. Introduction 

The supply chain of providing home health care (HHC) services consists of the HHC 

center and the patients’ homes as well as the links between them. HHC services help 

patients, particularly the elderly, to recover from hospitalization or safely stay at home 

without redundant hospitalization (Goodarzian et al. [1], Larsson et al. [2]). However, 

performing these services encounters challenges, specifically in terms of logistical and 

transportation aspects (Euchi et al. [3]). Providing HHC services should decrease the 

transportation costs and travel distances to enhance the effectiveness of services. 

Typically, an HHC network usually includes caregivers, patients, and medical service 

requirements (Shahnejat-Bushehri et al. [4], Shiri et al. [5], Ziya-Gorabi et al. [6]). 

Insufficient capacity of hospitals, increasing life expectations, high disbursements for 

hospitalization, and increasing elderly population are the core aspects of the growing 

demand for HHC services. Therefore, providing HHC services has attracted more 

attention of researchers and business practitioners. Figure 1 demonstrates the ratio of old-

age dependency in some European countries from 2010 to 2050 (Tarricone and Tsouros 

[7]). For instance, in Canada, health care costs have surpassed the rate of GDP growth 

(Oladzad-Abbasabady and Tavakkoli-Moghaddam [8]). 

[Please insert Figure 1 about here] 

Vehicle Routing Problems (VRP) and Nurse Rostering Problems (NRPs) are well-known 

Operations Research problems. These problems form the basics of Home Health Care 

Routing-Scheduling Problems (HHCRSPs) (Li, Xiang and Szeto [9]). To address 

practical requirements, HHCRSP has been extended to cover daily/weekly/monthly 

planning horizons. Multi-period models have been mostly applied in short- and medium-

term planning (Rivera and Zapata [10]). The COVID-19 pandemic has also highlighted 

the significance of HHC, as it has led to an increased demand for hospital services and 

redirecting medical, health and capacity resources nationwide (Almorox et al. [11], Green 

et al. [12], Kang et al. [13]). 

Making decisions on the routing of staff members and scheduling the required services 

are the most important operational (i.e., short-term) decisions in managing the logistics 

network. Although the costs of making short-term decisions are meager compared to 

strategic (i.e., long-term) decisions, the incorrect decisions would result in patient 
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dissatisfaction, reducing the demands, and increasing the costs in a long time. Recently, 

Grieco et al., investigated the OR approaches and resolution methods to study different 

decision problems in HHC. They studied the objective of the study, decisions to be made, 

planning horizon, modeling approach, solution method, and performance aspects, to 

recognize the decision hierarchies, and utilize the appropriate OR approaches (Grieco et 

al. [14]). 

Since many HHC centers offer a wide range of services, they must hire staff members 

with diverse skill levels. They have to consider the skill level of staff members and the 

desired time window for patients and staff members. Each required service needs a 

special skill while patients prefer to receive services in the convinced time window 

within the desired period for staff members. A single staff must carry out each required 

service by one patient. Some temporal interdependent services should be performed at the 

same time or with a given sequence. While the services are often scheduled by trial and 

error to comply with the required interdependency between services, the planning may 

have poor quality. There are two types of interdependent services in our proposed 

problem. The first one covers all services requiring two staff members in a single time, 

commonly referred to as simultaneous services (e.g., bathing and lifting a disabled 

patient). The second one includes the services that should be performed in a specific 

order (e.g., giving medication to a patient at a specific time before a meal).  

As another real feature in providing HHC services, continuity of care (CoC) is a situation 

for long-term perspectives, in which the favorite staff member of a patient should provide 

his/her required services to make more sincerity between them. It is assumed that most 

patients have received some of their requirements in the past days/weeks/months; 

therefore, they are pretty familiar with the staff members. The routing and scheduling 

problem with the aforementioned real features differ significantly from the well-known 

multiple traveling salesman problem with time-window limitations. A patient could also 

require multiple dependent/independent services, the patients' requirements must be well-

matched with the skills of the staff members, and this is also possible that staff would 

visit a patient several times.  

Performing a service by multiple staff might be interpreted as kind of collaboration. This 

collaboration could be investigated from two aspects: First, more than a single staff could 

implement a service because it would take less time to be finished. Although 
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collaborating between staff members might reduce the total service time and increase the 

accessibility level of staff members, it might increase the traveling time due to adding the 

possibility of using more staff members to do a single service. Therefore, the 

optimization model could tradeoff between more collaboration leading to less service 

times and more traveling times. Adding this feature might remarkably improve the 

solution as the staff members can perform more services in less time with a reasonable 

increase in traveling time. Second, more than a single staff must perform some services.     

There are many disruptions in providing health care services (e.g., increasing traffic and 

density of vehicles on some routes and inaccessibility to staff members at some 

scheduled times). There are continuously hourly/daily changes arising from dissimilar 

and dynamic patterns of traffic conditions, poor prediction of the traffic conditions, and 

the weakness of developed models. Lengthy transfer times and inaccessibility to staff 

members are followed by delay times to provide services. This may refer patients to other 

health centers, leading to disruption for providing required services. The model should 

consider the changes to increase obtained solutions' efficiency and be closer to reality. 

Transfer time between two nodes and accessibility levels of staff members, as the most 

important sources of uncertainty in HHC delivery networks, may not be apparent at the 

time of decision making. Depending on the uncertainty level of stochastic parameters, 

decision-making on the optimal routing pattern and scheduling of required services 

would also change. 

There are several approaches encountering uncertain parameters in the optimization 

models. If the problem is addressed from the probabilistic point of view, we would like to 

tackle this challenge through a two-stage Stochastic Optimization (SO) model, which 

involves making decisions in two stages. While most papers take static information, real 

applications are stochastic as there is no perfect information. The main difference 

between stochastic and deterministic programming is the existence of uncertainty in some 

input parameters. As one of the efficient methods for incorporating uncertainty into the 

models, the scenarios has been successfully applied in various fields.  

A scenario can be defined as a hypothesis about the future built based on possible states 

of random parameters. The decision-maker takes the first-stage decisions in the current 

time, while the second stage decisions are made during some future periods, after taking 

the first stage decisions and observing the random events. The second-stage decisions are 
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supposed to compensate for the likely adverse effects of the first-stage decisions. It is not 

obligatory to make both the first- and second-stage decisions simultaneously, and it is 

possible to delay the second-stage decisions until random events take place. In SO, the 

uncertain parameters are incorporated into the optimization model using the probability 

distribution function. Therefore, the routing variables, independent of the type of 

scenario, are regarded as first-stage variables, while other variables depend on the 

conditions of a particular day. Since such variables could be postponed until the traffic 

conditions and the accessibility level of staff members are determined, they are 

considered second-stage variables. The constraints can be categorized into two groups of 

first-stage and second-stage constraints. The first-stage constraints involve only the first-

stage variables, in which the values of these variables are the same in all scenarios. The 

latter includes the first- and second-stage decision variables. 

We develop a robust MILP model considering heterogeneous staff members, possible 

interdependencies between services, the limitations associated with getting the blood 

samples, and various transfer times depending on vehicle speeds. To the best of our 

knowledge, the proposed method would be the first attempt to incorporate all limitations 

in a model under uncertainty. The transfer time is affected by the type of vehicle used by 

staff members. Different weather conditions or traffic situations of the service area, 

damaging the vehicle, as well as finding a parking lot for vehicles may cause uncertainty 

in the transfer times. Another important source of uncertainty is the accessibility level or 

efficiency of staff members. It means that staff may not be present at all their scheduled 

times, and the accessibility level of staff members is also different due to different 

efficiency on different days. The routing of staff members must be decided before 

determining the street traffic conditions and the accessibility level of staff members. 

Since we focus on Robust Optimization (RO) model, the respective model is described in 

more detail, as follows. 

1‌.1‌ RO model 

The efficient design of the staff member routes and scheduling of services are dynamic 

decisions whose effects might last for a few periods after providing a service, during 

which some situations may change. Since some important parameters may change during 

a time interval, the design of robust decisions would be vital as it might efficiently affect 
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on providing services. In general, given that these fluctuations may occur abruptly, 

making changes in the routing of each staff and schedule of services are impossible 

within a short time interval. Therefore, the supply chain should be robust concerning 

uncertain parameters. A few recent papers have studied the variability of transfer times 

for routing problems in the RO framework to control the uncertainty level entailed into a 

problem. In RO programming, the methods have been raised for converting the planning 

problem with uncertainty into an equivalent deterministic problem, which are referred to 

as robust counterpart problems (Ben-Tal et al. [15]). 

A robust supply chain is a competitive advantage for many companies, which assist them 

in managing inevitable increasing fluctuations. Since this logistics network might be 

involved with large amounts of uncertainty, it could remarkably influence the routing and 

scheduling decisions.  With a bit of change in the nominal data, not only the deterministic 

solutions may not be optimal, but also there is a high possibility for being infeasible. 

When the values of parameters are different from their nominal data, it could violate 

some constraints and the optimal solution obtained for nominal data is not optimal or 

even feasible. Therefore, these decisions coming out of an RO model might be pretty 

helpful to handle increasing unavoidable fluctuations.  

A robust feasible/optimal solution is also a feasible (or near feasible)/optimal (or near-

optimal) solution under all scenarios. A robust (feasible) solution, especially in a problem 

with short-term decisions, is quite sensitive to data changes. In general, the RO 

overcomes some drawbacks in SO, which increases the intention for using the RO model. 

In the SO model, it is assumed that the values of stochastic parameters are determined 

through known probability distributions. The following points would be some critical 

reasons that decision-makers prefer the RO model instead of SO one: 

1. In reality, finding enough historical data for the uncertain parameters may be 

problematic,  

2. Since the SO solution is feasible for all corresponding scenarios in the 

optimization model, it could be infeasible for other realizations out of the 

respective scenarios when the solution is applied for decision-making in the real-

time situation or online simulation.   
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3. Scenario-based SO is most often applied for representing uncertainty. Therefore, 

a large number of scenarios may result in large-sized, computationally 

challenging problems.  

RO theory offers a framework to control the uncertainty that could immunize the optimal 

solution for any possible realization of the uncertainty in a given bounded uncertainty set 

(Ben-Tal and Nemirovski [16]). However, there is usually no information about the 

probability distributions in RO, and only the intervals including lower and upper bounds 

are available. Hence, the RO model deals with unknown real data and their probabilities 

in which the uncertain parameters are estimated through discrete or continuous intervals. 

Moreover, unlike the deterministic optimization (DO) model, whose goal is to determine 

the best solution for one specific scenario, the RO model looks for a feasible solution (or 

a set of solutions) concerning all scenarios. Therefore, we seek optimal (or near-optimal) 

solutions that are most likely feasible. The solution feasibility in the RO model is 

guaranteed in all situations with a slight disregarding of the objective function. The 

remainder of the paper is organized as follows: Section 2 presents a literature review on 

the deterministic routing and scheduling problem in providing HHC services. A 

comprehensive description of the parameters and decision variables is proposed in 

section 3. Then, section 4 is devoted to computational results by which the efficiency of 

the models is assessed. Finally, we conclude and recommend some possible suggestions 

for future researches.  

2. Literature review 

We classify all reviewed papers into three parts: part 1) DO models, part 2) models with 

considering uncertain parameters, including SO and RO models to find routing and 

scheduling of staff members. A comprehensive review of the routing and scheduling 

problems in providing HHC services was carried out by Fikar and Hirsch (2017). They 

classified all papers in different perspectives (e.g., different aspects of problem definition, 

dynamic or stochastic settings, objectives, constraints, and solution methods) (Fikar and 

Hirsch [17]). Furthermore, Grieco et al., explored the OR and resolution methods to 

review decision problems in HHC. The objective, decisions, planning horizon, modeling 

approach, solution approach, and performance aspects were thoroughly examined to 

identify the decision hierarchies, and the OR approaches (Grieco et al. [14]).  
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Part 1: DO  

Mankowska et al. (2014) presented a mathematical formulation to optimize the daily 

planning of staff members.  The objective function minimized the total traveling 

distance and total delay, and maximal delay in providing services (Mankowska et al. 

[18]). Decerle et al. (2018) presented a mixed-integer programming model with a hard 

and soft time window for patients and synchronization constraints. The objective was to 

minimize total transfer time and the penalties for not regarding the time windows of the 

patients and the synchronized visits (Decerle et al. [19]). Aliza et al. (2019) presented an 

exact optimization method depending on logic-based benders decomposition. Their goal 

is to schedule multiple visits during a given time horizon and maximize the number of 

served patients while considering patient requirements, travel time, and scheduling 

constraints (Heching et al. [20]). 

Entezari ans Mahootchi (2021) [21] developed a DO model for the daily staff routing and 

service scheduling considering various qualifications and different vehicles for 

employees, different requirements, temporal interdependencies between services, CoC, 

and blood sampling requirements. The total transfer time, total tardiness in providing 

services, total overtime of the staff members, total violation of CoC, and violation of the 

staff’s time windows were minimized. They have also presented a meta-heuristic solution 

scheme for finding the near-optimal solution in the deterministic version of HHCRSP 

published in Scientia in year 2021 (Entezari and Mahootchi [21]). Since an RO model is 

actually considered a deterministic model, it can be solved by all solution methodologies 

developed for deterministic ones and our proposed solution scheme in recently published 

work in Scientia would be used for solving the RO model as well. Demirbilek et.al. 

perform routing and scheduling for multiple nurses to maximize the number of visits. 

They proposed a heuristic based on several scenarios including current schedules of 

nurses, the new requests, and random generated future requests (Demirbilek et al. [22]).  

Since the sub-problem in the HHC includes a VRP, as an NP-hard problem, the HHCRSP 

is also an NP-hard problem. Hence, exact methods need a significant amount of time to 

solve large-size problems. As a result, the majority of research studies have adopted 

heuristic/metaheuristic to solve large-size instances (Martin et al. [23]). Grenouilleau 

et.al. presented the HHCRSP for the assignment and routing of some visits during a 

week. The solution method is based on a set partitioning formulation and a large 
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neighborhood search framework (Grenouilleau et al. [24]). Moreover, Cinar et.al. 

assigned priorities to patients so that the priorities of unvisited patients increase 

exponentially by day. Their goal is to maximize the overall priority of the patients while 

minimizing the total traveling time. They developed an adaptive large neighborhood 

search algorithm and a matheuristic to generate near-optimal solutions. The authors have 

addressed a real-world problem where the nurses are responsible for checking on patients 

either by visiting their homes or making phone calls. If some patients cannot be visited at 

home during the planning horizon, they are checked upon through phone calls (Cinar et 

al. [25]). In another study, one decision support framework is presented considering the 

real needs of HHC services under the synchronization between staff and home delivery 

vehicles' visits, multiple visits, multiple routes by the vehicles, and pickup/delivery visits. 

They developed a mixed integer programming model a hybrid genetic algorithm is 

proposed to solve the model (Nasir and Kuo [26]).  

Furthermore, a HHCRSP modelled considering outpatient services and time windows, 

skill requirements, and working regulations. The problem is formulated as a mixed 

integer convex nonlinear programming model to minimize the total travel costs and total 

waiting penalties of out-patients, and maximize the overall benefit of patients’ preference 

satisfaction. They developed a hybrid genetic algorithm to solve the problem (Li et al. 

[9]). Also, Liu et.al, proposed a HHCRSP with the consideration of the time windows, 

qualifications of caregivers, synchronized visits, lunch breaks, and flexible departure 

modes of caregivers. They modeled the problem with a mixed-integer programming 

model and developed four hybrid metaheuristics (Liu et al. [27]). Decerle et.al. proposed 

a mixed integer programming model of the multi-depot HHC assignment, routing, and 

scheduling problem without previous assignment of caregivers to the centers. They 

presented a matheuristic-based approach with different assignment strategies (Decerle et 

al. [28]). Yadav et.al. presented a framework to address the problem of HHC routing and 

scheduling considering patient's preferences regarding the gender and language of the 

caregiver, time window constraints, and multiple visits for certain procedures. The model 

attempts to maximize the number of patients served without violating a predetermined 

maximum allowed contact limit and partially accommodating patient's requests. To 

tackle this, the researchers proposed two different heuristic procedures based on mixed-

integer programming decomposition (Yadav and Tanksale [29]). 
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Frifita et al. have explored the synchronization and temporal precedence between 

interdependent services (Frifita and Masmoudi [30]). In another study, Mascolo et al. 

have focused on the scheduling and routing of health workers to provide multiple 

services to patients in their homes. They have developed a system that assigns patients 

requiring services to workers based on their skills and optimizes the routes for the health 

workers (Di Mascolo et al. [31]).  

In addition, Decerle et al. developed an approach based on matheuristic algorithm to 

solve the problem of assigning visits and health professionals (Decerle et al. [28]). 

Khodabandeh et al. developed a model for staff routing and scheduling by reducing cost 

aspects and minimizing the difference between the nurses’ potential skills and their actual 

service schedules. Another feature is considering staff members’ and patients’ 

preferences. Nurses’ preferences include setting a time window for nurses’ availability, 

limiting working hours for nurses, distributing tasks equally among nurses, rejecting 

patient visits, and limiting hard tasks (Khodabandeh et al. [32]). Many researchers also 

considered accepting new patients while conserving COC for patients (Grenouilleau et al. 

[33]).  

Another paper presented a bi-objective model for HHCRSP, which minimized the overall 

service time and the total tardiness. First, a non-scalar method was provided to achieve a 

first solution. Then, two multi-objective evolutionary algorithms were presented to solve 

the problem (Belhor et al. [34]). According to the service mode of family doctor contract, 

a multi-period problem of combining the home health care and outpatient services was 

presented for multiple days. The required services with fixed frequencies and different 

preferences for various dates were taken into account. The authors proposed a mixed-

integer nonlinear and convex model considering the patients’ requirements date 

regulations and staff members’ working regulations. The objective minimized the total 

operating costs and maximizes the patients’ preference satisfaction. A hybrid tabu search 

algorithm was used to solve the problem (Xiang et al. [35]). Another paper considered 

skill requirements, multiple time windows, and staff members’ working times. The 

authors proposed a new mixed integer linear programming model to minimize staff 

members’ waiting times and balance their workloads. They presented a two-phase 

approach to solve the problem. The first phase consists of applying a simulated annealing 

based heuristic to generate the routes and assignment of staff members while the second 

https://www.sciencedirect.com/topics/computer-science/evolutionary-algorithms
https://www.sciencedirect.com/topics/engineering/home-health-care
https://www.sciencedirect.com/topics/mathematics/convex-programming
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selected a time window for each patient to ensure the synchronization of simultaneous 

services (Bazirha et al. [36]).  

Another HHCRSP was studied with electric vehicles, for green travel and distribution, 

and synergistic-transport mode. The staff members may use walking, if these vehicles are 

recharging at a station. The authors attempted to find the synthetic-routes, including the 

electric vehicle and walking routes of a staff to minimize the total costs consists of the 

dispatching cost, the transport cost by the vehicles and walking, and the incompatibility 

cost of staff members and patients. They developed a tailored branch-and-price-and-cut 

algorithm based on a set-partitioning model to solve the pricing sub-problems (Yin et al. 

[37]). A multi-period with homogeneous electric vehicles and time windows was studied 

to minimize the total costs including the fixed cost of employing staff members, the 

energy charging costs, and the costs of unserved service requirements. The authors 

considered three charging technologies and developed an adaptive large neighborhood 

search metaheuristic to solve the mathematical model (Yazır et al. [38]). 

Part 2: Models with Considering Uncertain Parameters  

The first idea of linear programming with probability parameters was formulated by 

Dantzig (Dantzig [39]). The method was to solve a deterministic programming problem 

in which the stochastic parameter was replaced with the expected value. Stochastic 

service times were studied by Yuan et al. (2015), in which the objective was to minimize 

a combination of costs and penalties for late arrivals (Yuan et al. [40]). Hewitt et al. 

(2016) [41] demonstrated that a long planning horizon can save significant amount of 

transportation costs and staffing levels. They considered a deterministic setting, where all 

requests are specified in advance, and the routing cost of monthly planning is compared 

with the cost of weekly planning. With uncertainty in planning for a long time horizon, a 

presented method anticipates future unknown patient requests (Hewitt et al.[41]). 

Furthermore, Liu et al. (2018) developed a mathematical model for a home-caregiver 

routing and scheduling problem with stochastic travel and service times. A chance 

constraint was also incorporated to confirm the probability of promptly providing a 

service. The objective was to minimize the total expected operational cost of selected 

routes and the penalty for unvisited patients (Liu et al. [42]). Another paper studied an 

HHC routing problem with stochastic travel and service times. First, some approaches 

including hybrid genetic and simulated annealing algorithms were implemented to solve 

https://www.worldscientific.com/doi/10.1142/S021759591650041X
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the DO model resulting from the SO model with recourse. Finally, the stochastic model 

was solved by the a heuristic algorithm based on simulated annealing (Shi et al. [43]). 

A two-stage stochastic mixed integer programming model considered the uncertainty in 

travel and service times. The model considered the decisions on districting, staff 

dimensioning, resource assignment, scheduling, and routing. Districting and staff 

dimensioning were taken as the first stage, and assignment, scheduling, and routing were 

defined as the second stage decisions. The proposed algorithm relied on a matheuristic-

based method calling on different mixed integer models (Nikzad et al. [44]). A stochastic 

programming model with recourse was proposed considering uncertainty in traveling and 

service times as well as synchronization of services. The authors aimed to minimize the 

travelling cost and the expected value of recourse defined as a penalty cost for delaying 

in patients’ services and a remuneration for caregivers’ overtime. While the DO model 

was solved by CPLEX, the genetic algorithm and the general variable neighborhood 

search based heuristics, the stochastic programming model was solved by Monte Carlo 

simulation in the GA (Bazirha et al.[45]).  

A mixed integer linear model was developed for a daily cross-regional routing and 

scheduling problem with stochastic service times. Some real constraints such as patient 

time windows and skill matching were considered. A hybrid simulated annealing 

algorithm was used to solve the model (Du and Zhang [46]). Wang et al. [47] also 

proposed SO methodologies for a staffing and capacity planning problem for HHC 

services. Their goal was to minimize the total cost of staffing, capacity allocation, over-, 

and under-staffing. The authors presented two-stage SO and distributionally RO 

approaches considering two types of decision-makers. To enhance the applicability of the 

nonlinear RO model, they derived equivalent mixed-integer linear programming 

reformulations (Wang et al. [47]).  

Furthermore, a HHCRSP considered patients’ priorities and times uncertainty. A fuzzy 

multi-objective model was developed to maximize the total priority of patients and 

minimize the total service cost. To solve the model, a discrete multi-objective grey wolf 

optimizer was proposed (Li et al. 48]). Another work addressed a multi-center, multi-

objective and stochastic problem considering the caregivers’ working time, patients’ 

requirements and resource constraints. The total operation cost and penalty cost for 

earliness and delay services were minimized. A chance-constrained programming model 

https://www.sciencedirect.com/topics/computer-science/stochastic-programming
https://www.sciencedirect.com/topics/engineering/simulated-annealing-algorithm
https://www.sciencedirect.com/topics/engineering/simulated-annealing-algorithm
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and a cooperation evolutionary algorithm using stochastic simulation were developed 

(Ma et al. [49]). A novel home health care routing problem was studied in high 

population density areas with stochastic service time. The objective function was to 

reduce travel and waiting times for staff members or elderly people. Considering human 

relationships were improved participants’ satisfaction. The authors employed the Markov 

decision process and chance-constrained programming. To solve the problem, the Q-

learning and the ant colony optimization algorithms were used (Zhang et al.[50]). 

Another integrated multi-period staffing, assignment, routing, and scheduling of staff 

members was studied under uncertainty. The aim was to construct a weekly schedule to 

minimize staff members’ usual and overtime costs. The authors proposed a mixed-integer 

program for the deterministic problem. Afterwards, uncertainty was incorporated in 

service and travel times and develop a robust counterpart using interval and polyhedral 

uncertainty sets. They developed a logic-based Benders branching-decomposition 

algorithm to solve the DO and RO models (Naderi et al. [51]).  

The first systematic methods to solve robust problems were introduced in the 1970s. In 

1973, Soyster considered convex programming with the Set-inclusive constraints 

(Soyster [52]), in which the worst-case approach was used to solve linear programming 

with uncertainty in the columns of the coefficient matrix. Ben-Tal & Nemirovski (Ben-

Tal and Nemirovski [53], Ben-Tal and Nemirovski [54]) and EL-Ghaoui (El Ghaoui et al. 

[55]) took an important step in RO theory by presenting models for uncertain linear 

problems with ellipsoidal uncertainties and solving the counterparts of the nominal 

problems as conic quadratic problems. Lanzarone and Matta (2014) consider stochastic 

demand in providing HHC services to generate daily robust solutions regarding overtime 

for staff members and continuity of care for patients (Lanzarone and Matta [56]). Also, 

another RO model for a HHCRSP is considered with uncertain travel and service times. 

They presented meta-heuristics and Monte Carlo simulation to solve the models (Shi et 

al. [57]).  

In this paper, using the RO approach introduced by Ben-Tal and Nemirovski, we develop 

a robust MILP model considering stochastic transfer time and accessibility levels to staff 

members, considering different skills for staff members and different requirements for 

patients with their preferences. The model considers overtime periods and the meal-time 

for staff members, temporal interdependencies between services, and time windows for 

https://www.sciencedirect.com/topics/mathematics/evolutionary-algorithm
https://www.sciencedirect.com/topics/computer-science/stochastic-simulation
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staff members and patients. In addition, there are no important limitations to reflect 

different blood, break, and depot centers for each staff. Furthermore, all services must be 

performed by one skilled staff member. Other medical limitations concerning returning 

all blood samples to the laboratory in a given time frame are also applied to the model. In 

general, we try to present an integrated model under uncertainty considering real features. 

3. RO model 

The first part of this section presents the problem definition, possible scenarios, index 

sets, parameters, and decision variables. Then, a mathematical formulation for the RO 

model is proposed, which concentrates on the density of the streets and the possibility of 

low service levels as uncertain parameters. Different service levels of the staff members 

may be caused by different efficiency on different days, holidays, and a problematic 

event. The transfer times and the accessibility levels to staff would be quite important in 

scheduling staff members. Staff do not often desire to wait until the start time of patient 

is started and also don’t intent to stay in the patient’s home after the end time of his/her 

time window. He would like to do the respective tasks exactly within the patient’s time 

window because he/she can present more services in a certain period. Furthermore, 

patients would really like to receive their services on time without any delay. 

3.1. Problem definition  

The HHC logistics network is described on the completed graph, where the set of nodes 

includes the HHC center and patients’ homes, whereas the set of edges compose all links 

between two nodes. Staff members are dispatched from the HHC center to the patients’ 

homes to provide services. Each node denotes one service requirement by one patient in 

our model. There is only a single service in each node, which a single staff must perform. 

The logistic network is represented in Figure 2. 

[Please insert Figure 2 about here] 

     We aim to determine the routing of staff members and scheduling the requirements in 

a specific daily/weekly/monthly time to minimize the costs for transfer times and some 

penalties concerning the quality of services. For example, we minimize the transfer time 

regarding the vehicle’s speed and the distance traveled by staff. The total delay in 

providing services should also be reduced for on-time responsiveness to services. Each 
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service required by one patient should be performed in a specified time window by one 

skilled staff (i.e., the staff members are heterogeneous). Patients are classified into two 

groups regarding their requirements: patients demanding single services and those 

demanding interdependent services (e.g., giving medication to a patient before/after a 

meal with a predetermined time interval). We consider some assumptions as follows:  

1. All staff members must start their routes from the HHC center (this assumption 

can be relaxed in our models with minor changes).   

2. All possible pairwise nodes are interconnected in both directions. 

3. Since the staff members have different types of vehicles, we consider different 

speeds for staff members based on his/her vehicle.  

4. Each node associates with one required service, which must be performed by only 

one staff member (i.e., in interdependent services mode for a patient, we consider 

multiple nodes with zero distances for these services.  

5. Four dummy nodes, 0, n+1, blood, meal, are defined, denoting the routes' initial 

and end nodes, the end node for returning the blood samples, and the end node for 

a lunch meal, respectively.  

Before explaining the problem formulation, we present a preparation step. In general, a 

patient may require multiple requirements of one type or several types, which may be 

interdependent or independent of each other. We define a requirements matrix denoting 

all required services such that each row of the matrix has only one identity element to 

integrate all situations into a model. While each matrix row represents only one service 

requirement, there might be different rows regarding one patient. If a required service by 

one patient requires more than one staff member, the service is transformed to some 

dummy services called simultaneous services whose numbers are equal to the number of 

required staff members. Therefore, each row corresponds to one node of the network 

representing a service requirement of one patient. Although the initial, end, blood, and 

meal nodes would be operationally in different locations, we assumed that all dummy 

nodes are located in the HHC center without loss of generality. Our proposed model 

could be implemented in all situations, including similar and dissimilar locations for 

these nodes.  
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3.2. Defining scenarios  

In our model, a specific scenario occurs when the traffic conditions and the accessibility 

level of staff members on a particular day are identified. It means that such information 

was not available at the time of decision-making, where the sequences of visits should be 

determined. However, HHC centers should plan staff members before identifying the 

exact value of uncertain parameters. It must be decided about planning of staff members 

before detecting the traffic conditions and accessibility level of staff members. When the 

requests are daily/weekly/monthly received, there is no perfect information about the 

exact value of uncertain parameters, whereas the route of each staff should be set just 

before the real conditions are known. It should be noted that the planning of each staff 

has to prepare till night to coordinate staff members with the scheduled plan. 

3.3. Problem formulation  

The index sets, parameters, and decision variables before proposing the RO model are 

explained in Table 1.  

[Please insert Table 1 about here] 

For simplicity, we give larger indices to the nodes whose required services have to be 

carried out later than other services for interdependent services. If max min 0ij ij   , the 

start time of performing the required service by node j should be no smaller than min

ij  

and no larger than max

ij after the start time of performing the required service by node i. in 

addition, if max min 0ij ij   , both required services at nodes 𝑖 and 𝑗 must be started at the 

same time. For all simultaneous services belonging to 𝑃𝑠𝑖𝑚, the required services can be 

started with the attendance of all related staff members. Furthermore, if a staff member 

arrives at the node i beyond the upper limit of the pertinent time window (𝑙𝑖), we consider 

a penalty in the objective function based on the period between w

ivt  and 𝑙𝑖. On the 

contrary, if a staff arrives at node i before the lower bound of the pertinent time window 

(𝑒𝑖), the staff must wait until 𝑒𝑖; otherwise, the service can be started immediately.  
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3.4.The RO formulation 

The deterministic and the corresponding uncertain linear optimization models proposed 

by (Ben-Tal and Nemirovski [53]) and (Ben-Tal and Nemirovski [54]) are written as:  

min

. .

cx d

s t Ax b




 (1) 

min

. .

, , ,

cx d

s t Ax b

c d A b U







 (2) 

     where the parameters c, d, A, b vary in a certain uncertainty set U. A vector x is a robust feasible solution if it satisfies all realizations of the constraints from U. Ben-Tal and Nemirovski specify the robust counterpart of the problem as 
 ( , , , )sup :

min
, , ,

c d A b Ucx cx b Ax b

c d A b U


    
 
   

(Ben-Tal and Nemirovski [58]).  

An optimal solution satisfies all realizations and confirms an optimal objective value not 

worse than cx , which is a semi-infinite linear problem and might be polynomially 

unsolvable. However, for a wide variety of compact, convex uncertainty sets, the RO 

model is a computationally tractable convex mathematical problem (Ben-Tal and 

Nemirovski [59]), (Ben-Tal and Nemirovski [54]), (Ben-Tal et al. [60]).  

     The transfer time and the accessibility to staff members are uncertain parameters, 

which are assumed to vary in specified closed bounded boxes (Ben-Tal et al. [15], Ben-

Tal et al. [60]). The general form of this box can be denoted as follows:  

,  : , 1,...,n

Box t t tU R t n        (3) 

    where �̅�𝑡 is the nominal value of the 𝜇𝑡 and the positive numbers 𝛾𝑡  signify 

‘‘uncertainty scale,” and  >0 represents the ‘‘uncertainty level”. If t t  , the box 

comprises t  which the largest size of the relative deviation from the nominal data is 𝜌. 

Ben-Tal et al. demonstrate that in a closed bounded box, the robust counterpart problem 

can be effectively transformed into a tractable model considering a finite set of the 

extreme points of BoxU instead of BoxU in model (2). Therefore, we propose the RO model 

with uncertain transfer times and accessibility levels of staff members given by box sets 

as follows:  
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(28) 

Constraint (5) consists of five components, which are explained as follows:  

Component 1: All staff members' total time transferred between locations to provide the 

requirements: the transfer times enormously depend on the type and speed of the vehicles 

used by staff members.  

Component 2: The total delay occurred in providing service requirements. If the staff 

member's arrival time at the patient's home is larger than the upper bound of the related 

time window, a penalty cost is considered in the objective.  

Component 3: The total overtime of the staff members: if the conditions of a particular 

day led to having overtime for staff in providing services, we consider a penalty cost in 

the objective function.  

Component 4: The total violation of CoC: if a staff member, different from the favorite 

staff of the patient, performs the required services, a penalty cost corresponding to the 

service duration is imposed into the objective; otherwise, we consider no penalty cost in 

the objective function. 

Component 5: The violation of the staff’s time windows: it is preferred that all services 

should be carried out within the desired time windows for staff members.  

Constraint (6) makes sure that the route of each staff member starts and terminates in the 

HHC center. Constraint (7) is a flow conservation constraint, ensuring that each staff 

member must leave the node after performing its required service. Constraints (8) 

specifies that each required service is performed to exactly one staff member. Constraint 

(9) enforces that a staff member can perform the required service if she/he has the skill 
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corresponding to this service. Constraint (10) indicates that every staff member must visit 

the meal node. Integrality restrictions on the binary variables are guaranteed by constraint 

(11).  

Constraints (12), (13), and (14) determines the start times of the services regarding the 

service duration and the transfer times between two nodes. Constraints (15) and (16) 

specify the start times of the services complying with the time windows of the patients. 

Although the lower bounds of the patients’ time windows are considered hard constraints 

(i.e., they must not be violated), the upper bounds are considered soft constraints (i.e., 

they could be violated). Constraints (17) and (18) ensure the bounds on time distances 

between two interdependent services. If both the minimum and maximum time distances 

of two interdependent services are zero, these services must be performed 

simultaneously. Constraint (19) specifies a limit on the total working time for a staff 

member. The total overtime of each staff member considering the contract working time 

is also determined by constraint (20).  

Constraints (21) and (22) consider the desired time windows of staff members as soft 

constraints. If the time window for a staff member is violated, the sum of 𝑙𝑡𝑤𝑣 and 𝑢𝑡𝑤𝑣 

are taken as penalty costs in the objective function. The last three constraints are related 

to blood sampling requirements. Constraint (23) enforces that whenever a staff member 

takes at least one blood sample, he/she has to visit the node blood before lblood. Due to 

medical reasons, Constraint (24) makes sure that the staff v V  returns to the dummy 

destination node blood before the upper bound of its time window. Constraint (25) 

ensures that the node blood is visited after taking the last blood sample. Constraints (26) 

and (27) demonstrate the variations of the accessibility level of staff members in a 

specified closed bounded box. Non-negativity restrictions on second-stage decision 

variables are enforced by constraint (28). 

Our main goal from providing SO and RO models with real-world constraints is to 

develop comprehensive models from stochasticity and robustness point of views. 

Furthermore, through finding EVPI and VSS, the deterministic and stochastic models 

could be compared to each other. We have not seen such comprehensive model in the 

literature to be comparable to our proposed models.  
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4. Computational experiments  

In this section, after introducing the dataset and presenting the numerical results, we 

analyze the models' solving results.  

4.1. Definition of the dataset and input parameters  

Whereas there are no valid available benchmarks to compare the models, we have 

inevitably generated some instances with small- and medium-sizes to denote the resulting 

solution's efficiency. All numerical results are achieved using a 2.40 GHz Intel Core i5 

CPU and 4 GB of RAM on a laptop with a 64-bit operating system. In addition, the 

software GAMS is used to solve the model while all results are extracted within 60000 

seconds of CPU time. Two different datasets, are defined to evaluate the RO model, in 

which the actual number of patients is equal to 7 and 10, respectively (Table 2). Five test 

instances with various values for input parameters are generated for each of these sets.   

[Please insert Table 2 about here] 

The transfer time should be obtained based on the type of vehicle and its corresponding 

average speed, and the distance matrix. The distances traveled between all pairwise nodes 

are generated using a uniform distribution function. This function has a range between 0 

and 2000 and is determined by Euclidean distance calculated from the nodes’ 

coordinates. The distance matrix (time-traveling matrix) is first determined based on the 

Euclidean distance between the nodes. Then, transfer times can be calculated as formula 

(29): 

0. , , ,ijv v ijtt f d i j P v V     (29) 

where 𝑡𝑡𝑖𝑗𝑣 is the transfer time between nodes i and j traveled by staff member v, 𝑑𝑖𝑗 is the 

traveling distance between all pairwise nodes, and 𝑓𝑣 is the conversion coefficient of 

distance to transfer time (i.e., inversion of speed). The exact value of 𝑓𝑣 certainly depends 

on the fleet types of vehicles. It is also assumed that the transfer time matrix is 

symmetric.  

Collaboration in our models has been considered as interdependent services. If a service 

requires more than a single staff (simultaneously or with a predetermined precedence) to 

be performed, two nodes are considered for such services, which means that there are two 
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services that should be handled by two staff members in a same time window or two 

consecutive time windows. Moreover, since many HHC centers take the remarkable 

significance into account for the second and third performance measures, their respective 

weights in the objective function are considered twice the weights of other sub-goals. The 

coefficients have a noteworthy influence on the obtained solutions. First, we 

implemented different weightings to investigate trade-offs between quality and drawn the 

frontier surface depending on the manager of HHC center. Finally, we achieve these 

values for the coefficients with efficient frontier, as a Pareto optimal solution. We assume 

the maximum difference between lower and upper bounds for the time window of each 

patient is 200-time units. All input parameters are denoted in Table 3, where the random 

numbers are generated within the determined intervals to set the input parameters. 

[Please insert Table 3 about here] 

All related results, including the solutions of the SO model, analyzing the optimal 

number of scenarios, and calculating two performance measure, EVPI and VSS are 

addressed in the c 

4.2. Comparison between the solutions of RO and DO models 

While the routing and scheduling decisions are considered short-term decisions, they are 

of particular importance because their effects may continue after providing services. 

Although the cost of a problem with making short-term decisions is very low compared 

with strategic ones, since improper routing and scheduling may lead to low satisfaction of 

patients and staff members, to reduce the number of applicants, to increase costs in the 

long term. The importance of significant alterations in providing HHC services has 

incited more attention to obtain robust decisions for designing the logistics network. 

To evaluate the efficiency of the RO model, we randomly generate twenty instances with 

two different sizes. Each of the test instances is implemented under three uncertainty 

levels (i.e., 𝜌 = 0.2, 0.5, and 1). First, the DO and RO models are solved under nominal 

data for uncertain parameters. The uncertainty levels are considered the same to analyze 

the performance of two optimization models.  

In the proposed model, the uncertainty set corresponding to each uncertain parameter are 

regarded as * *

0 0 0 0[ min , min ]no alvalue G no alvalue G    such that the robust model is 
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finally feasible. There is a possibility that the decision variables regarding scheduling, 

delay, overtime, and the deviation of desired staff member time windows are updated in 

two models under each realization. However, since the routing of each staff member 

cannot be changed in a short time, it cannot be changed under realization.   

The uncertainty is considered only for transfer times and accessibility level to staff 

members is assumed to be deterministic (
g = 0) to evaluate the effects of uncertainty 

levels on the objective function values. The experimental results under uncertain transfer 

times are reported in Table 4, where the results of the models (using nominal values for 

transfer times) are surveyed under three different uncertainty levels for instances with 10 

real patients. The results of the DO model are compared with the RO model. The branch 

and bound (B&B) algorithm is used in GAMS to solve optimization models. The 

following table represents the optimal values of the objective function (WB&B), the 

relative gap between the lower bound of the objective function values (LB) and WB&B. 

Since WB&B and LB are the same values for all generated instances (i.e., they are solved 

exactly), the relative gaps are equal to 0.0% based on the equality relation 

&( )
Re B BW LB

lative gap
LB


  . As it is illustrated, the last column also denotes the gap 

between WB&B obtained by the RO model (𝑊𝐵&𝐵-𝑅𝑂) and the DO model (i.e., 𝑊𝐵&𝐵) using 

the equation & &

&

( )
100B B RO B B

B B

W W
gap

W

 
  . 

[Please insert Table 4 about here] 

Three modes of uncertainty levels are considered for uncertain parameters in the robust 

model. If the uncertainty level of stochastic parameters is zero, their nominal values are 

considered, and the RO model is equivalent to the corresponding deterministic model 

with nominal values. On the contrary, uncertainty is wholly reflected in uncertain 

parameters when the uncertainty level is assumed to be one. One can distinguish between 

this situation with the most pessimistic situation, and it is planned based on the worst-

case scenario instead of considering the robust solutions with 𝜌=1. This is very 

pessimistic and will not necessarily be occurred in reality, and as a result, the robust 

solutions are practically more efficient than the worst-case scenario. In the robust 

approach, the aim is to decide for the first-stage variables such that the objective value 

has to be minimized under uncertainty. 
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As is expected, the objective function value is increased by considering more uncertainty 

in the minimization problems, which is a regular outcome of adding uncertainty and 

increasing the variables and constraints. According to the table, if the uncertainty levels 

increase, the objective function values also increase in all realizations except for the test 

instance B1 in 𝜌= 0.2 and 0.5 and B2 in 𝜌=0.2. Increasing the uncertainty level considers 

a greater interval than the nominal values and may be caused to the deterioration of the 

objective function values. Increasing transfer times might lead to decreasing delays, 

overtime, and deviation from the desired time window specified by staff members. This 

issue makes the objective function values of the RO model lower than the DO one. The 

experimental results for the RO model under uncertain transfer times and accessibility to 

staff members and the DO model, using nominal values for two uncertain parameters, are 

reported in Table 5. 

In the next step, uncertainty is extended to the accessibility to staff members. We obtain 

more efficient solutions in Table 5 compared to Table 4, considering the uncertainty in 

uncertain parameters. Such a model is closer to reality and is comparable with the two-

stage stochastic programming model presented in the previous section.  

According to the results in Table 5, the RO model has higher objective function values 

than DO model in all cases. A distribution function is approximately considered for 

uncertain parameters in the two-stage SO model, in which twenty scenarios with uniform 

distribution functions are considered. Obtaining perfect information on the distribution of 

stochastic parameters is difficult and time-consuming, and it is impossible in most cases. 

[Please insert Table 5 about here] 

Deterministic solutions may lead to infeasible solutions by taking uncertainty. If only the 

transfer times are uncertain, this event does not happen. Since fluctuating in the transfer 

times only leads to changing the objective function's optimal value and no constraints are 

violated, the deterministic solutions also remain feasible. However, if there is uncertainty 

about the accessibility level to staff members, then the deterministic solutions may not be 

not only optimal but also feasible. Lack of full accessibility to staff members may disrupt 

providing services, and as a result, all patients may not be received their requirement 

services in given time intervals and may lead to problem infeasibility with this number of 

staff members.  For this purpose, outsourcing requirements to other centers (i.e., using 

the staff members outside the health center) or employing additional staff could be used 
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with higher costs to get patients’ satisfaction. As a result, the robust approach is justified 

when the accessibility to staff members and the transfer times is assumed to be uncertain. 

The health centers prepare themselves to cope with a possible worst-case scenario.  

 The RO model determines the routes of each staff member such that they can also be 

used in a possible worst-case of a critical parameter. Therefore, further staff members 

would be employed compared to the DO and RO models. The DO model gives rise to 

more efficient solutions for nominal data, but it may lead to infeasible solutions for many 

other realizations, and the amount of uncertainty is further increased as the uncertainty 

levels increase. With the increasing uncertainty level for the accessibility rate to staff 

members, the infeasibility rate of the DO model also increases. Hence, the application of 

the RO model is entirely justified with increasing uncertainty levels. Numerical 

experiments demonstrate the efficacy of the RO model in controlling uncertainty. 

However, considering the most fluctuation in uncertain parameters, the RO approach 

would be followed with higher costs.  

5. Main achievements and Managerial insights  

The following achievements for our proposed mathematical model would be 

summarized:   

1. The HHC managers would plan more accurate and comprehensive schedules via 

the proposed models, in which the preferences of the patients and staff members 

are taken into consideration.  

2. Since a single staff can provide two interdependent services with serial orders, the 

staff members are efficiently employed, and the total costs might be remarkably 

reduced.  

3. We assure a feasible solution for all problems, in which all service requirements 

are performed on time or with limited delays based on the given time windows for 

patients.  

4. Incorporating the measure of CoC into the model makes the relationship between 

patients and staff members more friendly. Therefore, the service duration might 

be relatively decreased.  

The following managerial insights can be concluded for our RO model: 
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1. Optimum planning: Since we develop a RO model, the HHC centers are prepared 

for the pessimistic event. Although the number of service requirements performed 

by skilled staff members might be decreased, the quality of providing services is 

improved in terms of satisfying patients' time windows and reducing overtime. 

Furthermore, some extra cost might be imposed into the objective because of 

increasing total waiting time for staff. However, it might cause an increased 

satisfaction for patients leading to more benefit in long-term perspectives. 

2. Improvement: HHC centers do not usually have a robust solution once inevitable 

events triggers the guarantee of providing services. To improve the quality of 

providing services, all policy-makers need to be engaged for developing a 

substitute policy to reduce risks particularly for rerouting and rescheduling of 

providing services. 

3. Cost-effectiveness with regard to risk reduction: Since it is not cost effective to 

employ extra human resources for occasional events, the existing resources must 

be efficiently used to avoid spending unnecessary budget. Robust planning 

performance measures are cost-effective, prevent unsatisfactory of patients and 

ensure effective response to service requirements. Although re-planning staff 

members is a time-consuming process, decision- makers can find the most proper 

plan by the model within the shortest timeframe. 

6. Conclusions  

Due to an increasing average population aging and life expectancies, the necessity to 

provide services at homes is felt more than ever. The accidental and unpredictable nature 

of traffic conditions and the accessibility level to staff members on a certain 

day/week/month necessitates finding efficient policies for providing services, called 

home health care (HHC). The main goals of providing HHC services are to control and 

manage some important criteria such as the total traveling times, the number of service 

delays, and the overtime of staff members. Considering uncertainty in the HHC network 

would increase the effectiveness of the policy by properly handling the traffic conditions 

and accessibility level of staff members and subsequently increases the responsiveness of 

HHC firms. Providing HHC services deals with specific skills, different types, and 

speeds of vehicles, consideration of overtime and waiting time, the meal-time period for 
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each staff, predetermined time windows for patients and staff members, Continuity Of 

Care (COC), interdependent required services, and blood sampling requirements.   

We attempted to incorporate all the above-mentioned features into an optimization model 

with consideration of uncertainty. Two optimization models have been extended to cope 

with uncertainty: two- stage Stochastic Optimization (SO) and Robust Optimization (RO) 

models. The first one is designed based on the different scenarios. The traffic situations 

and the availability level to qualified staff members are represented as various scenarios 

for real cases. In the second, the uncertainty is handled using the defined bounds in 

closed boxes, specified by expert or some limited historical data. Moreover, as the RO 

model is used to obtain the policy for the pessimistic scenario, this policy would be 

feasible for all scenarios happening in the future when it is utilized for decision-making 

process in real-time situations.    

We have also demonstrated that taking decision based on the expected value of uncertain 

parameters through a deterministic model does not usually end up with an efficient 

policy. Using some generated instances, we have demonstrated that the decisions with 

consideration of future scenarios and their probabilities or solely a pessimistic scenario 

might be better than the solution obtained using the expected value of uncertain 

parameters. Therefore, a scenario- or pessimistic-based decision-making might be usually 

suitable in the case of providing HHC services.   

To make the presented models reliable for real situations, one can propose stochastic and 

robust formulations when the service time parameter is uncertain. The stochastic model 

can also be studied as a multistage stochastic programming model, which might improve 

the respective policy in real cases. Furthermore, other general forms of uncertainty sets, 

such as ellipsoidal uncertainty sets, may be taken into account in development of RO 

models. A deterministic or metaheuristic solution approach need to be developed to cope 

with the large-scale RO or SO models. In addition, a good forecasting model could be 

extended to predict the traffic congestion or travelling times using the historical data. In 

this situation, the respective scenarios would be generated for the residual terms of the 

forecasting model. These are left for future studies. 
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Figure 1 The ratio of old-age dependency in some European countries (The ratio refers to the estimated 

proportion of individuals aged 65 and above expressed as a percentage of the estimated proportion of 

individuals aged between 15 and 64 (Eurostat, last updated: 17–06–2011)) 
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Figure 2 The logistic network of providing HHC services   
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Table 1 Index sets, Parameters, and decision variables of the model 

Index sets Explanations 

𝑃  Index set of all services required by the patients  

𝑉  Index set of all staff members  

𝑃0 Index set of all nodes on the logistics network; i.e., 𝑃0 = 𝑃 ∪ {0, 𝑛 + 1, 𝑏𝑙𝑜𝑜𝑑, 𝑚𝑒𝑎𝑙}  

𝑃𝑑  Set of pair of nodes requiring timely interdependent services   

𝑃𝑠𝑖𝑚  Set of pair of nodes requiring simultaneous services  

𝑃𝑝𝑟𝑒𝑐  Set of pair of nodes requiring services with precedence  

𝑃+ Index set of all patients (nodes) requiring a blood sampling 

Deterministic Parameters  Explanations 

𝑞𝑣𝑖  The staff members' skills are equal to 1 if staff member v ∈ V is qualified to perform the required 

service at node i ∈ P0 and 0 otherwise.  

min

ij  
The minimal time interval between service start times at nodes i and j, i.e., (𝑖,𝑗) ∈ 𝑃𝑑  

max

ij  
The maximal time interval between service start times at nodes i and j, i.e., (𝑖, 𝑗) ∈ 𝑃𝑑  

[𝑒𝑖, 𝑙𝑖]  The time window for the start of the required service at node 𝑖 ∈ 𝑃0  

𝑑𝑢𝑟𝑖  The time duration of performing the service required by node 𝑖 ∈ 𝑃0  

𝑑𝑖𝑗  Traveling distance between nodes 𝑖 ∈ 𝑃0 and 𝑗 ∈ 𝑃0  

𝐶𝑂𝐶𝑗𝑣  
The preferences of patients, which is equal to 1 iff node 𝑗 ∈ 𝑃0 prefers staff member 𝑣 ∈ 𝑉 for 

providing its required service and 0 otherwise  

𝑤𝑜𝑟𝑘𝑡𝑖𝑚𝑒𝑣  The contract working time of staff member 𝑣 ∈ 𝑉  

[𝑒𝑠𝑡𝑎𝑓𝑓𝑣, 𝑙𝑠𝑡𝑎𝑓𝑓𝑣]  Time window of staff member 𝑣 ∈ 𝑉  

𝑇  Time frame  

𝑀  A very large number, which is equal to the maximum working time allowed to staff  

𝛼1, 𝛼2, 𝛼3, 𝛼4,  𝑎𝑛𝑑  𝛼5  The coefficients of the respective terms in the objective function  

ijvtt  
The nominal value of the transfer time from node 𝒊 ∈ 𝑷𝟎 to node 𝒋 ∈ 𝑷𝟎 in the route of staff 

member 𝒗 ∈ 𝑽 

g  The nominal value of the availability level to staff members 

tt  The uncertainty level of the uncertain parameter 𝑡𝑡𝑖𝑗𝑣 

g  The uncertainty level of the uncertain parameter 𝑔 

tt

ijv  The uncertainty scale of the uncertain parameter 𝑡𝑡𝑖𝑗𝑣 

g  The uncertainty scale of the uncertain parameter 𝑔 

Uncertain parameters  Explanations 

ijvtt  
The transfer time from node 𝒊 ∈ 𝑷𝟎 to node 𝒋 ∈ 𝑷𝟎 in the route of staff member 𝒗 ∈ 𝑽 (proportional 

to the distance 𝒅𝒊𝒋)  

g The availability level to staff members  

Decision variables Explanations 

𝑟𝑖𝑗𝑣  

The routing variables of the staff members  

If staff 𝑣 ∈ 𝑉 moves from 𝑖 ∈ 𝑃0 to 𝑗 ∈ 𝑃0to provide the service required by the node 𝑗, r𝑖𝑗𝑣 = 1; 

otherwise, r𝑖𝑗𝑣 = 0  

ivt  
The start time of providing service at node 𝑖 ∈ 𝑃0 by staff member v 

iz  
Delay time of service required by node 𝑖 ∈ 𝑃0 

vov  
The overtime of staff member 𝑣 ∈ 𝑉 

,v vltw utw  
The deviations from the desired time window of staff member 𝑣 ∈ 𝑉 

tt

ijv  
The variations of the uncertain parameter 𝑡𝑡𝑖𝑗𝑣 in a closed bounded box 

g  
The variations of the uncertain parameter 𝑔 in a closed bounded box 
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Table 2 Characteristics of datasets 

Dataset  Number of 

patients  
Number of patients requiring 

interdependent services  
Number of nodes along with the 

dummy nodes (|𝑃0|)  
Number of staff 

members (|𝑉|)  
A  7  2  13  3  
B  10  3  17  3  

 

 

 

Table 3 The values of input parameters 

Parameter Value Description 
𝛼1 1 The coefficient associated with the first performance measure in (1) and (2) 
𝛼2 2 The coefficient associated with the second performance measure in (1) and (2) 
𝛼3 2 The coefficient associated with the third performance measure in (1) and (2) 
𝛼4 1 The coefficient associated with the fourth performance measure in (1) and (2) 
𝛼5 1 The coefficient associated with the fifth performance measure in (1) and (2) 
𝑓𝑣 0.80, 0.80 and 0.68 The conversion coefficient of traveled distance to transfer time  
min

ij [0, 70] The minimal time interval between service start times at each of two interdependent nodes 𝑖 

and 𝑗 (in minutes) 
max

ij 𝛿𝑖𝑗𝑚𝑖𝑛 + [5, 50] The maximal time interval between service start times at each of two interdependent nodes 𝑖 

and 𝑗 (in minutes)  
𝑑𝑢𝑟𝑖 [5, 40] The time duration to carry out the service required by patient-related node𝑖 (in minutes)  
𝑇 1000 600, Time frame (in minutes)  
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Table 4 Numerical results of DO and RO models for uncertain transfer times with different sizes 

 

  

Problem size 

(|𝑷𝟎|∗|𝑷𝟎|−𝟏∗|𝑽|) 
Instance 

Uncertainty level 

(𝝆) 

DO 

model 

 
RO model    

&B BW 
relative 

gap% 
 

&B B ROW  
relative 

gap% 
 

13 × 12 × 3 

B1 

0.2 

180.579 0.00 

 
145.762 -19.28  

0.5  175.208 -2.97  

1  226.810 25.60  

B2 

0.2 

246.181 0.00 

 229.178 -6.91  

0.5  303.337 23.22  

1  444.618 80.61  

B3 

0.2 

345.537 0.00 

 363.644 5.24  

0.5  390.805 13.10  

1  441.798 27.86  

B4 

0.2 

405.980 0.00 

 433.376 6.75  

0.5  488.224 20.26  

1  563.585 38.82  

B5 

0.2 

248.395 0.00 

 259.712 4.56  

0.5  275.890 11.07  

1  302.853 21.92  

B6 

0.2 

676.990 0.00 

 705.388 4.19  

0.5  747.985 10.49  

1  833.572 23.13  

B7 

0.2 

632.497 0.00 

 673.996 6.56  

0.5  740.386 17.06  

1  915.216 44.70  

17 × 16 × 3 

C1 

0.2 

493.777 0.00 

 Infeasible —  

0.5  Infeasible —  

1  Infeasible —  

C2 

0.2 

620.683 0.00 

 Infeasible —  

0.5  Infeasible —  

1  Infeasible —  

C3 

0.2 

376.333 0.00 

 409.397 8.79  

0.5  442.496 17.58  

1  504.361 34.02  

C4 

0.2 

255.111 0.00 

 309.025 21.13  

0.5  372.443 45.99  

1  481.090 88.58  

C5 

0.2 

729.383 0.00 

 762.859 4.59  

0.5  829.868 13.78  

1  976.641 33.90  

C6 

0.2 

257.923 0.00 

 280.107 8.60  

0.5  313.384 21.50  

1  391.268 51.70  

C7 

0.2 

648.969 0.00 

 710.363 9.46  

0.5  803.214 23.77  

1  978.264 50.74  
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Table 5 Numerical results of the DO and RO models for two uncertain parameters with different sizes 

 

 

 

 

 

 

 

 

 

 

 

Problem size 

(|𝑷𝟎|∗|𝑷𝟎|−𝟏∗|𝑽|) 
Instance 

Uncertainty 

level (𝝆) 

DO model  RO model  

&B BW 
relative 

gap% 

 
&B B ROW 

 

relative 

gap% 

 

13 × 12 × 3 

B1 

0.2 

497.321 0.00 

 642.177 29.13  

0.5  854.817 71.88  

1  1215.422 144.39  

B2 

0.2 

856.161 0.00 

 964.795 12.69  

0.5  1128.922 31.86  

1  1435.882 67.71  

B3 

0.2 

300.490 0.00 

 407.552 35.63  

0.5  597.691 98.91  

1  912.550 203.69  

B4 

0.2 

1084.281 0.00 

 1193.587 10.08  

0.5  1350.484 24.55  

1  1613.650 48.82  

B5 

0.2 

1077.873 0.00 

 1224.368 13.59  

0.5  1442.869 33.86  

1  1835.359 70.28  

17 × 16 × 3 

C1 

0.2 

594.012 0.00 

 679.415 14.38  

0.5  819.859 38.02  

1  1122.929 89.04  

C2 

0.2 

525.036 0.00 

 623.920 18.83  

0.5  825.493 57.23  

1  1174.658 123.73  

C3 

0.2 

1171.970 0.00 

 1285.644 9.70  

0.5  1472.949 25.68  

1  1892.057 61.44  

C4 

0.2 

344.793 0.00 

 479.481 39.06  

0.5  718.277 108.32  

1  1185.276 243.76  

C5 

0.2 

1321.667 0.00 

 1468.601 11.12  

0.5  1725.028 30.52  

1  2231.231 68.82  


