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Abstract 

This paper addresses the traditional elasticity problem of a homogeneous 

isotropic half-space covered by an extremely thin, extensible membrane 

subjected to arbitrary loads. The membrane, with negligible flexural stiffness, is 

perfectly attached to the half-space, ensuring continuity of the displacement 

field. By setting the film thickness to zero and its shear modulus to infinity, 

equivalent boundary conditions across the thin film surface are derived. Hankel 

integral transform and Fourier expansion techniques are employed to obtain 

Muki's potential functions in the transformed domain, yielding a system of 

equations based on the imposed boundary conditions. Closed-form expressions 

in the Hankel transformed domain are derived for static problems with general 

asymmetry. Simplified forms of the proposed boundary conditions are provided 

for axisymmetric problems. Special cases, including well-known problems such 

as Kelvin’s, Cerruti’s, and Mindlin’s, are examined for verification purposes. 

Additionally, a numerical study is conducted to demonstrate the effectiveness of 

the proposed equations. 
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1. Introduction 

     The use of thin films to enhance the physical and chemical properties of 

materials is ubiquitous in today’s world. Common examples include magnetic 

thin films for electronic data storage; transparent conductive oxide and absorber 

layers in solar cells; thin film resistors and dielectrics; catalytic layers for toxic-

gas sensing; superconducting thin films for high-frequency devices, data 

storage, and magnetic circuitry; corrosion-, friction-, and wear-protective layers 

on automotive and airplane engine parts; and multiple layers on eyeglasses to 

correct vision, minimize ultraviolet light transmission, and provide scratch 

resistance [1-3]. 

     Surface-stiffened coatings are added to the media to provide an extra layer of 

protection from mechanical and environmental conditions. This can greatly 

improve the performance and extend the working life of the treated parts and 

components [4,5]. For more examples of this kind of protecting/reinforcing 

layers in civil engineering constructions, one can find different types of 

pavement engineering utilizing Carbonphalt or Glasphalt layers [6,7]. The 

evaluation of existing road pavements is done based on 3 factors: functional 

surface condition, structural condition, and roughness. Another industrial 

example is Geomembranes and geotextiles those are being used 

in environmental, hydraulic, transportation, dam engineering, and oil and gas 

applications as well as the waste industry [8-11]. Besides, the mechanical 

properties of the surface of a solid medium or the interface of two bonded 

media can be different from the bulk properties [12-14]. Therefore, for 

modelling purposes, such a thin surface layer can be considered as a separate 

layer with different mechanical properties. 

     A valuable analytical model to study composite materials is the bi-material 

full/half-space model; Due to this idea, employing displacement potential 

methods and integral transforms, Guzina and Pak [15] solved the bi-material 

full-space under an arbitrary interior point load. A closed-form solution for the 

elastic fields in two-joined transversely isotropic half-spaces subjected to point 

force and uniform ring load is presented by Liew et al. [16]. Vijayakumar and 

Cormack [17] by extending the method of images, established by Mindlin [18] 

for the first time to obtain a bounded domain solution from an infinite one, 

provided Green's functions for biharmonic equations especially as to perfectly 

bonded bi-materials, linear, isotropic, elastic media. The extended Mindlin 

solution in transversely isotropic half-space with depth heterogeneity expressed 

in the forms of classical inverse Hankel transform integrals presented by Xiao 

et al. [19]. For anisotropic bi-materials, Pan and Yuan [20] derived three-

dimensional Green's functions based on generalized Stroh formalism and 

application of the Fourier transform. Green's functions for anisotropic 
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piezoelectric bi-materials are also presented in a similar manner, by Pan and 

Yuan [21]. In a dynamic framework, three-dimensional Green's function in 

transversely isotropic bi-materials was the subject of Khojasteh et al. [22] 

investigation. An analytical treatment of the response of a transversely isotropic 

substrate–coating system subjected to axisymmetric time-harmonic excitations 

presented by Shodja and Eskandari [23]. Analytical solutions for the Rayleigh 

waves in a piezoelectric semiconductor (PSC) thin film perfectly bonded to an 

elastic half-space are obtained by Tian et al. [24] and the general solution of 

each layer is derived by using wave-mode method. Eskandari-Ghadi et al. [25] 

considered a full space comprised of a transversely isotropic middle layer 

between two linear elastic half-spaces under an internal load acted on the 

interface of those of the upper half-space and adjacent layer. Dynamic response 

of unsaturated full-space caused by a circular tunnel subjected to a vertical 

harmonic point load analyzed by Song et al. [26]. Similarly, an analytical wave 

function method for the calculation of vibrations two tunnels embedded in a 

saturated poroelastic full-space due to a harmonic point load addressed by Yuan 

et al. [27]. By virtue of a complete set of displacement potential functions and 

Hankel transform, the Green’s function of an exponentially graded elastic 

transversely isotropic half-space deriver by Eskandari and Shodja [28]. 

Oestringer and Proppe [29] presented influence functions for fully coupled 

quasi-static thermoelastic materials. Those can be used to calculate 

displacement, stresses as well as temperature distributions within a half-space 

for arbitrarily shaped heat source or pressure distributions on the surface. The 

axisymmetric problem of a penny-shaped crack located in a poroelastic half-

space solved by Selvadurai and Samea [30]. They also solved the adhesive-

impermeable indentation of a poroelastic half-space [31]. An axisymmetric 

BEM analysis carried out by Xiao and Yue for a one-layered transversely 

isotropic half-space with cavity [32] as well as for a layered isotropic half-space 

under internal gas pressure [33]. 

     One of the most important subjects in dealing with bi-materials or generally, 

composite materials is bonding conditions between two joined surfaces such 

that associated problems are usually at the forefront of many investigations. 

Interface crack between two elastic layers is semi-analytically treated by Suo 

and Hutchinson [34] under fairly general loading conditions. Qu and Bassani 

[35] focused on aspects of interfacial cracks on anisotropic bi-materials. 

Selvadurai [36] examined the axisymmetric contact between two smoothly 

compressed dissimilar elastic half-spaces which is perturbed by a disk inclusion 

of finite thickness. He, furthermore, evaluated numerically two coupled 

Fredholm integral equations derived from mixed boundary value-problem and 

is a consequence of the existence of an embedded inclusion at a bi-material 

interface [37]. With the aid of Fourier and Abel integral transforms, Gladwell 

[38] reexamined embedded inclusion at a bi-material interface and provided 

closed-form expression for the axial stiffness in the states of bonded or partially 

https://www.sciencedirect.com/topics/engineering/axisymmetric
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bonded contact of rigid circular disk trapped between dissimilar half-spaces. 

Chen [39] considered the effect of a plane boundary of a piezoelectric body 

modeled as a thin layer with specified material properties, for which a transfer 

relation between the state vectors at the top and bottom surfaces is derived 

based on the state-space formulations. The equations of surface piezoelectricity 

for different orders without any bias field are then presented by making use of 

the power series expression of the transfer matrix. In contrast with numerous 

analytical investigations, fewer researchers focused on experimental 

observations of bonding conditions in bi-materials; Lambros and Rosakis [40], 

Wu [41], etc. 

     Because of its infinitesimal thickness, the bonding zone is often modeled by 

a thin film, that will affect locally on mechanical boundary conditions, while 

transmitting from one material to adjacent material. Subsequently, interfacial 

conditions are called transmission conditions, commonly. Thin films can play 

various roles in interfacial conditions including inextensible, spring-type, thin 

or thick plate, and membrane behaviors. Benveniste and Miloh [42] considered 

a curved isotropic layer of constant thickness, but its properties are varying in 

the tangential direction, placed between two elastic isotropic media. By 

assuming a two-dimensional plane-strain state, they introduced seven distinct 

regimes for interface conditions such as soft and stiff interfaces and so on. 

Similarly, Benveniste [43] addressed the model of thin interfaces with variable 

moduli in plane-strain elasticity. An analytical formulation for an axisymmetric 

response of exponentially graded transversely isotropic tri-material under 

interfacial loading is presented ye Zafari et al. [44]. Ahmadi et al. [45] obtained 

the axisymmetric response of bi-material full-space which is reinforced by an 

interfacial thin film. They presented analytical expressions for special cases 

such as inextensible thin film and studied surface stiffened half-space as well. 

Withal transversely bi-material full space strengthened by an inextensible 

membrane is formulated by Kalantari et al. [46]. With axisymmetric and plane 

stress considerations, Rahman and Newaz [47] derived the equivalent boundary 

conditions for an isotopic thin film layer and then solved a semi-infinite 

isotropic solid whose surface is reinforced by an isotropic thin film and acted 

upon by an axial ring loading. Thereupon, Ahmadi and Eskandari [48] reduced 

the mixed boundary value problem of axisymmetric circular indentation of a 

half-space reinforced by a buried extensible thin film to a Fredholm integral 

equation of the second kind. This study for an inextensible thin film was 

achieved by Selvadurai [49]. Eskandari et al. [50] obtained the elastodynamic 

response of a surface-stiffened transversely isotropic half-space subjected to a 

buried time-harmonic normal load. Bagheri et al. studied the dispersion of 

surface waves in transversely isotropic half-space [51]. 

     The current work is associated with discovering and explaining a thin film 

effect that covers isotropic half-spaces while ensuring perfect boundary 
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conditions among them. With due attention to the above discussions, it seems 

investigation of this issue is vital that it can complete previous efforts of 

researchers. Based on Muki's potential functions, the governing equilibrium 

equations are rewritten in harmonic and biharmonic equations. With the aid of 

Fourier expansion and Hankel transform of potential functions and by 

approaching the thickness of the thin film to zero whereas its shear modulus 

goes to infinity simultaneously, in section 2, proposed interfacial conditions by 

Ahmadi et al. [52] are employed and the problem is solved completely. The 

proposed equivalent surface boundary conditions can be utilized in wide range 

of research areas such as contact mechanics, different mixed boundary value 

problems and so on, both in symmetric and asymmetric cases in the context of a 

half-space. Section 3 is devoted to verification and limiting cases. Furthermore, 

the effectiveness of proposed transmission conditions is numerically 

deliberated. Finally, in section 4 concluding remarks are discussed.  

 

2. Problem definition and governing equations 

     Consider an elastic half-space composed of two dissimilar regions: an elastic 

thin layer and a lower homogenous half-space. The thin membrane layer and 

lower half-space are made of homogenous isotropic different materials. The 

extensible thin membrane of thickness Ft is fully bonded to the lower medium 

all over. The ascribed system is subjected to an arbitrary static load distributed 

over an open disc s  which is located at the depth s. So two regions “I” and 

“II” in lower half-space for  Ft z s   and  z s  are recognized, 

respectively. The origin of the Cartesian coordinates  1 2 3, ,x x x  and the 

corresponding cylindrical coordinates  , ,r z  is fixed at the top of the 

extensible thin membrane.  

     The elastic constants, shear modulus, and Poisson's ratio of the lower half-

space  Fz t  will be denoted as   and   while those of the thin membrane 

 0 Fz t   are denoted as 
F  and F . Hereafter superscript F for any given 

abbreviation represents belonging to the thin film layer,  0 Fz t  . 

     Because of the thinness of the membrane, its main behavior is in-plane 

behavior with no flexural stiffness. A tricky strategy to treat the problem has 

been used. The membrane is considered an elastic layer with a thickness of Ft  

covering a half-space; This composite elasticity problem has been approached 

by the use of potential functions up to the point where boundary conditions are 

applied. At this final stage, the main idea is implemented by taking limits of the 

thin membrane layer. 
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     In cylindrical coordinates the static equations of equilibrium for any elastic 

layer in the absence of body forces are [53]: 

 

1
0,rr rr r rz

r r r z

     



   
   
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                                                        (1a) 

1
2 0,r r z

r r r z

      



  
   
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                                                               (1b) 

1
0,rz r z zz

r r r z

    



  
   

    
                                                                    (1c) 

in which the stress components, ij , are related to strain components, ij , as: 

  2 ,rr rr zz rr                                                                      (2a) 

  2 ,rr zz                                                                     (2b) 

  2 ,zz rr zz zz                                                                    (2c) 

, , ,r r z z rz rz                                                  (2d) 

where   and   are Lamé constants. The strain components are achieved from 

displacement field components, ,ru u  and zu  which are in , ,r   and z  

directions, respectively. 

1
, ,r

rr r

u u
u

r r


 



  
   
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                                                                    (3a) 
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
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                                                     (3c) 

     By combining the Eqs. (2) and (3), the equilibrium equation (1), can be 

expressed in the well-known Cauchy-Navier equations in terms of displacement 

components as follow: 

 
  2

2 2

1 1 2
0,r z r

r

ru u u u u
u

r r r r z r r

   
 

     
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               (4a) 
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where Laplace operator, 2 , in the cylindrical coordinate system is defined as 
2 2 2

2

2 2 2 2

1 1

r r r r z

   
    

   
. Generally, in asymmetric problems Muki's 

potential functions 𝜙 and 𝜓  may be used [54], which leads to reduction of the 

Cauchy-Navier equations to the following partial differential equations: 

2 0,                                                                                                             (5a) 

2 2 0.                                                                                                           

(5b) 

     The displacement components in terms of above-mentioned functions are 

given as: 

21 2
,

2
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r z r

 

 

  
   
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(6a) 
21 1

,
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 

 
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(6b) 
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2

2

2

1
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2
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z


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(6c) 

and through using Eqs. (2) and (3), stress components are given as follow, 

simply: 

2
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in all of which   is Poisson’s ratio. With regard to the completeness of the set 

of angular eigenfunctions, ime  , stress functions   and   can be expressed in 

the harmonic form of angular coordinate,   in a proper form for odd or even 

functions: 

         , , , , , , , , ,im

m m

m

r z r z r z r z e      




                            (8a) 
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2
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2
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m mr z r z r z r z e d


      


                    (8b)  

     By using Fourier expansion, Eq. (5) results in 

2 2 2
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     To solve these partial differential equations, it is convenient to introduce the 
thm -order Hankel transform of function  ,f r z  and its inversion, respectively, 

as follows: 

     
0

, , ,m

mf z rf r z J r dr 


                                                                     (10a) 

     
0

, , ,mf r z f z J r d   


                                                                     (10b) 

where  ,mf z  shows the corresponding function of  ,f r z  in the Hankel 

transformed domain;   is the Hankel transform parameter with respect to radial 

coordinate and mJ  denotes the thm -order Bessel function of the first kind. 

Application of this integral transform on Eq. (9) yields: 

2
2

2
0,m

m

d

dz
 

 
   
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                                                                                     (11a) 
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                                                                                    (11b) 

     Here  ,m

m z   and  ,m

m z   are the thm -order Hankel transformed functions 

of the corresponding mth term in Fourier expansion of potential functions 

 ,m r z  and  ,m r z , respectively. With due attention to the regularity 

conditions at infinity (i.e. vanishing elastic fields for 2 2r z  ), the above 
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set of ordinary differential Eq. (11) reaches the following expressions for 

potential functions for each region: 

 , ,mF F z F z

m z a e b e                                                                                (12a)                                 

     , ,mF F F z F F z

m z c d z e f g z e                                                       (12b) 

 , ,mI I z I z

m z a e b e                                                                                  (12c) 
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m z c d z e f g z e                                                         (12d) 

 , ,mII II z

m z a e                                                                                           (12e) 

   , ,mII II II z

m z c d z e                                                                               (12f) 

where  , , , , ,a b c d f g      , , ,I II F   are fifteen unknown constants to be 

determined by satisfying the following boundary conditions at all interfaces 

such a way that continuity for displacements across each interface plane is 

preserved 
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zz rz z at z                                       (13a) 

, , ,  F I F I F I F

z z r ru u u u u u at z t                                     (13b) 

, , ,  F I F I F I F

zz zz zr zr z z at z t                                          (13c) 

, , ,  I II I II I II

z z r ru u u u u u at z s     .                                (13d)           

     The distributed body-force field as a general discontinuity in stresses over 

s  across the plane z s  is defined as 

   
   

 

, , , ,
, , , , ,

0 , , ,

s

zr zr

s

P r r s
r s r s

r s

 
   



 
 

  


                            (14a) 

   
   

 

, , , ,
, , , , ,

0 , , ,

s

z z

s

Q r r s
r s r s

r s
 

 
   



 
 

  


                           (14b) 

   
   

 

, , , ,
, , , , ,

0 , , ,

s

zz zz

s

R r r s
r s r s

r s

 
   



 
 

  


                            (14c) 

where    , ,  ,P r Q r  , and  ,R r   are components of asymmetric forces in 

the radial, angular, and axial directions, respectively. To impose perfect 

adhering assumption between the thin film and its lower half-space, and also 

other boundary conditions, Eqs. (13) and (14) should be developed in Hankel 

transformed domain concerning the same radial component of cylindrical 

coordinate, r. The thm -order Hankel transform of the displacement field leads to 

the following relations, [52]: 
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   
2

2

2
2 2 1 1 2 ,

m

m m

z mu
z

    
 

     
 

                                                     (15a) 

 1 12 2 ,
m m

m
m m mm
r mu iu i

z



    

  


                                                              (15b) 

 1 12 2 ,
m m

m
m m mm
r mu iu i

z



    

   


                                                            (15c) 

 

~ ~

2
2

2
2 1 ,m m

m

m m

rm m

rr m

u u
im

r r z z


     

 
        

                 
 

                       (15d) 

~ ~

2
2

2
2 ,m m

m

m m

rm m

m

u u
im

r r z z



    

 
        

                 
 

                             (15e) 

   
2

2

2
2 1 ,

m

m m

zz m
z z

    
  

     
  

                                                       (15f) 

 
2

1 1 2

2
1 ,

m m

m m m m

rz z m mi i
z z

            
     

  
                                      (15g) 

 
2

1 1 2

2
1 ,

m m

m m m m

rz z m mi i
z z

            
      

  
                                    (15h) 

~ ~

22 .m m

m

m m

rm m

r m

u u
im

r r



   

 
    

      
    

 

                                                       (15i) 

     Substitution of potential functions shown in expressions (12) in boundary 

conditions (13) and (14), by virtue of Eq. (15) results in a system of 15 

equations with 15 unknown coefficients. Usually, the inversion of the 

coefficient matrix has to be found to determine potential functions, m

m  and m

m  

with respect to the integral transform parameter,  . The application of inverse 

Hankel transform in relations m

m  and m

m  leads to inexplicable results whereas 

the procedure itself is exhausting. Here, a simple yet useful method for surface 

conditions is proposed by Ahmadi et al. [52] in a way that by removal of thin 

film, its impact is remained by tending Ft  to zero and simultaneously tending 
F  to infinity such that  2 1 F F Ft     (henceforth called rigidity) remains 

fixed. Under plane stress considerations and by introducing hereunder functions 

in the transformed domain: 
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 
2

2

2
2 1 ,m m

m m
z

    
 

    
 

                                                                   (16a) 

2 ,m m

m mi
z

 


 


                                                                                           (16b) 

,
m

m m
m

z

 




 


                                                                                                 (16c) 

2 .m m

m mi




                                                                                                 (16d) 

     Their proposed equivalent conditions yield 

 
2 0,

2 1

Im

mF z


  



 
  
 
 

                                                                       (17) 

  
 

2 2
2

2
1 0,

2 1 1

m

mF Fz z


   

  

  
    
   
 

                                      (18)   

as thin film treatment on the surface of a half-space. According to the new 

introduced approach, by utilizing Eqs. (17) and (18) the shear stresses 

transmission conditions at the same depth at which the thin film is located, here 

at the surface of half-space 0z  , links to in-plane deformations thoughtfully 

whilst normal stresses transmit without any disturbance across thin film (for 

more demonstrations, please refer to [52]): 

   
2

2

2
2 1 0.

Im

m
z z

   
  
     

  
                                                            (19)  

     These equations can be used to address various contact mechanics and 

mixed boundary value problems. Additionally, by removing the thin film, the 

proposed surface conditions simplify the solving process by reducing unknown 

constants and ensuring proper convergence of all inverse integrals. 

     Relations (17)-(19) in addition to six relations at depth z s , Eqs. (13) and 

(14), provide enough equations to solve 9 unknowns easily. Substitution of the 

result into Eq. (15) gives the transformed Fourier components of the 

displacements: 

     1 1

1 2 3, ; , ; , ; ,
2 2m m

m m m m m m m
r

X Y X Y Z
u iu z s z s z s      

  

        
        

     
 

     1 1

1 2 3, ; , ; , ; ,
2 2m m

m m m m m m m
r

X Y X Y Z
u iu z s z s z s      

  

        
         

     
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   1 2, ; , ; ,
2m

m m m m
z

X Y Z
u z s z s 

 

   
    

   
                                             (20) 

where the kernel functions 
1 2 3 1,  ,  ,      , and 

2  are as follow 

 
 

   

         
2

1

2 2

1
, ; 1

1 5 12 8 3 4 2 ,

s z z s

s z z sF

z s e e
I

s z sz e e

 

 

     


       

    

   

    
 

         
 

 

 
     

 
2

2 1
, ; ,

2 2 1

s z s zz s z sF

F

e e e e
z s

  
  

 
   

            
   

  
 

 

 
 

       

           
2

2

3

2 2

1
, ; 1

1 4 12 8 3 4 2 ,

s z z s

s z z sF

z s s z e s z e
I

s z sz e s z e

 

 

   


      

   

   

      
 

          
 

 

 
 

       

           
2

2

1

2 2

1
, ; 1

1 4 12 8 3 4 2 ,

s z z s

s z z sF

z s s z e s z e
I

z s sz e z s e

 

 

  


      

   

   

       
 

          
 

 

 
 

   

         
2

2

2 2

1
, ; 1

1 5 12 8 3 4 2 ,

s z z s

s z z sF

z s e e
I

s z sz e e

 

 

    


       

    

   

    
 

         
 

 

                                                                                                                        (21) 

Here 

   1 1 ,m m

m m mX P iQ     

   1 1 ,m m

m m mY P iQ     

 ,m m

m mZ R   

   , ; 3 4 ,z s s z         

 , ; 3 4 ,z s z s         

       
2

8 1 1 1 .FI            
 

                                                     (22) 

As well as, the corresponding stress field yields 
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2 2

1 1 2 3
1 32 2

2 2 ,
2m

m m m
zz m

d d X Y d d
Z

dz dz dz dz

   
  

 

      
         
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1 1 1 2 3
1 2 ,

2 2m m

m m m m m m
rz z m

d X Y d X Y d
i Z

dz dz dz


  
         

           
   

      (23) 

1 1 1 2 3
1 2 .

2 2m m

m m m m m m
rz z m

d X Y d X Y d
i Z

dz dz dz


  
         

          
   

 

After substituting the inverted Fourier components of the displacement into the 

corresponding angular eigenfunction expansions, the desired formal solution to 

the general buried source problem can be obtained. 

 

3. Special cases and verification 

     So as to verify the utilized approach for modeling a thin membrane and 

evaluate the accuracy of presented results, several particular cases including the 

axisymmetric loads, unreinforced half-space and inextensible thin film 

reinforced half-space are studied and addressed in the literature, [15]. 

 

3.1. Axisymmetric loading problem 

     In the case of axial symmetrical loads, it can be seen clearly that Eq. (17) 

becomes trivial relation; On the other hand, the equation of Eq. (18) with 0m   

reduces to  

     
0 0 0 0

1 1 2 1 12
,0 , ,

1

F F
F

rz rz r rF

t
t u u


    



   


                                              (24) 

which is a transformed form of relation: 

   
2 * * *

2 2

2 1
,0 , ,

1

F F
F r r r

rz rz F

t d u du u
r r t

dr r dr r


 



 
    

  
                                     (25) 

mentioned by M. Rahman and G. Newaz [47] previously for thin films with 

generalized plane stress consideration. 

Due to axial symmetry of this case,    , , , , 0z r z u r z     , and other 

displacement and stress field components simplified as: 

          0

1 1 2 0 0
0

, , , ,      ,axi axi

r zu r z u r z J r J r R d   


    

          0

3 1 4 0 0
0

, , , ,      ,axi axi

rz zzr z r z J r J r R d     


                 (26) 
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and the kernel functions,  1,  2,  3,  4axi

i i   are obtained as 
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(27) 

                                                                                                                         

and definition of  I   in relation (22) is hold. 

 

3.2. Unreinforced half-space 

     For the limiting case of 0  , the solution corresponding to a half-space 

under an arbitrary buried loading is obtained: 

 
 

        2 2

1

1
, ; 5 12 8 3 4 2 3 4 ,

8 1

s z z shs z s s z sz e z s e
 

        
 

              
 

 

 
 

2 , ; ,
2

s z z s

hs e e
z s

 

 


   


                                                                                    (28) 

 
 

        2 2

3

1
, ; 4 12 8 3 4 2 ,

8 1

s z z shs z s s z sz e s z e
 

      
 

            
 

 



17 
 

 
 

        2 2

1

1
, ; 4 12 8 3 4 2 ,

8 1

s z z shs z s z s sz e z s e
 

     
 

             
 

 

 
 

        2 2

2

1
, ; 5 12 8 3 4 2 3 4 ,

8 1

s z z shs z s s z sz e z s e
 

       
 

               
 

                                                                                                             

which are identical to the solution of the homogeneous half-space problem [55]. 

Three famous problems in elastostatic can be restored here:  

i) For a concentrated vertical force, 0R ,  0m mX Y  , after some 

simplifications, the results of the Mindlin’s problem [18] will be restored: 
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                               (29) 

 
 

 

 

1
2 2 2

0

1 1
2 2 2 22 2

sin 1
1 2 .

r z zR
u

r z r r z







 
  

    
  
 

 

ii) By letting 𝑠 → 0, and just for a tangential concentrated force, results of 

Boussinesq’s and Cerruti’s fundamental problems will be derived. 

iii) By letting 𝑠 → ∞, and setting a new coordinate system origin at the loading 

plane, results of celebrated Kelvin’s problem will be represented 
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which are in exact agreement with the results reported by Love [56]. 

 

 

3.3 Inextensible thin film 

     By approaching 𝜅 → ∞, the problem relates to a surface stiffened half-space 

with axially rigid membrane. The associated kernel functions are given by 
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Ω2
∞(𝜉, 𝑧; 𝑠) =

1

8𝜉(1−𝜈)
[(3 − 4𝜈 + 𝜉(𝑠 + 𝑧))𝑒−(𝑠+𝑧)𝜉 + (3 − 4𝜈 + 𝜉|𝑧 − 𝑠|)𝑒−|𝑧−𝑠|𝜉]. 

                                                                                                                          

3.4 Numerical results for specific source distribution 

     Having the expressions for the displacement and stress fields given in Eqs. 

(22) and (23), it is possible to discuss some natures of the problem under 

consideration. The coated half-space is subjected to a uniform circular patch 

load of radius 𝑎 and total resultant ℱ𝑣 and ℱℎ at depth 2s a  in z  and r  axis 

directions, respectively. It is assumed that in inclined cases of loading the 

vertical and horizontal components of the resultant buried source are equal 

(ℱ𝑣 = ℱℎ = ℱ √2⁄ ). By using data for Aluminum material properties [57] such 

that 76   GPa, 0.21  , and with assuming 0.3F  ,  the normal 

displacement, 𝜋𝑎𝜇 𝑢𝑧 ℱ⁄ , (at 0.5 ,  0r a   ) along the dimensionless z-axis, 

z a , are plotted in Fig.  1 for various values of the normalized rigidity factors 

a   . It is worth noting that to avoid symmetric effects and pertinent 
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simplifications, results will be presented along the axis 0.5r a  instead of 

0r   (z-axis). The peak normal displacement happens at 2z a . This 

maximum value rises as the rigidity of the membrane decreases, causing all 

graphs to approach the classic problem, 0  , studied by Guzina and Pak [15]. 

As shown in Fig.  2, an increase in the rigidity of the thin film enhances the 

stiffness of the coated half-space. Additionally, it is clear from the regularity 

conditions that mechanical fields vanish at distant points from the loading 

plane.  

     To provide a more in-depth explanation under an oblique load, Fig.  2 

illustrates the same normal displacement component, similar to Fig.  1, but 

normalized with respect to the response of classic half-space without any 

reinforcement. As expected from the physics of the problem, for smaller values 

of the thin film’s rigidity,  , the normalized graph Fig.  2 tends to one; ie 

identical amounts for displacement and furthermore, for deeper points of the 

thin film, the solution of mechanical fields of surface stiffened half-space 

approaches to classical one. If the system under consideration is reinforced by 

an inextensible membrane (  ) the maximum normal displacement around 

0.5r z a   is reduced by 25% approximately. 

     Fig.  3 and Fig.  4 show dimensionless normal displacement along the 

surface of half-space for different rigidity values of the thin film in vertical and 

horizontal patch load cases separately and respectively. It is evident from Fig.  3 

and the asymmetrical concept of the problem under horizontal forces that the 

origin point of the coordinate system will be fixed without any movement in the 

z direction; And the maximum normal displacement appears a little before the 

2r a . An interesting point to note in this graph is that, although the shear 

modulus, 
F , becomes larger and larger, the thickness of the surface layer 

becomes smaller and smaller. As a result, the stiffness of that thin layer will 

remain constant, whereas one would expect a rigid layer at the surface with zero 

displacement when the shear modulus grows independently to infinity. This 

case,   , has more of a mathematical aspect, as it is based on limiting of 

the result of two simultaneous limitations on the shear modulus and the 

thickness of the thin layer. Furthermore, considering the approximation of the 

assumption of plane stress state, it has a high level of complexity. 

     The result associated with the axisymmetric part of elastic response due to 

uniform vertical patch load is in exact agreement with those reported by 

Ahmadi et al. [45]. This accordance is shown in Fig.  4 for 1   and   

where the plotted graphs with markers correspond to the findings in reference 

[45] with matching rigidity values. Moreover, as depicted in Fig.  4, the 

maximum normal displacement for vertical loads occurs at 0r  .  
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     To have a better insight into the effects of the surface reinforcement, 

dimensionless radial displacement component 
ru  is plotted versus z-axis along 

r a  for uniform vertical load in Fig.  5, for uniform horizontal load in Fig.  6, 

and their superposition, uniform inclined load, in Fig.  7. The main amounts of 

radial displacement in Fig.  7 originate from the horizontal component of 

loading and, consequently, Fig.  6 outweighs the behavior of the ascribed 

system. According to the observations in Fig.  7, the larger amounts of radial 

displacement with smaller values of rigidity of the reinforcing film make sense 

physically and as anticipated, the highest levels of radial displacement occurred 

near the loading area. 

It is evident in Fig.  5 that for rigid membranes, the radial displacement at the 

surface is zero, and the maximum value appears near the loading zone, causing 

the direction of the radial displacement vector to change around the loading 

plane, 2z a . 

     The next numerical result is presented to demonstrate the effect of the thin 

film’s action on the shear stress component zr  along the surface of coated 

half-space. Normalized shear stress component variations (𝜋𝑎2 𝜎𝑧𝑟 ℱ⁄ ) versus 

r  for inclined load and also for various values of rigidity ( ), belonging to the 

thin film are displayed in Fig.  8. As it is evident from this graph, for 0   the 

amount of shear stress at the surface, 0z  , yields to zero that is called traction 

free conditions; On the other hand, the maximum amount of zr  for any value 

of rigidity,  , takes place at 0r  . 
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4. Conclusion 

     In the present study, by virtue of displacement potential functions and 

integral transform methods, an isotropic surface stiffened half-space by an 

isotropic extremely thin membrane under arbitrary static buried loads has been 

analytically investigated. The derived equations as thin membrane surface 

effects are concluded under considerations of plane stress for linear elastic 

membrane and perfect bonding between the membrane and surrounding media 

with no sliding at boundaries: 
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. 

     Explicit expressions for mechanical field components for an axisymmetric 

case of loads are derived. Owing to eliminating unknown constants belonging 

to the thin film layer, the proposed surface conditions provide a more 

convenient procedure than the 3D elasticity approach while high accuracy is 

preserved. 

The generality and efficiency of the presented equations are illustrated through 

specific cases and comparative results deduced from numerical examples. 

According to the studied numerical examples of circular uniform loads, the 

following conclusions are drawn: 

 Under the inclined loading, surface covered membrane reduces the 

normal displacement up to 25%, approximately, when    in 

comparison with classic similar problem. 

 Thin membrane effect on radial displacement behavior is more important. 

Individually for horizontal loads, so that the orientation of the radial 

displacement for elements located under and above of the loading depth, 

s, changes in the z-direction. 

 Because of extremely thin covering film role, traction free conditions at 

the surface of half-space are not hold and stress components 
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 , , 0zr r z    and  , , 0z r z    are not zero at the surface unless the 

rigidity,  , tends to zero. 
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 List of figure captions: 

Fig.  1. Normal displacement along the z-axis of a coated half-space under 

circular inclined patch load of radius a and total resultant ℱ for various values 

of rigidity, κ. 

Fig.  2. Normalized displacement ratio along the z-axis of a coated half-space 

under circular inclined uniform patch load of radius a and total resultant ℱ. 

Fig.  3. Normal displacement along the r-axis of a coated half-space under 

circular horizontal uniform patch load of radius a and total resultant ℱh. 

Fig.  4. Normal displacement along the r-axis of a coated half-space under 

circular vertical uniform patch load of radius a and total resultant ℱv. 

Fig.  5. Radial displacement along the z-axis of a coated half-space under 

uniform circular vertical patch load of radius a and total resultant ℱv. 

Fig.  6. Radial displacement along the z-axis of a coated half-space under 

uniform circular horizontal patch load of radius a and total resultant ℱh. 

Fig.  7. Radial displacement along the z-axis of a coated half-space under 

uniform circular inclined patch load of radius a and total resultant ℱ. 

Fig.  8. Shear stress component along the r-axis at the surface of a coated half-

space under circular inclined uniform patch load of radius a and total 

resultant ℱ. 
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Fig.  1. Normal displacement along the z-axis of a coated half-space under circular inclined patch 

load of radius a and total resultant F for various values of rigidity, κ. 

 
Fig.  2. Normalized displacement ratio along the z-axis of a coated half-space under circular inclined 

uniform patch load of radius a and total resultant F. 
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Fig.  3. Normal displacement along the r-axis of a coated half-space under circular horizontal 

uniform patch load of radius a and total resultant F_h. 

 
Fig.  4. Normal displacement along the r-axis of a coated half-space under circular vertical uniform 

patch load of radius a and total resultant F_v. 
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Fig.  5. Radial displacement along the z-axis of a coated half-space under uniform circular vertical 

patch load of radius a and total resultant F_v. 

 
Fig.  6. Radial displacement along the z-axis of a coated half-space under uniform circular horizontal 

patch load of radius a and total resultant F_h. 
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Fig.  7. Radial displacement along the z-axis of a coated half-space under uniform circular inclined 

patch load of radius a and total resultant F. 

 

 
Fig.  8. Shear stress component along the r-axis at the surface of a coated half-space under circular 

inclined uniform patch load of radius a and total resultant F. 


