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Abstract. 

This study investigates the magnetohydrodynamic flow and heat transfer between two 

parallel disks, considering suction and injection effects at the disks. The governing equations 

describing the flow and thermal transport are derived based on the principles of mass, 

momentum and energy conservation for an electrically conducting fluid. As the governing 

partial differential equations (PDEs) are highly nonlinear, similarity transformations are 

applied to transform them into coupled ordinary differential equations (ODEs). Numerical 

techniques, namely the Hermite wavelet method (HWM) and Differential transformation 

technique (DTT) are then employed to solve the transformed equations. Parametric effects of 

several influential parameters such as the Prandtl number, squeeze number, Hartmann 

number, and thermophoresis parameter on the velocity and temperature profiles are 

systematically analyzed. Comparisons are made with previous findings in the literature. The 

results indicate significant dependence of flow behavior and heat transfer on the governing 

parameters. Velocity and temperature distributions in the boundary layer are presented and 

discussed in detail. The proposed mathematical model and numerical approach provide useful 

insights into heat transfer characteristics for parallel disk systems and similar engineering 

applications involving magnetohydrodynamic flows with suction or injection effects. 

Keywords Heat transfer, MHD, Viscous fluid, Hermite wavelet method, Differential 

transformation method. 

1. Introduction 
 

Mathematical modeling of various phenomena in diverse fields such as engineering, science 

and technology often involves nonlinear differential equations. Such nonlinear equations 

naturally arise in many real-world problems in fluid dynamics, materials science, biology and 

other domains[1-3]. However, analytical solutions are rarely feasible for most nonlinear 

problems except in trivial cases. As a result, numerical methods are commonly employed to 
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obtain approximate solutions. In recent years, several numerical techniques have been 

proposed for solving highly nonlinear differential equations, including the Runge-Kutta 

method, homotopy perturbation method, finite difference approaches, optimal homotopy 

analysis and numerical wavelet approaches. In particular, the HWM [4] and DTT have gained 

prominence due to their accuracy and effectiveness in handling nonlinear terms. This study 

focuses on applying the above methods to solve nonlinear differential equations modeling 

important engineering and scientific phenomena. The ability of these numerical techniques to 

provide solutions is systematically evaluated for various nonlinear problems. 

The DTT is a semi-analytical technique that requires only a few parameters. It produces a 

polynomial-like solution for the given equation. In contrast to the traditional Taylor series 

approach, the DTT does not demand high computational resources for solving highly 

nonlinear problems without linearization or discretization [5-7]. Previous studies have 

effectively applied this method to solve various fluid flow problems. Numerical wavelet 

methods have gained significant attention in recent years for solving differential equations 

arising in diverse fields such as signal processing, image analysis and mathematical 

modeling. Notable contributions include the use of Laguerre wavelets [8], Taylor wavelets 

[9],  cardinal B-splines [10], Bernoulli wavelets [11] and Hermite wavelets [12, 13]. Among 

these, the HWM has been widely utilized due to its accuracy. Given the effectiveness of 

numerical wavelet techniques, developing a parametric Hermite wavelet approach for 

nonlinear problems is important. With the availability of powerful computational software, 

HWM has been successfully employed by researchers to solve various nonlinear boundary 

value problems, including different fluid flow models [14-21]. This study aims to apply the 

HWM to analyze the present magnetohydrodynamic flow problem. 

The study of viscous fluid flows involves fundamental fluid mechanics principles to analyze 

complex real-world flows. Most problems exhibit nonlinear and turbulent behaviors. Past 

work by researchers like Leal [22] has provided insights into viscosity and particle motion 

within fluids. Viscous fluids have important applications, for example as brake oil which 

helps reduce motion in hydraulic brakes. Fluid viscosity also impacts blood flow through 

arteries and veins. Significant research efforts like those by MacCormack [23] have 

developed numerical techniques to model equations governing compressible viscous flows. 

Recent studies by authors such as Jalili et al. [24] and Zhang et al [25] have analyzed viscous 

fluid flow and heat transfer between permeable disks as well as nonlinear convection effects 

on such flows. This has enhanced my understanding of complex flow dynamics and viscosity. 



The present study similarly aims to apply numerical methods to model 

magnetohydrodynamic viscous flow between parallel disks, in line with past efforts to 

analyze industrial and biomedical applications involving viscous fluids. 

Due to the no-slip condition at fluid-solid boundaries, velocity decreases near walls. To 

control this, either fluid can be injected through porous surfaces or suctioned away to smooth 

velocity profiles. Suction extracts fluid impacted by no-slip, drawing it towards walls. 

Injection enhances velocities by adding more fluid. Past studies have analyzed suction 

effects. Zaturska et al. [26] examined suction in porous channel flows. Attia [27] investigated 

unsteady flows between plates under suction and injection. Mahmood [28] used homotopy 

methods for a deformable channel with wall suction/injection in porous media. Yuan and 

Finkelstein [29] explained laminar pipe flows through porous walls with injection/suction. 

Abdollahi et al. [30] analyzed heat transfer between parallel surfaces under hybrid nanofluid 

suction/injection using numerical techniques. These findings provide useful insights into 

controlling boundary layer development through suction/injection in viscous flows. The 

present study similarly considers these effects in the modeled magnetohydrodynamic 

problem. 

Heat transfer [31, 32] concept plays a significant role across various fields including 

engineering and technology. Convection involves the transfer of heat via molecular 

interchange as hot and cold fluids move at different temperatures, such as when a surface 

contacts a flowing fluid. Previous studies have provided useful insights. Ahmad et al. [33] 

analyzed heat transfer and time-dependent viscous flows, employing finite difference 

methods to obtain profiles considering Hartmann and Eckert numbers. Zukauskas [34] 

examined forced convective heat transfer in viscous flows, focusing on the viscous sublayer 

disturbance. Ismail [35] numerically studied viscous fluid behaviors in mini-channel heat 

exchangers. Rosenberg and Hellums [36] investigated developing flows and heat transfer for 

varying viscosity fluids. Bathe and Dong [37] used software to solve incompressible viscous 

flows with heat transfer. 

Magnetohydrodynamics (MHD) examines the motion of electrically conducting fluids under 

magnetic fields, important in plasmas, liquid metals, salt water and electrolytes [38-42]. 

MHD has applications in spacecraft propulsion, astrophysics and more. Previous studies 

provide useful insights. Sa'adaldin and Qatanani[43] analytically and numerically examined 

unsteady MHD flows. Nesliturk and Tezer-Sezgin[44] studied high Hartmann number MHD 



flows using finite elements. More recently, Guled et al. [45] analyzed heat transfer effects on 

MHD slip flow over shrinking sheets using optimal homotopy methods. Akbar et al. [46] 

examined heat transfer for MHD viscous fluids in ciliated tubes. Shah et al. [47] studied 

MHD and porous effects on free convection between plates. Bhargavi et al. [48] analyzed 

conjugate heat transfer for MHD viscous flow past permeable plates. Raghunatha et al [49] 

examined heat transfer effects on MHD suction–injection viscous flows using numerical 

techniques.  

To the best of our knowledge, applications of the DTM and HWM to magnetohydrodynamic 

(MHD) suction-injection viscous fluid flow problems have not been reported in previous 

literature. This study aims to solve the highly nonlinear governing equations using DTM and 

HWM. The implementation of these numerical techniques was discussed in our past works 

[18, 49]. The impact of influential physical parameters such as the Prandtl number, squeeze 

number, Hartmann number, suction/blowing parameter and thermophoresis parameter on the 

velocity and temperature distributions in the boundary layer are examined. The paper is 

organized as follows: Section 2 formulates the problem. Sections 3 and 4 present the basics 

and methodology of DTM and HWM, respectively. Section 5 discusses the results and 

Section 6 provides the conclusions. 

2. Formulation of the problem 

The physical outline is shown in Fig. 1. We study the MHD flow of an incompressible 

viscous fluid among two parallel infinite disks, generated by a distance, ( ) 1h t H t 

.Additionally, if 0  causes the plates to pinch together until they touch at
1

t


 , but 0 

causes plates to bear a receding and dilating motion. The lower and upper disks are 

maintained at constant temperatures wT T  and HT T ,  where wT is the surface temperature 

at the lower disk and HT is the surface temperature at the upper disk. We have selected the 

cylindrical coordinate arrangement. The rotational symmetry of the flow 0


 
 

 
and also 

take the azimuthal velocity component  v  is equal to zero. A uniform magnetic field of 

strength 
0( )

1

B
B t

t



is applied perpendicular to the disks. The nonlinear governing 

equations for the unsteady 2D axisymmetric flow of a viscous fluid are as follows [50] 
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Where u  and w  are radial and axial velocities along r  and z direction,  is the density of 

the fluid,T is the temperature, pc is the specific heat at constant pressure, is the Dynamic 

viscosity, 
TD is the thermophoretic diffusion coefficient, fk is the thermal conductivity of the 

fluid and
mT is the mean fluid temperature. 

The appropriate boundary conditions for the problem are [50]
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Let us introduce the following similarity quantities 
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After inserting the aforementioned quantities into equations (1) to (4), we detached the 

pressure gradient from the attained equations. 
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The equivalent boundary conditions are  
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thermophoresis parameter. 

3. The basics of differential transformation method and Hermite wavelet method 

 

3.1 Basics of DTM  

The DTM was first introduced by Zhou [51] for solving linear and nonlinear problems in 

electrical circuit analysis, where it was compared with other techniques. DTM generates an 

analytical solution in the form of a polynomial set based on the concept of Taylor series. The 

fundamental principles of DTM have been described in previous works [52, 53] as follows: 

DTM works on the assumption that the dependent variable ( )y x in the given differential 

equation is an analytic function within its domain  .  The solution ( )y x is approximated by a 

polynomial series centred around a point ix x , which lies within the domain D. This 

polynomial series takes the form of a Taylor series expansion of ( )y x  about the point ix x . 
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The differential alteration of the solution ( )y x is written as: 
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where new solution ( )y x and altered solution ( )Y k . The differential spectrum of ( )Y k is 

limited inside the distance  0,x   and as well as   is some constant. The differential 

inverse renovate of ( )Y k is well-defined as follows:  
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The solution ( )y x is expressed by a finite power series, and the overhead equation can also be 

articulated as: 
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The basic procedures of DTM are  
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3.2 Basics of HWM 

Hermite wavelets are well-defined as [12, 13], 
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Where 11,2,3,...,2kn   and 0,1,2,3,..., 1m M  and k N . Here 𝐻𝑚(𝑥) represents Hermite 

polynomials of degree 𝑚 with regards to weight function 2( ) 1W x x   on the real line R  

and pleases the succeeding recurrence formula 0 1( ) 1, ( ) 2 ,H x H x x 

2 1( ) 2 ( ) 2( 1) ( )m m mH x xH x m H x    where, 0,1,2,3,m   . 

For a  specified nonlinear differential equation, we approximated to the solution as )(xy with 

the assistance of  HWM as follows  
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We estimated )(xy by truncating the series as follows 
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Process of Integration of Matrix 

The following are some of  the Hermite wavelet basis at 1k   



1,0

1,1

2

1,2

3 2

1,3

4 3 2

1,4

2
( ) ,

1
( ) (8 4),

1
( ) (32 32 4),

1
( ) (128 192 48 8),

1
( ) (512 1024 384 128 40),

x

x x

x x x

x x x x

x x x x x


















 

  

   

    
 

5 4 3 2

1,5

1
( ) (2048 5120 2560 1280 800 16)x x x x x x


      , 

6 5 4 3 2

1,6

1
( ) (8192 24576 15360 10240 9600 384 368)x x x x x x x


       , 

7 6 5 4 3 2

1,7

1
( ) (32768 114688 86016 71680 89600 5376 10304 928),x x x x x x x x


       

 

8 7 6 5 4

1,8

3 2

1
( ) (131072 524288 458752 458752 716800

57344 164864 29696 3296)

x x x x x x

x x x




     

  

, 

9 8 7 6 5 4

1,9

3 2

1
( ) (524288 2359296 2359296 2752512 5160960 516096

1978368 534528 118656 21440)

x x x x x x x

x x x




      

  

, 

10 9 8 7 6

1,10

5 4 3 2

1
( ) (2097152 10485760 11796480 15728640 34406400

4128768 19783680 7127040 2373120 857600 16448)

x x x x x x

x x x x x




     

    

, 

11 10 9 8 7

1,11

6 5 4 3 2

1
( ) (8388608 46137344 57671680 86507520 216268800

30277632 174096384 78397440 34805760 18867200 ,

723712 461696)

x x x x x x

x x x x x

x




     

   

 

12 11 10 9 8

1,12

7 6 5 4 3

2

1
( ) (33554432 201326592 276824064 461373440 1297612800

207618048 1392771072 752615424 417669120 301875200 ,

17369088 22161408 561536)

x x x x x x

x x x x x

x x




    

    

  

 

Where,
9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]Tx x x x x x x x x x          . 

Apply the integration regarding with x and limits from 0 to x the above nine bases and explicit 

it as a linear combination of Hermite wavelet basis as follows. 
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  
   

 







. 

Implement the integration to the above nine bases is as follows 



1,0 9

0 0

3 1 1
( ) 0 0 0 0 0 0 ( )

16 8 32

x x

x dxdx x 
 

  
 

  , 

1,1 9

0 0

1 1 1
( ) 0 0 0 0 0 0 ( )

6 16 96

x x

x dxdx x 
  

  
 

  , 

1,2 9

0 0

1 1 1
( ) 0 0 0 0 0 0 ( )

16 12 192

x x

x dxdx x 
  

  
 

  , 

1,3 9

0 0

3 5 1
( ) 0 0 0 0 0 0 ( )

5 16 320

x x

x dxdx x 
 

  
 

  , 

1,4 9

0 0

7 1 1
( ) 0 0 0 0 0 0 ( )

12 10 480

x x

x dxdx x 
  

  
 

  , 

1,5 9

0 0

22 23 1
( ) 0 0 0 0 0 0 ( )

7 12 672

x x

x dxdx x 
  

  
 

  , 

1,6 9

0 0

81 29 1
( ) 0 0 0 0 0 0 ( )

8 7 896

x x

x dxdx x 
 

  
 

  , 

1,7 9 1,9

0 0

148 103 1
( ) 0 0 0 0 0 0 0 ( ) ( )

9 8 1152

x x

x dxdx x x  
 

  
 

  , 

1,8 9 1,10

0 0

773 670 1
( ) 0 0 0 0 0 0 0 ( ) ( )

5 9 1440

x x

x dxdx x x  
  

  
 

  . 

Hence, 

9 9 9 9

0 0

( ) ( ) ( )

x x

x dx dx H x x  
    , 

where 



3 1 1
16 8 32

1 1 1
6 16 96

1 1 1
16 12 192

3 5 1
5 16 320

7 1 1
9 9 912 10 480

2322 1
7 12 672

81 29 1
8 7 896

148 103
9 8

773 670
5 9

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 , ( ) 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 11

0 0 0 0 0 0 0

H x

 

 

 




 

 
 
 
 
 
 
   
 
 
 
 
 
 
 

1,9

1,10

.

( )
52

1
( )

1440

x

x





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

.

 

Againemploy the integration to the above nine bases is as follows 

1,0 9

0 0 0

5 3 1 1
( ) 0 0 0 0 0 ( )

96 64 64 384

x x x

x dxdxdx x 
 

  
 

   , 

1,1 9

0 0 0

7 1 1 1
( ) 0 0 0 0 0 ( )

128 24 128 1536

x x x

x dxdxdx x 
   

  
 

   , 

1,2 9

0 0 0

1 1 1 1
( ) 0 0 0 0 0 ( )

80 64 96 3840

x x x

x dxdxdx x 
   

  
 

   , 

1,3 9

0 0 0

19 3 5 1
( ) 0 0 0 0 0 ( )

96 20 128 7680

x x x

x dxdxdx x 
 

  
 

   , 

1,4 9

0 0 0

13 7 1 1
( ) 0 0 0 0 0 ( )

56 48 80 13440

x x x

x dxdxdx x 
   

  
 

   , 

1,5 9

0 0 0

65 11 23 1
( ) 0 0 0 0 0 ( )

64 14 96 21504

x x x

x dxdxdx x 
   

  
 

   , 

1,6 9 1,9

0 0 0

133 81 29 1
( ) 0 0 0 0 0 0 ( ) ( )

36 32 56 32256

x x x

x dxdxdx x x  
 

  
 

   , 

1,7 9 1,10

0 0 0

193 37 103 1
( ) 0 0 0 0 0 0 ( ) ( )

40 9 64 46080

x x x

x dxdxdx x x  
 

  
 

   , 

1,8 9 1,11

0 0 0

1211 773 335 1
( ) 0 0 0 0 0 0 ( ) ( )

22 20 36 63360

x x x

x dxdxdx x x  
   

  
 

   . 

Hence, 



9 9 9 9

0 0 0

( ) ( ) ( )

x x x

x dxdxdx H x x  
     , 

where 

5 3 1 1
96 64 64 384

7 1 1 1
128 24 128 1536

1 1 1 1
80 64 96 3840

19 3 5 1
96 20 128 7680

13 7 1 1
9 9 56 48 80 13440

65 2311 1
64 14 96 21504

133 81 29
36 32 56

193 37 103
40 9 64

773 3351211
22 20 36

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

H

  

  

  


 

 

  9

1,9

1,10

1,11

0

0

0

0

0

0, ( )

1
( )

32256

1
( )

46080
0 0 0 0 0

1
( )

63360

x

x

x

x









 
 

   
   
   
   
   
   
    
   
   
   
   
   
   
   

  

.  

Again by applying four times integration to the above nine bases is as follows, 

1,0 9

0 0 0 0

19 5 3 1 1
( ) 0 0 0 0 ( )

1536 384 512 768 6144

x x x x

x dxdxdxdx x 
 

  
 

    , 

1,1 9

0 0 0 0

7 7 1 1 1
( ) 0 0 0 0 ( )

480 512 192 1536 30720

x x x x

x dxdxdxdx x 
    

  
 

    , 

1,2 9

0 0 0 0

1 1 1 1 1
( ) 0 0 0 0 ( )

1152 320 512 1152 92160

x x x x

x dxdxdxdx x 
    

  
 

    , 

1,3 9

0 0 0 0

17 19 3 5 1
( ) 0 0 0 0 ( )

336 384 160 1536 215040

x x x x

x dxdxdxdx x 
 

  
 

    , 

1,4 9

0 0 0 0

55 13 7 1 1
( ) 0 0 0 0 ( )

768 224 384 960 430080

x x x x

x dxdxdxdx x 
    

  
 

    , 

1,5 9 1,9

0 0 0 0

53 65 11 23 1
( ) 0 0 0 0 0 ( ) ( )

216 256 112 1152 774144

x x x x

x dxdxdxdx x x  
    

  
 

    , 

1,6 9 1,10

0 0 0 0

497 133 81 29 1
( ) 0 0 0 0 0 ( ) ( )

480 144 256 672 1290240

x x x x

x dxdxdxdx x x  
 

  
 

    , 

1,7 9 1,11

0 0 0 0

127 193 37 103 1
( ) 0 0 0 0 0 ( ) ( )

132 160 72 768 2027520

x x x x

x dxdxdxdx x x  
 

  
 

    , 



1,8 9

0 0 0 0

1,12

4277 1211 773 335
( ) 0 0 0 0 0 ( )

288 88 160 432

1
( )

3041280

x x x x

x dxdxdxdx x

x

 



    
  
 



   
, 

Hence, 

9 9 9 9

0 0 0 0

( ) ( ) ( )

x x x x

x dxdxdxdx H x x  
      , 

where

19 5 3 1 1
1536 384 512 768 6144

7 7 1 1 1
480 512 192 1536 30720

1 1 1 1 1
1152 320 512 1152 92160

17 19 3 5 1
336 384 160 1536 215040

55 13 7 1 1
9 9 768 224 384 960 430080

53 65 2311
216 256 112 1152

497 133
480

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

H

   

   

   


  

  1,99

81 29 1,10
144 256 672

127 193 37 103
132 160 72 768

1,114277 773 3351211
288 88 160 432

1,12

0

0

0

0

0

1
( ), ( )

774144

1
( )

0 0 0 0 0 1290240

0 0 0 0 0 1
( )

20275200 0 0 0 0

1
( )

3041280

xx

x

x

x









  



 
 
 
 
 
 
     
 
 
 
 
 

 



.

















 
 
 



 

4. Methodology  

4.1 Differential transformation method (DTM) 

Let us consider the values 1   and 0m  , assuming that we have valid DTM equations (7) 

and (8). When we apply a differential transformation to these equations, the resulting form 

can be expressed as follows: 

 

 

 

2

0

0

( 1)( 2)( 3)( 4) ( 4) ( 1)( 2) ( 2)

( 1) ( 1) ( 2) ( 3) ( 3)

0,

3( 1)( 2) ( 2) 2 ( )( 1)( 2)( 3) ( 3)

k

t

k

t

k k k k F k M k k F k

k t t t t F t

S

k k F k F k t t t t F t






         

 
       

  
 

         
 





(18) 



0

0 0

( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)

2 ( ) ( 1) ( 1) ( 1) ( 1) ( 1) 0

k

t

k k

t t

k k k Pr Nt t t k t k t

Pr S F k t t t k t t t

  

  



 

          

 
         

 



 

.             

(19) 

Apply the boundary conditions    

(0) , (1) 0, (2) , (3) , (0) 1, (0) .F A F F a F b c                                                       (20) 

We have included additional boundary conditions in Equation (9) at point 1   by 

introducing the constants ,a b and c . This allows for a more comprehensive understanding of 

the system. 

2 2 2

2

3 2 2 2 2 2 2 2

3 6 3 9 2
(4) , (5) ,

12 60

2
(2) ,

2

3 2
(3) .

3

aM a S b S A bM b S a M S A
F F

c Nt Pr c Pr S A

c Nt Pr c Nt Pr S A c Pr S A





   
 

 


 


                (21) 

Continue the technique described above and replace the values in the next series.

2 3 4 5 6( ) (0) (1) (2) (3) (4) (5) (6)f F F F F F F F              ,               

(22) 

2 3 4 5 6( ) (0) (1) (2) (3) (4) (5) (6)                       .                   

(23) 

We altered the boundary conditions from Eq. (9) into Eqs. (22) and (23) at the point 1  to 

determine the values of , ,a b c . Then 

1
(1) , (1) 0, (1) 0.

2
f f                       (24)                                                                                                

To obtain the values of , ,a b c , we are solving the aforementioned equations. As part of this 

process, we can create two polynomial equations for ( )f   and ( )   by substituting the 

estimated values into equations (22) and (23). This approach allows us to further analyze and 

understand the behavior of ( )f   and ( )   based on the determined values of , ,a b and c . 



4.2 Hermite wavelet method 

Now, assume that 

   iv Tf x B x .                                          (25) 

Integrate Eq. (25) four times concerning x , the limit from 0 to x , and we get 

       0 Tf x f B G x x        .          (26) 

         0 0 Tf x f xf B G x x           .            (27) 

           
2

0 0 0
2

Tx
f x f x f f B G x x              .                                (28)                                    

             
2 3

0 0 0 0 .
2 6

Tx x
f x f x f f f B G x x              (29)                                      

  

Put (0) , (0) 0f A f   in Eq. (29), we have 

         
2 3

0 0
2 6

Tx x
f x A f f B G x x           .   (30)                                                    

Put    
1

1 , 1 0
2

f f    in Eqs. (29), (28) and  solve those equations to obtain  0f  and 

 0f  , then we get 

         
1 1

0 12 6 12 6T T

x x
f A B G x x B G x x   

 
                .                 (31) 

          

   

1 1

1

1
0 12 6 12 6

2

T T

x x

T

x

f A B G x x B G x x

B G x x

   

 

 



                

    

.         (32) 

Substituting  0f  and  0f   in (30) we get 



 
        

   

        

   

2
1 1

1

3

1 1

0.5 12 6 12 6

2

12 6 12 6
6

.

T T

x x

T

x

T T

x x

T

A B G x x B G x xx
f x A

B G x x

x
A B G x x B G x x

B G x x

   

 

   

 

 



 

                
       

              

    

.(33) 

Similarly, choose 

   Tx N x   .                                      (34) 

Integrate Eq. (34) twice with respect of x , whose range is 0 to x we have 

     ( ) 0 Tx N G x x          .     (35)                                                  
 

         0 0 Tx x N G x x            .          (36) 

Using (1) 0   in Eq. (36) we have 

   
1

(0) 1 T

x
N G x x  


      .           (37)  

Put (37) in (36), and we get 

         
1

1 T T

x
x N G x x N G x x    


               .   (38)  

The dependent variables , , , , , , ,ivf f f f f         are replaced in the governing differential 

equations using the Hermite wavelet approximations. Collocation points are chosen in the 

domain, for example 
2 1

2
i

i
x

N


 , where 1,2,3, ,i N  .  This results in a system of algebraic 

equations involving the coefficients of the Hermite wavelet series. To determine the unknown 

coefficients, this system of equations is solved using the Newton-Raphson technique. The 

Newton-Raphson method is employed to iteratively obtain numerical solutions for the 

coefficient values that satisfy the entire system of equations simultaneously. This provides a 

numerical approximation to the differential equations (7-8). 

5. Results and Discussion 



The DTM and HWM are applied to study the magnetohydrodynamic flow and heat transfer 

of a conducting viscous fluid between disks, considering suction and injection effects. The 

results obtained from DTM and HWM are validated by comparing them with other published 

studies [50]. As shown in Tables 1-6, an excellent agreement is observed. This comparison 

confirms the suitability of HWM over other numerical techniques for solving highly 

nonlinear coupled differential equations modeling such complex flow problems. The 

influence of five important physical parameters on the velocity and temperature fields is 

presented in Figures 2-18.  It is noted that ( )f   denotes the axial velocity and ( )f   

represents the radial velocity based on the formulations. Overall, the study enhances the 

understanding of parameter impacts on the magnetohydrodynamic flow behavior between 

disks using accurate numerical methods. 

The energy input from uniform blowing indicates it may be possible to achieve net energy 

savings by controlling flow rates. Figs. 2(a,b) and 3(a,b) show parameter A  influences axial 

and vertical velocities at the disks. At the bottom disk aligned with the positive z-direction, 

introducing flow between disks is expected. Figs. 2(a,b) suggests vertical velocity will 

become zero internally due to the bottom disk's higher entrance velocity (large A ). It may 

exceed this value as the input flow has greater energy than the top disk. Thus, after 

interacting with the upstream flow and stabilizing kinetic energy, the fluid's vertical velocity 

achieves zero. Figs. 3(a,b) demonstrate a larger A  (higher axial velocity) increase in the inlet 

flow rate due to conservation of mass in the incompressible flow, requiring an elevated axial 

output flow rate. Axial velocity fluctuations at the top disk are also depicted. Similarly, the 

parameter S  influences velocities as seen in Figs. 4(a,b) and 5(a,b), where larger S  decreases 

vertical velocity at a given distance. The gradient velocity for various S  values remains 

nearly constant on the top disk per Figs. 5(a,b). Figs. 6(a,b) and 7(a,b) reveal relationships 

between velocities and the Hartmann number. 

Suction is used to control boundary layers and aims to reduce drag or channel losses. Its 

effect on vertical velocity ( )f   and radial velocity ( )f   is shown in Figs. 8(a,b) and Figs. 

9(a,b). Under suction, flow condenses between disks and exits the bottom disk. For larger 

suction parameters, output speed exceeds the bottom disk without impacting the top disk 

vertical flow. Magnetic molecules attach to the top disk surface, matching its velocity. 

Figures 8(a,b) demonstrate ( )f  is positive for smaller A  values (0.1, 0.3) while a larger A  

relates to stronger suction, producing negative ( )f   per mass conservation. As no slip 



occurs, Figs. 9(a,b) indicate zero u  velocities on both disks, with fluid movement in the z-

direction. Altering parameter S  does not notably impact ( )f   and ( )f   as seen in Figs. 

8(a,b) and 9(a,b). 

Squeezing flow involves both extensional and shear components. However, for small gaps 

and low relative velocities, shear effects are considered dominant. Figs. 10(a,b) and 11(a,b) 

demonstrate that increasing the squeeze parameter leads to higher axial velocities and lower 

vertical velocities. The top disk velocity rises with increasing parameter  , since   is 

proportional to w . Adhering to mass conservation, hypothetical mass leaving the top must 

exit through the sides and bottom. Additionally, as the squeeze parameter enlarges, the 

location of maximum axial velocity shifts from the centre towards the bottom disk. 

The Hartmann number (M) represents the ratio of electromagnetic to viscous forces. It was 

first introduced by Danish physicist Julius Hartmann(1881-1951)  to characterize fluid flows 

under magnetic fields. Higher M  values correspond to stronger magnetic fields, affecting 

flow between disks. Literature shows friction coefficient notably increases with rise M . As 

observed with the parameter A  previously, the axial flow direction u  switched from sides to 

center as M  increased. Conversely, axial velocity becomes negative in opposing directions 

determined by the right-hand rule as the force is perpendicular to this velocity. As seen in 

Figs. 12(a,b) and 13(a,b), increasing M  lowers axial fluid velocity but has no impact on the 

vertical component w , in line with theoretical expectations regarding the Hartmann number's 

role. 

Fluid temperature impacts viscosity, which determines internal friction forces resisting shear 

flows. As a result, temperature affects flow rates. Figs. 14-15 shows increasing 

suction/blowing parameter A  (positively) raises the temperature, whereas blowing exhibits 

the opposite trend as enhanced suction permits more near-disk fluid motion. Figs. 16-18 

reveal the influence of other parameters. Fig. 16 shows temperature ( )   decreases with 

rising Prandtl number Pr , which is a dimensionless number representing the ratio of 

momentum diffusivity to thermal diffusivity. Similarly, Fig. 17 demonstrates temperature 

decreases for larger squeeze parameter S  values. However, Fig. 18 illustrates that increasing 

the thermophoresis parameter Nt , which characterizes particle deposition rates, uniformly 

elevates the temperature field as expected. Overall, these results provide useful insights into 

controlling temperature profiles through the manipulation of influential flow parameters in 

magnetohydrodynamic problems. 



6. Conclusion 

The paper applies numerical methods to solve the governing equations modeling 

magnetohydrodynamic flow and heat transfer between disks. The HWM and DTM are 

utilized to handle the highly nonlinear system of equations characterizing the electrically 

conducting, suction-injection viscous fluid problem. Results demonstrated the capability of 

HWM and DTM to accurately solve this complex flow scenario, with solutions closely 

matching numerical data. Parametric analyses provided useful insights into how influential 

factors like the squeeze number, Hartmann number, suction parameter, thermophoresis 

parameter, and Prandtl number impact velocities and temperature distributions. Overall, 

HWM proved a powerful technique for the problem, and the study enhanced the 

understanding of magnetohydrodynamic dynamics between disks using numerical 

transformation approaches. 
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Table 1 Approximation of (1)f   with    , 0.2,0.1M A   

S  Fardiet al.[50] DTM HWM 

0.01 -2.402387733 -2.402387733 -2.402387733 

0.02 -2.403175868 -2.403175868 -2.403175868 

0.2 -2.417351603 -2.417351603 -2.417351603 

0.25 -2.421285462 -2.421285462 -2.421285462 

0.3 -2.425217671 -2.425217671 -2.425217671 

0.35 -2.429148007 -2.429148007 -2.429148007 

 

Table 2 Approximation of (1)f   with    , 0.2,0.1M S   

A  Fardiet al.[50] DTM HWM 

-0.2 -4.232066561 -4.232066561 -4.232066561 

-0.1 -3.623059453 -3.623059453 -3.623059453 

0 -3.015530792 -3.015530792 -3.015530792 

0.1 -2.409478752 -2.409478752 -2.409478752 

0.2 -1.804901490 -1.804901490 -1.804901490 

0.3 -1.201797195 -1.201797195 -1.201797195 

0.4 -0.600163987 -0.600163987 -0.600163987 

Table 3 Approximation of (1)f   with    , 0.1,0.1S A   



M  Fardiet al.[50] DTM HWM 

0.01 -2.407886713 -2.407886713 -2.407886713 

0.1 -2.408281818 -2.408281818 -2.408281818 

0.2 -2.409478750 -2.409478750 -2.409478750 

0.3 -2.411472496 -2.411472496 -2.411472496 

0.4 -2.414261347 -2.414261347 -2.414261347 

0.5 -2.417842954 -2.417842954 -2.417842954 

Table 4 Injection flow  (1)f  results with Fardiet al. [50] 

   , 0.5,0.01M S      , 0.5, 1M A    

A  Fardi et al. 

[50] 

DTM HWM S  Fardi et al. 

[50] 

DTM HWM 

-0.01 -3.0741434 -3.0741434 -3.0741434 0.015 -9.0601042 -9.0601042 -9.0601042 

-0.1 -3.6170373 -3.6170373 -3.6170373 0.1 -9.1882113 -9.1882113 -9.1882113 

-0.2 -4.2203929 -4.2203929 -4.2203929 0.2 -9.3381070 -9.3381070 -9.3381070 

-0.3 -4.8238961 -4.8238961 -4.8238961 0.3 -9.4870729 -9.4870729 -9.4870729 

-0.7 -7.2393839 -7.2393839 -7.2393839 0.4 -9.6350661 -9.6350661 -9.6350661 

-1 -9.0525493 -9.0525493 -9.0525493 0.5 -9.7820529 -9.7820529 -9.7820529 

 

Table 5 Suction flow  (1)f  results with Fardiet al. [50] 

   , 0.5,0.01M S      , 0.4,1S A   

A  Fardiet 

al.[50] 

DTM HWM M  Fardiet 

al.[50] 

DTM HWM 

0.01 -2.95351650 -2.95351650 -2.95351650 0.1 2.91247968 2.91247968 2.91247968 

0.1 -2.41076854 -2.41076854 -2.41076854 0.4 2.92042584 2.92042584 2.92042584 

0.2 -1.80785529 -1.80785529 -1.80785529 1 2.96455531 2.96455531 2.96455531 

0.3 -1.20508946 -1.20508946 -1.20508946 1.2 2.98742604 2.98742604 2.98742604 

0.7 1.20450001 1.20450001 1.20450001 1.5 3.02910224 3.02910224 3.02910224 

1 3.01014511 3.01014511 3.01014511 2 3.11733007 3.11733007 3.11733007 

 

 

 

 

 

 

Table 6 Validation of results with Fardiet al. [50] 

 0.1, 0.2, 0.1A M S    1, 2, 0.4A M S    

   
  Fardi et al. 

[50] 

DTM HWM Fardi et al. 

[50] 

DTM HWM 



0.10 0.216945117 0.216945117 0.216945117 -0.297884946 -0.297884946 -0.297884946 

0.20 0.384801282 0.384801282 0.384801282 -0.505873586 -0.505873586 -0.505873586 

0.40 0.575554145 0.575554145 0.575554145 -0.713542841 -0.713542841 -0.713542841 

0.50 0.599174553 0.599174553 0.599174553 -0.731526711 -0.731526711 -0.731526711 

0.55 0.593125400 0.593125400 0.593125400 -0.721093460 -0.721093460 -0.721093460 

0.60 0.575174467 0.575174467 0.575174467 -0.697912886 -0.697912886 -0.697912886 

0.65 0.545313913 0.545313913 0.545313913 -0.661889099 -0.661889099 -0.661889099 

0.80 0.384040429 0.384040429 0.384040429 -0.472861417 -0.472861417 -0.472861417 

0.85 0.306258048 0.306258048 0.306258048 -0.380561374 -0.380561374 -0.380561374 

0.90 0.216373180 0.216373180 0.216373180 -0.271931012 -0.271931012 -0.271931012 
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                     Figure 1. Physical configuration of the problem. 
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                      Figure 2. Influence of injection parameter on vertical velocity ( )f   
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                          Figure 3. Influence of suction parameter on axial velocity ( )f   
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                    Figure 4. Influence of squeezing parameter on vertical velocity ( )f   
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                         Figure 5. Influence of squeezing parameter on axial velocity ( )f   
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                           Figure 6. Influence of Hartmann number on vertical velocity ( )f   
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                        Figure 7. Influence of  Hartmann number  on axial velocity ( )f   
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                        Figure 8. Influence of suction parameter on vertical velocity  f   
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                         Figure 9. Influence of suction parameter on axial velocity ( )f   
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                 Figure 10. Influence of squeezing parameter on vertical velocity  f   
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                    Figure 11. Influence of squeezing parameter on axial velocity ( )f   
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                      Figure 12. Influence of Hartmann number on vertical velocity  f   
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                       Figure 13. Influence of  Hartmann number on axial velocity ( )f   
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Figure 14. Influence of  suction parameter  on ( )   
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Figure 15. Influence of injection parameter  on ( )   
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Figure 16. Influence of Prandtl number  on ( )   
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Figure 17. Influence of  squeeze number  on ( )   
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Figure 18. Influence of Thermophoresis number   on  ( )   
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