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Abstract

Today, renewable energy generation infrastructures are increasingly developed due to
reduced fossil fuel resources and increased energy consumption. In this respect, a biogas
supply chain has a high potential to generate energy. This paper aims to design a bi-objective
biogas supply chain network for power and fertilizer generation. A mixed-integer linear
programming (MILP) model was developed for the multi-level biogas supply chain with
biomass input under different parameter uncertainties. A stochastic-robust programming
approach was adopted to cope with the intrinsic uncertainties of such value chains. Realistic
uncertainty modeling allowed for adjusting the conservatism level for a trade-off between
performance and robustness. The adopted stochastic-robust programming pathway not only
diminished the optimality fluctuations and provided a reasonable allocation space for
uncertainties but also enhanced network flexibility and alleviated decision-making risks.
Finally, the model was solved using the Benders decomposition (BD) algorithm. This
research obtained more efficient and effective solutions by enhancing the Benders cuts based
on previously generated solutions and Pareto optimal cuts. The implemented algorithm
converged to the optimal solution at a reasonable rate.

Keywords: Biogas, Network design, Robust programming, Bender’s decomposition,
Biomass

1. Introduction

The increased demand for fossil fuels has imposed substantial environmental impacts. In
addition, wars, sanctions, and terrorism challenge access to oil and gas resources. In this
regard, governments have sought to generate renewable and sustainable energy due to the
increased energy consumption in public, industrial, and domestic sectors [1]. The lack of
primary energy supply, energy security, environmental protection, and impact on climate
change are among the most critical challenges facing the future of energy. Therefore,
renewable energies will play an essential role in meeting the energy demand, diversifying the

* Corresponding author. Tel: +989209602171
E-mail addresses: hamidieh@pnu.ac.ir (A.Hamideh); Akhgari_bahareh@yahoo.com (B.Akhgari)

1


mailto:hamidieh@pnu.ac.ir
mailto:Akhgari_bahareh@yahoo.com

energy portfolio, and reducing the environmental effects caused by the increase in energy
consumption [2]. In this respect, in 2019, the world’s new renewable capacity grew by 10.3%
compared to the previous year. In the same year, the share of renewable energy in electricity
production reached 29%, of which 16.8% was related to hydroelectric power. In 2019, about
11.2% of the world’s energy consumption for heating, energy production, and transportation
was provided through renewable energies, including biomass, hydroelectricity, wind, and
biofuel [3]. According to the New Energy Association of the European Community report, in
the most optimistic case, half of the world’s energy in 2040 can be supplied by new energies.
In the most pessimistic case, this ratio will not be less than 27%. In this regard, it is predicted
that in the United States of America, electricity production from biomass will double every
ten years and mature from 4% of the electricity market and industry in 2010 to 5% in 2030.
Hence, The European Union (EU) required countries to supply over 30% of the energy
demand using renewable energy resources by 2023 [4].

Biomass energy can be obtained from various sources, such as agricultural and forest
residues, energy products, animal fats, urban waste, and animal waste. Low environmental
pollutants, dispersion, and easy access are key factors considered when choosing renewables.
Biomass energy sources can provide domestic and industrial needs in the main form of
electricity or energy carriers such as gaseous and liquid fuels. In this regard, biogas is one of
the leading carriers of energy from biomass resource processing. The product of anaerobic
digestion is a gas with a medium calorific value called “biogas”. In converting biogas into
electricity, 1.5 to 2.2 kilowatt hours of electricity can be produced from each cubic meter
(m®) when using existing biogas engines [5].

The major advantages of biomass are as follows [6-8]:

e Biofuel generation across the world to enhance energy security

e Eco-friendly energy with lower negative impacts on the ecosystem
e Biodegradability, renewability, and contribution to sustainability

e Development of poultry and associated industries

e Contribution to regional growth and job opportunities

e Abundance and availability

These advantages diminish energy generation costs and enhance social responsibility
performance, contributing to sustainable social growth [9]. Hence, designing a biomass
supply chain network would strongly contribute to economic development and have positive
environmental outcomes. Such a design may also enhance sustainability aspects in supply
chain management [10, 11]. The coordination of material flows and raw material uncertainty
remain significant challenges of a biomass supply chain, particularly in the commercial-scale
implementation of biofuel projects. A noteworthy issue to handle in this field is the
coordination of resource provision for energy generation and storage [12, 13].

Biomass raw materials for energy generation are classified into four groups [14-16]:



e First-generation biofuels: They are obtained from food industries, such as starch,
sugar, and herbal oils.

e Second-generation biofuels: These biofuels are obtained from inedible materials,
e.g., agricultural waste, forestry, energy products, and urban and rural municipal
waste.

e Third-generation biofuels: These biofuels (e.g., bio-oil) are produced from algae.

e Fourth-generation biofuels: They include engineering plants or biomass.

Uncertainties are also a significant challenge in managing biomass supply chain networks.
Climatic and geographical parameters impose substantial uncertainties on the supply of
biomass resources. Biomass logistics, e.g., price, storage, and transportation costs, also have
uncertainties. These uncertainties are significant in bio-refineries and combined biomass
power plants, including technology, production rate, and operational cost uncertainties [17].
In addition, economic fluctuations strongly impact the demand, generation, distribution
capacity, and product quality, disturbing investments in some cases [18]. The uncertainties
even worsen in the event of floods, earthquakes, sanctions, and droughts, thereby challenging
network management and leading to complete network failure [19].

The present study developed a mathematical bi-objective supply chain to produce biogas
(primary product) and a bio fertilizer (secondary product). The objective function would
guarantee network performance by maximizing profitability. This function included selling
the primary and secondary products, investment, storage, excess demand, and penalizing
unmet customer demand. Moreover, a mixed-integer linear programming (MILP) model was
developed for a multi-product reverse biogas supply chain network with production,
distribution, and recycling quality levels. The model would maximize profitability under the
pessimistic scenario. The strategic decisions included location, quality maximization at high-
pressure levels of the network, ensuring the inventory, network sustainability improvement
through anaerobic digestion enhancement, and enhancing the power generation capacity. A
hybrid stochastic-robust programming approach with flexibility and adjustable conservatism
was also proposed to establish a trade-off between model performance and robustness to cope
with uncertainties. The model would remain robust while generating a solution that would
remain reasonable for the entire uncertain dataset. The Benders decomposition was used to
solve the model. Meanwhile, the upper and lower bounds were improved by generating
optimal cuts.

The remainder of the paper is organized as follows: Section 2 provides a literature review on
the research topic. Section 3 provides a problem statement and describes the assumptions
and mathematical model. Section 4 describes the hybrid stochastic-robust programming
approach. Section 5 implements the Benders decomposition algorithm. Section 6 analyzes the
results. Section 7 provides the sensitivity analysis of the two-stage approach. Finally, Section
8 concludes the paper.

2. Literature review



Sustainable industrial development requires sustainable resources. In this regard, raw
materials and novel manufacturing approaches are required to set a sustainable industrial
future. The unsustainability of fossil fuels and population growth have raised energy
consumption [20], leading to global warming. Researchers have proposed exploiting
renewable resources to reduce Greenhouse Gas (GHG) emissions. Biomass is a significant
and eco-friendly energy resource [21, 22]. Since converting biomass into clean energy
alleviates the dependence on fossil fuels, it is a sustainable resource with environmental
advantages [23]. However, producing bio-products with complex conversion processes,
biomass provision, and resource uncertainties remain commercial-scale challenges [24].
Furthermore, increased environmental concerns and annual demand have motivated the
recycling of waste/products. Hence, the reverse direction of material flow helps the
development of the value chain [25]. Firms seek to increase their values and focus on
controlling value drivers. In this regard, developing return routes absorbs many sustainability
benefits in the biogas supply chain [26].

Network flows are covered by four primary levels of the biomass supply chain network. The
first one is the level of suppliers, which creates the main flow of biomass [27]. The second
level is the storage and separation of biomass. At this level, three biomass flows are created.
The first flow is the undesirable outputs. Converting them into fuel provides no economic or
environmental justification [28,29]. The second category includes desirable outputs and is for
biomass that can be recycled and used. These types of outputs are often obtained from dry
urban waste. The third flow is process outputs that are transferred to the power plant to be
converted into fuel. The third level is the product refinement and production field. This level
leads to the bioenergy flow production, which is transferred to the final level (i.e., the
customer level) [30]. In the real world, network flows are affected by several uncertainties,
which create disturbances in the supply chain network’s upstream, middle, and downstream
facilities [31]. The research in this field has covered the uncertainty to be closer to reality and
increase the reliability level of the studied axes. In previous studies, the parameters of supply
and demand, biomass and biofuel price, various costs (e.g., transportation and purchase of
resources), and environmental effects were considered uncertain [32,33].

On the other, a biomass supply chain is exposed to different sources of uncertainty. In the
upstream supply chain, production is quantitatively and qualitatively affected by weather
conditions. The biomass supply from one season to another or in diverse climates is subject to
high uncertainty [34]. Hence, biomass prices and transportation and storage costs face high
tolerance [2, 4]. According to Santos et al., biological refineries also have uncertain
parameters such as operating cost and production rate [35]. Also, biofuel demand points are
surrounded by price and demand uncertainty [36]. However, the main challenge is the quality
of biomass, which has been neglected by previous research despite its direct impact on
bioenergy production.

Parker et al. [37] modeled a forward biofuel supply chain network consisting of biofuel
supply routes and commercially viable technologies. Next, they developed a robust model to
use spatial distributions based on the GIS of biomass resources to optimize bio-refinery
locations. The results showed that biofuel production from agricultural biomass streams,
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forestry, and municipal has significant energy potential. Dal-Mas et al. [38] investigated the
multi-layer direct supply chain network of ethanol biofuel from corn biomass. Next, they
extended a dynamic, spatial, and multi-level mathematical programming model incorporating
the uncertainty of biomass production cost and product sales price. This model reduced the
investment risk and improved the economic performance of the chain simultaneously. Cudeka
et al. [39] developed a multi-criteria optimization model for a multi-echelon direct biofuel
supply chain network with sustainability approaches. This model minimized the
environmental and social footprint while improving the economic performance of the
network. The material flow of the above network converts agricultural biomass into biofuel.
Yilmaz and Selim [40] proposed a comprehensive multi-phase mathematical programming
model under intrinsic uncertainties for bio-energy supply chain network design. The
government and private investors could exploit the model to design a region’s most profitable
biomass supply chain based on anaerobic digestion and estimate the costs and profit. Poudel
et al. [41] developed a two-stage stochastic MILP model to design and manage a
simultaneous supply chain problem of biomass fuel with coal under the uncertainty of raw
material supply. The generated results described the seasonal use of multimodal facilities, the
number of containers transported between multimodal facilities, and the amount of biomass
processed, stored, and transported from several feedstock supply sites to coal-fired power
plants under biomass supply uncertainty. Abdul Quddus et al. [42] presented an optimization
method to improve the design and planning of waste biomass-based supply chains for
producing different types of bio-products. This model works based on various biomass pre-
processing technologies and energy production with mathematical modeling and fuzzy multi-
objective decision-making. The extended supply chain model determined the location of the
optimal size and routing plan of multiple warehouse facilities for raw material storage and
processing plants. Woo et al. [43] proposed a mathematical model to cope with uncertainty in
the selection of biomass raw materials and the operation programming problem in the
biomass supply chain to help decision-makers in the supply sector. The model aimed to
minimize the total cost of a biomass supply chain system. An advanced and regular L-shaped
algorithm was employed to solve the two-stage stochastic programming model. Rahemi et al.
[44] proposed a mixed integer linear programming model (MILP) for the optimal design and
planning of a bioethanol supply chain network to reduce supply chain costs and maximize the
appropriateness of the allocated lands with the crops planted. The extended model followed
strategic decision-making (i.e., location and capacity of facilities, source, and allocation of
biomass raw materials to bio-refineries) and tactical decisions (i.e., land planning, inventory,
and production of biomass raw materials and bio-ethanol). Saghaei et al. [45] presented a
non-linear mathematical programming model for formulating a wood biomass forward supply
chain network for electricity generation under material quality and demand uncertainties.
This model provided optimal solutions for decisions such as location and layout of facilities,
nodes stream, supply of materials, and inventory policy.

Yahya et al. [46] investigated the need for various energy characteristics and a movement
toward renewable energy resources. Increasing challenges unexpectedly appear in the form of
uncertainties in this respect. They introduced a Monte Carlo simulation (MCS) model for the
techno-economic feasibility evaluation of biomass gasification under five uncertainties,
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namely 1) biomass quality, 2) biomass supply, 3) biomass price, 4) synthetic gas price, and 5)
transportation fuel cost. Guo et al. [47] analyzed spatiotemporal uncertainties in collecting
residues as significant challenges in developing a supply chain network to convert biomass
into biofuel. The model was solved through a stochastic programming approach. Aranguren
et al. [48] introduced a modeling approach to design a large-scale biomass supply chain to
minimize investment. The model was solved using a metaheuristic algorithm. Previous
studies have developed biogas production with different network structures and flows and
various modeling approaches. Umakanth et al. [49] introduced the sustainable availability of
biomass flow as the critical criterion for choosing the location of a biofuel plant. Syahira
Mohd et al. [50] investigated the optimization of the biomass supply chain for refineries based
on carbon reduction goals. To this end, they considered the flow of uncertainties, such as
changes in the biomass supply, caused by the seasonal dependence of biomass.

Examining the above studies reveals that most biogas supply chain research has investigated
the forward network, emphasizing single-product and single-source models. Another point
considered in these studies is social and environmental concerns without providing an
alternative to separate the biomass streams and clean up a huge amount of residual waste
from the biomass stream, which causes lasting environmental damage. Notably, most
biomass and biofuel supply chain research has been conducted in conditions of parametric
uncertainty, such as the uncertainty of demand, supply, and weather conditions. Meanwhile,
biomass quality as a primary factor of uncertainty that is caused by changing weather
conditions and different economic and environmental policies has been neglected in many
studies. However, the production capacity parameter caused by investment incentives covers
an essential part of the uncertainty of the production rate. Another point neglected in previous
studies is the high volume of residue flow from the direct flow of biomass, which is one of
the main obstacles to developing bioenergy power plants. Table 1 reveals the research gaps
by providing a more detailed classification and reviewing recent reverse supply chain studies.

Please insert Tablel

Reviewing the literature on the design of biogas supply chain networks reveals the novelty of
the present work as follows:

e Integrated strategic and tactical decisions based on flexibility to ensure met customer
demand and increased power generation capacity;

e Incorporating the three typical uncertainties in the operation of biogas networks, i.e.,
demand, quality, and generation capacity uncertainties;

e Separating biomass flows in successive “separation and storage” centers and
bioenergy power plants;

e Producing bioenergy as the main product and bio fertilizer as a side product

e Enhanced network sustainability through anaerobic digestion maximization and
increased power generation capacity and second-type bio-fertilizer production;



e Developing a hybrid stochastic-robust programming approach by generating several
events in the form of future scenarios under frequent operational uncertainties; and

e Utilizing the accelerated Benders decomposition (BD) algorithm in the biogas supply
chain network with complex variables to shorten the computational time and increase
the convergence rate.

3. Problem statement

The present study focused on the supply chain network of biogas (primary product) and bio-
fertilizers (secondary product) for energy generation. Biomass would be used as a fertilizer
for power generation using anaerobic processes [54]. This material is the biodegradable
resource of products, sewage, agricultural and domestic wastes of forest industries and other
related industries, urban and industrial wastes, and waste [35]. Anaerobic digestion is the
process of bacterial decomposition of biomass resources in the absence of air. This process
produces methane and byproducts with moderate calorific value (biogas) through hydrolysis,
acidification, and methanation. The materials that can be used in this process are animal
husbandry and poultry waste, livestock waste, agricultural products, urban and rural sewage
solid waste, urban and rural waste, etc. Taking the above materials allows for biogas
production to be used as an energy source. For this purpose, it is necessary to establish
suitable environmental and temperature conditions, pH, carbon-to-nitrogen ratio of materials,
material concentration, material stopping time, stirring, and the amount of daily loading of
materials inside the reactor [55]. This study developed a two-stage stochastic MILP model of
the reverse supply chain network. In this model, biomass would be collected, inspected, and
organized in storage reservoirs and then transported to the bio-refinery to produce biogas.
High-quality biomass would lead to a high biogas yield in the bio-refinery, raising the energy
generation capacity. As depicted in Fig. 1, biomass conversion into biogas includes poultry
litter, pre-processing, fermentation, biogas production, residue separation, and impurity
discharge. Biogases are classified into pure and impure biogases [56]. A bio-refinery does not
convert 100% of the biogas into power as input as conversion processes have high biomass
losses, which are introduced to recycling centers. Research has shown that biogas has an
energy generation rate of 1.7 kw/m? [57]. Biogas quality has a direct relationship with energy
demand and capacity. Due to the uncertain quality of the produced biogas, experts separate
biomass-derived products based on impurity content, and the biogas with lower impurities is
transferred to power plants. In the reverse direction, the impure fractions are collected from
the biogas facilities in the collection centers. The collected fractions are inspected and
separated to enhance the performance of the supply chain. This operation is carried out in the
second stage, through which the impure fractions of biomass are transferred to recycling
centers. In this stage, the quality of the impure fractions is inspected, and the usable fractions
are utilized as fertilizers. In this process, the unusable fractions disposed of biogas have a
volumetric fertilizer yield rate of about 8% [58]. Furthermore, since demand and recycling
cannot be predicted, it is crucial to incorporate the uncertainties of parameters into biomass
supply chains due to possible changes in climatic parameters that often challenge the
extraction of biomass resources. Therefore, the demand (for power and fertilizers),
production capacity, and returned product quality are assumed to be uncertain. The demand



may be a function of unexpected incidents such as weather or the production of other
products, depending on the competitors and energy consumption. Hence, the probability
distribution cannot be predicted, particularly in a time horizon.

Please insert figure 1

The assumptions applied in our extended model are presented as follows:

The multi-level model produces a unique product in each forward and reverse
path.

Biogas production capacity, demand, and quality level are considered uncertain
parameters.

The location of biorefinery facilities, the number of customers, the transportation
cost of the supply chain network, and biomass suppliers are fixed and
predetermined.

A penalty will be charged for unsatisfied customer demands.

The quality level of biogas is checked at three levels (i.e., production, recycling,
and distribution).

The potential locations of poultry farms, biological refineries, recycling,
distribution, and destruction have been determined.

The forward path of the network follows the location decisions, capacity of
facilities, and distribution management of the first type of product. In the reverse
path, the recycled product and the amount of production of the second product
(bio-fertilizer) are considered.

The raw material (biomass) for biogas production enters the reverse biogas supply
chain network cycle from the anaerobic digestion mechanism.

The processing capacity of biomass production and biomass storage centers is
limited.

3.1. Mathematical model

Indices

p Biogas facilities (p=1, ...,6)

S Suppliers (poultry centers) (s =12, 3)

u Demand (customers) u=1 ..., n)

d Disposal centers (d =12, 3)

se Scenario (se =1 .., 6)

i Separation locations (i =1, 2)

c Biogas production capacity (c =1 ..., n)
] Distribution and collection centers (j =1, 2,3)
r Recycling centers (r =12, 3)

m Material (biogas) (m:1, n)
Parameters



Daily biomass production capacity of poultry centers

pwg
—— Maximum usable waste in biogas facilities for biogas production capacity ¢
me Maximum capacity of supplier s
S
mp Maximum capacity of distribution and collection centerj
i
ms;j Maximum capacity of separation centeri
ity of di | center:
cocd Capacity of disposal centerd
CRer Capacity of recycling centerr
MCp; Distribution capacity allocated to distribution and collection centerj
i
HC j Collection capacity allocated to distribution collection centerj
REC Minimum power payback of power plants over a given period based on the biogas production capacityc
CEc Energy generation constraint for biogas facilities in scenariosebased on the biogas production capacityc
Maximum storable biogas
Eom
Mc Maximum anaerobic digestion —based biogas production that can be stored
C
GE Biogas — energy conversion rate
BE Biogas — energy conversion rate
COF ¢ Investment cost (per kW) in biogas facilities with capacityc
cOoB Unit price of biomass
ubD Unit price of biogas produced using anaerobic digestion
COE Unit price of electrical energy
ops Fixed opening cost of poultry centers
0Sj Fixed opening cost of separation centeri
Cowd Fixed opening cost of disposal centerd
Re py Fixed opening cost of recycling centerr
CPg Reproduction / reassembly cost ins
CSj Separation cost in separation centeri
CRr Recycling cost in recycling centerr
cp Disposal cost in disposal centerd
d
OF o Unit disposal cost of biogas of facilitypin disposal centerd
p
CTu Transportation cost between customeruand distribution and collection centerj
uj
TC Transportation cost between distribution and collection centerjand customeru
ju
CTE : Transportation cost between distribution and collection centerjand biogas facilityp
P
GT Transportation cost between distribution and collection centerjand separation centeri
J
Kr Transportation cost between separation centeriand recycling centerr
Ir
csp Transportation cost between separation centeriand disposal centerd
id
CNe Fertilizer price
RSe pse Successful recycling ratio of biogas residues in biogas facilitypin scenariose
Use ratio of biogasmin biogas facili
mub mpse 9 d typ



bP mse
MCT ms
Chp p
car p
Tmp
PrSse
PYse
wpg

pu;;

Iq q
denuse
der use
Decision variables
at juse
Hom jsse

tq uj

td jd

1S jise
HmOSjse
sec juse
puf spse
HBc pse
gpd mpse
Egf D
Bi,
P pisse
Sep pirse

Binary variables

Lug
hpc
N g

Gs

The ratio of usable biogasmin separation under scenariose
Capacity coefficient of biogasmin supplers

Capacity coefficient of biogas facilitypin disposal centers

Capacity coefficient of biogas facilitypin recycling centers
Transpiration coefficient of biogas facilitypcompared to one product
Probability of scenariose

Penalty in scenario se

Waste transportation from suppliers

Collection processing in distribution and collection centerj
Quality levelpof biogas

Fertilizer demand of customeruin scenariose

The power demand of customeruin scenariose

Transported product from distribution and collection centerjto customeruin scenariose

Transported product from distribution and collection centerjto suppliers

Transported product from customeruto distribution and collection centerj

Transported product from distribution and collection centerjto disposal centerd

Transported product from distribution and collection centerjto separationi

Recycled product transferred from suppliersto distribution and collection centerjin scenariose
Recycled product transferred from distribution and collection centerjto customeruin scenariose
Poultry litter transferred from suppliersto biogas facilitypin scenariose

Biomass consumed in biogas facilitypin scenariose

Biogasmproduced using anaerobic digestion in biogas facilitypin scenariose

Biogas residue in biogas facilitypin scenariose

Power generation in biogas facilitypin scenariose

Maximum biogas production in biogas facilitypin scenariose

Biogas facilityptransferred from separation centerito suppliers

Biogas facilityptransferred from separation centerito recycling centerr

Biogas facilityptransferred from separation centerito disposal centerd

1if g is higher than disposal; otherwise, it is O.
1if biogas facility p with a capacity of c is selected; otherwise, it is O.

1if disposal center d is selected; otherwise, it is O.

1if supplier s is selected; otherwise, it is O.
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1if distribution center i is selected; otherwise, it is O.

CCj

ch 1if recycling center r is selected; otherwise, it is O.
r

s 1if separation center i is selected; otherwise, it is O.
i

3.2. Objective function

max profit = FIC + SIC — (TCC) €Y
FIC = S% Prsge ZCOE Eqf pt 2> > ud.gpd mpse)

m p se

= . . . -L

TCC= fprsse (S opstGs *0SPi+ LCOWANA* > Repychy 22 Cofichpe
r

Z Cbp p: .h pc + Z ZCOE CoB. Pufspse+ z Zzqu]uSe TC]u qu HbCpse+ Z szS HbCpse+
pc p J uq

ZJ: ZZ(Homlsse‘l'Hmos]se) (Wps+TC]u)+ 2 Z(qt]use'l'sec]use) TC]u+Zthu] (CTu]+Pu])
Su

ZZISJISQ (gT +Cs|)+Zth jd- (CTE d+CPd)+%§§TPpisse'Tmp

+%%§Tsepir'(Kr"‘Tm p+CRd ) + % %%%seppirse'(Cspid'Tmp * OEpd) * %%(Homjsse * Hmosjse” %%Tppisse) CPg)
The objective function ensures the expected profit maximization of the biomass supply chain
network (Eq. 1). The profit of the network includes biogas-generated power income, fertilizer
income, quality maximization at three levels (i.e., production, recycling, and distribution),

storage costs, transportation costs, excess product demand costs, excess warehouse capacity
costs, penalty minimization, and total investment cost minimization in all the scenarios.

s.t.
Z h pc < le (2)
c

Based on Eq. (2), the production capacity level of each biogas facility is 1
%% h pc-Mwug < % pWg 3)

Eq. (3) represents the poultry litter quantity that can be transferred to biogas facilities

(4)
Z ZZ(Homsjse + Hmo Jsse) bpmse ZtS“Se ZZZTSG pirvser i, p
mls j j pir
Eq. (4) formulates the recycled product equal to the poultry biomass quantity.
ZZSGCJuse Rse pse = Zts jise Vi, se ®)
Eq. (5) constrains the product quantity that can be transferred to recycling centers.

(6)

%%‘,(1— Hbc pse ~ Rse pse'td Jd) < %%sep pirse"q qseVp’ se

Eqg. (6) indicates that the usable products are delivered to either recycling centers or
customers.
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pwg = Zjlsze ( Hom jsse * Hmo sjse) * %% PU TP pisse”

Eq. (7) represents the constraint of poultry litter production capacity.

GgMsi 2 % MCT ms?S
Eqg. (8) formulates the supplier constraint.

Spj.msj = Hini
Eq. (9) determines the maximum recycled product separation capacity.

chr.c Rer 2 %Zi:car pTse pir” "

Eq. (10) constrains the capacities of disposal centers and recycling centers.

cc jbp j = mep  + He j¥)
Eq. (11) constrains the capacities of distribution and collection centers.

Nd.cocd > %td jd +%§§sze sep pirse’cop p7d

Eq. (12) constrains the capacities of separation centers.

%qt juse < denusevu‘ se

Eq. (13) formulates the power demand (primary product).

o<
%sec juse = deruse”!" 8

Eq. (14) specifies the fertilizer demand (secondary product).

2 & PUf gpse ™ Hbe pse * % 22 PUT spse 25 Hic pse-1 = £ Eg ¢ pe™P

Eq. (15) maximizes the poultry litter storage.

% S%(qu mpse ~ CTe pse *| gpd (mpse—l) - CTe( pse—l))) < % mcch pCVp

Eq. (16) determines the maximum biogas production from anaerobic digestion.

Sze Hbc pSEGEBE < %CE C.h pCVp
Eq. (17) formulates the minimum power generation capacity.

Sze Hbe pseGEBE < % RE c'h pCVp

Eqg. (18) minimizes the biogas production capacity.

SzeCTe pse 2 zi“%csi'h pch

Eq. (19) specifies the minimum separation capacity of recycled products.

Egf p = 2 Hbc pse CF-BE VP
Eqg. (20) shows the maximum power generation capacity.
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.= 21
Bip~ % Hbc pse'GEVp 21

Finally, Eq. (21) represents the maximum fertilizer production capacity.
Sec juse, puf (22)

Qtjuse’ Homisse' Wy’ td jd' ts jise’ TP pisse’ Tse pir’ SeP pjrse’ HMosjse’ >~ JUSE: spse:

HBC pse, ng p, B| p,CTe pse, qu mpse > OV], U, Se, S, d, p, i, r, m

; 23
qpd mpse’h pc’ Nd’Gs’CCj’Chr’Spi € {O'l} vm, p,se.c.d, j,r ( )

Constraints (22) and (23) impose binary and non-negative restrictions on the decision
variables.

4. Hybrid stochastic-robust programming approach

In the real decision-making process, parameters face a mix of random and cognitive
uncertainties. These parameters have cognitive uncertainty under different scenarios. This
uncertainty occurs when there is a cognitive uncertainty in estimating the exact value of
random parameters under different scenarios [59]. Generally, there is not sufficient data
available to find the probability distribution of each uncertainty parameter in the estimation
of the parameters of each scenario. This shortcoming is due to the unrepeatability and other
specific characteristics of each scenario. Hence, vague values in the form of fuzzy numbers
are used to define the parameters under each scenario. Therefore, fuzzy stochastic
optimization problems have emerged to deal with such uncertainty [60]. In continuation of
this two-step path, the robust programming approach (as a risk-averse method) covers the
aspects of optimality and feasibility robustness under conditions of combined uncertainty.
Accordingly, we seek near-optimal solutions and validate them with a high probability,
guaranteeing the robustness of the problem decisions. The optimality solution would be kept
secure and robust in the event of uncertainties in a given bounded uncertainty set [61]. Also,
feasibility robustness is ensured when the objective function value has the minimum
undesired deviation from the optimal value for each scenario [62].

The uncertainty set was developed by defining the positive and then negative deviations from
the nominal scenario as follows:

(24)
+ denuse ~ denyse . - denyse denuse .
Tdenuse =+ if denuse ~ denyse’ MTdenuse = = '"denuge < denuse
Adenuse Adenuse
(25)
+  deruse  deryse . ~  deruse GUeruse.
nder yse = + ' der use > der use’ 779€r yse ~ - " deruse < der use
Ader use Ader use
(26)
+  PWs o pwg - pwg PwWg
npws = I pwg > pwonpws T =1 pwg < pug
Apwg Apwg
+ IQq_qu_ A — Iqq_qu_ A
mag ="+ Mag gy maqg =" = 'lgg<|
q q ldg q g ldg
Alg q Alg q

Then, the uncertainty set is formulated as:
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den + + - - + de (28)
Jse ™ |denuse|denuse ~ denyse * Adenuse ™ 17den g, ~ Aden use ™ 170en VU,V Aden use’ 7den g < U
Then,
o 29
n den use’ "den use o< ’7den use =10 = ’7den use SLX (’7 denuse+77denuse)<ﬂse
" " - - * - der| (30)
J se deruse|deruse = deryse ~ Aderuse ™ 7der use ~ Ader use * "7der use’ VU,V Ader use' Tder use € Y

_ 31
der
{nder use’ ’7deruse‘0 ’7der use <10 deryse <1 Z(nderu56+nderuse)<ﬂse }
pw _ + + - - + - ow (32)
Cse PWsse|PWsse ~ pwgee T AW se T PWgse ~ ApWsse T pWeser 7SV Apwisger 7 pwggg € S
o ; - o (33)
n IOWsse’ g pWsse‘ <7 pwege <10 =T pwgge <1 %(77 PWsse 77 pwsse)ﬁusse
Iq ~ + + - - + — Iq (34)
ise = |ldgse[ldgse ~ lagse * Alggse Ml gse ~ Aldgse * 7ld gse’ Va4,V Alg gse’ M gse <
(35)

lq _ + - . _ |
a —{Uquse,ﬂquse ﬂquse 10< 77|qq <1,§(nquse+qquse)sys%}

The constraints are reduced based on the assumption that uncertain constraints have been
violated. The decision-maker is allowed to implement constraint violations by penalizing the
objective function for the violated constraints. The objective is to minimize the worst costs in
the violated constraints. Inserting Constraints (30-35) in Eq. (1) gives:

den den (36)
pys(td,mwu,qt,seC): max o [Z(denuse_%Qtjuse)x py ‘%(Zj:qtjuse_denuse)XCoB :l
denuse€ jse
der der
* max der % deruse_%secj'use X py E %SeCjuse_deruse X CoB
deruse€jse

Ig Iq

+ max {%%Zzse%lrsequse 2(1 Hbc pse ~ ZZRSpsetdjdj py '%[lHbcpse%%Rspse'tdjd]%%%Eseppirse-qusexc()s :|
q

l0gseSdse

* 2 PWgge™ ZZh pc-Mwucx Py pw ZZh pc-Mwuc Py pw —Z PWeexCoB PW ]

max
der| s
deruse€ jse

Constraint (36) is linearly formulated using auxiliary variables ,; ., ;5. ;3,2 4, °

min pys(td,mwu,qt,sec) = z1se t 225 T 23se t 24se (37)
z1se'z2se'z3se'z4se
s.t.
den den (38)
%(den use % qt jusej “py = z1se Vdenuse € Jse
den den (39)
%(den use ZJ: qt jusej *CoB < Z1se’ Y den use € Jse

der der (40)
% deruse ~ %Secjuse by = z2se Vderuse € ise
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der der (41)
% derusef%secjuSe XCoB = z2se' Vderuse € ise
Iq Iq (42)
%?%%SED pirse1dgse %(1_ Hbc pse _%E Rs pse'td jd) “py = 23se' Vldgse S igse
Iq Iq (43)
%%%%SED pirse ‘Iq gse %(1_ Hbc pse %E Rs pse'td de *CoB = Z3se Iq gse Iqse
pw pw (44)
% pwg ™ %% h pc'mwuc’ Py < Z4se’ vasse €sse
pw pw (45)
% pwg Zp% hpomwucCoB < z4se’ ¥ PWgge € sse
Z1se’' z2se’ z3se’ Z4se 20
den (46)
max o demfﬁmwwxw < Z1se

denuse€jse

It can be converted into Constraint (46):

den + + - - den
% denuse % at juse py t Jmax % %(Aden use ™ "denuse ~ Adenyse ™ 7den use) X py < 1se
ndenyserndenyse

+ + - - den 47)
- +min B x %:(—Adenuse><77denus,e-’_Adenusexﬂdenuse)>< py
ndenysen7denyse
st
“ndenyse = L VU glyse
- (48)
“ndenge = T VU g 2yse

* - den . pden
Z(_ndenuse_ndenuse) —Hse AL
u

. _
—nden se ~ n7den g = 0

The dual of the problem is modeled as:

den den den
M qyse' a2use’ S | “uge X pL _E(aluse“LaZuse)

s.t
den (49)
+
—aduse ~ Sl < Aden{jse, Yu

den _
—a2use Bl < Adengge, YU

den
Pl aluse’ a2use
In Model (49), since the second constraint is excess,

>0,vu

245 19 €xcluded based on robust duality

theory. Then, the objective function (49) is inserted into Constraint (46) without the excluded
constraint. The robust counterpart of Constraint (38) is as follows:

den  den den
% denuse T oduse) AL *Tse _%%qtjuse “py Salse
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den +
aluse T AL = Adenyse’
den
aluse’ AL >0,Vu

The hybrid stochastic-robust supply chain network is expressed as:

vu

Maxz = (X 2 COE. +2X2 X ud
( o Prsg ( ‘Egf m P se qumpse)

+ + -
_SZ(;: (%: (Aden uset?use Aden uset8use) % (Ader usetQuse + Ader uset10 use)

+ - + -
+% (Alq gsetllgse * Alggset12 qse) * % (APWsset13sse T ApwWeget14 SSE))

den  den der
%(deruseJralustS)Jrﬂz s _%%Secjuse Xpy  Sz2ge Ve

_§Szé%%%de'prsse'qtjuse'LQq(l-Luq)+sze%%pr5 CNessec juse S%prsse (E opsGs TOSsp; +

%COWde‘l' ZRI‘prChr +2 ZCOFchpC +%2Cbpphpc +> ZCOECOBPuf5p5e+
r c c S

pX ZZqu]use TC]u qu HbCpse+ z szS HbCpse+ Z ZZ(Homlsse'l'HmOs]se) (Wps‘l'TC]u)
jugp

zj:Z(qtjuse+secjuse)-TCju+zthu]'-(CTuj+Puj)+
u uj

Zjlzi:tsjise'(gTji + Csi) + Zj:%tdjd'(CTEjd + cpd) T2 X2 TPpisseTmp

S
"%%%Tsepir' (Krir'Tmp + CRr) + %%%%seppirse-(Cspid-Tmp + OEpd) + %‘(Homjsse + Hmosjse” %%Tppisse)'cps)

—Z1se — Z2se — Z3se — Z4se)
Constraints (2-21) are rewritten as:

den  den den
%(denuse * aluse) AL Xpge T %% at juse Xpy = zise VS

den den den

denu5e+a2use)+ﬁ2 X Use _%eq juse)XCOB 2 _7lger VS8

der der der

deruse+rluse)+¢’1 X lge _Zj:%:secjusejxpy SzZse’vse

der der

der
deruse+12use)+¢2 X tse %%secwsej XCoB = -z72¢p' V€

— — —

lg Iq Iq

(%%%(S‘*p pirse1dse ilqse) 2 2(1‘ Hbe pse ~ %% Rs pse'td jd))x py = 23ge Ve

p
lg Iq Iq>
%%%% sep pirseldse " A2qse ) T 72 ﬂse’% l*HbCpse*%ERS psetd jd | | CoB = "z3se V¢
pw pw pw
PWsse+5lsse)+§1 Hse 7%%h pcmwuc <Py S z4ge VS
pw  pw pw
pWsse+5ZSse)+§2 Hse _%%hpc'mqu Xpy 2 Tz4ge VSE

den +
aluset AL Z Adenyse” ! S8
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den - (61)
a2use T A2 = Adenyse” U %€

der + (62)
rluse "ol = Aderyse” U €
der - (63)
r2uset 92 = Aderyse”U S
Iq + (64)
Agse ™ 71 2 Alg qsevq‘ se
g - (65)
/12qse+72 = A|Qqsevq’se
pw . + v (66)
51pse+§1 = Apw pse p,se
pw - (67)

den den der der Iq Iq pw

pw
Zlse'72se' 23se’ zdse' oduse’ Bl 'a2use' B2 rluse’ ¢l 'r2use' 92 v Algse' 7l 'A2qse'72 ' Slpse’dl 1 S2pse’ 42 20vu,q,s,se

5. Benders Decomposition Algorithm

Heuristic, meta-heuristic, and exact methods are usually used to solve mathematical models
in large dimensions. Typically, heuristic and meta-heuristic methods generate reasonable and
close-to-optimal results. Besides, there are exact methods that bring the mathematical model
to the exact solution. In the case of a gap between the exact solution and the obtained answer
and the presence of a huge penalty after that, the exact method of the Benders analysis
algorithm is developed. This approach decomposes the main problem into smaller sub-
problems to reduce the complexity of the problem and converge to the optimal solution
during fewer iterations. In the first stage, desirable cuts are added to the main problem (MP)
to increase the speed of convergence of Bander’s decomposition algorithm. To this end,
suitable initial solutions are estimated, and suitable values are obtained for the variables of
the dual problem [61]. The next workaround is to modify the original problem in each step,
select appropriate cuts, and add it to the original problem in each iteration of the algorithm.
However, the main challenge is the low quality of the answers obtained from the MP section.
This inefficiency can be avoided by limiting the solution space of the problem by defining
valid limits in the MP part, thereby generating high-quality solutions [62].

The BD algorithm is a two-stage technique for stochastic linear programming problems. The
linear programming of the main problem (MP) includes complex variables and is
decomposed into a sub-problem to optimize dual variables and the primal relations (DSP).
Let vectors Y and t denote the dual variables of Constraints (2-5), (7), (9-12), (15-21), and
(47-67). The dual of the DSP provides a lower bound for the objective function. The main
biomass reverse supply chain problem is formulated in each iteration as:

(68)

DSP - minz = sze (%%%Tse pirY2 pirse © (% %(Homsjse * HmOsjse) * %%% PUpTR pissejy3 psise

L HPiydise +%§§car pTse pir Y5 pirse * (% mep j % He j)yﬁ jse "

% deruseYBuse * & % B9 ch peY9 pose * & & mech peyl0 pese * & % CEch peyll pese *
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s Aden uset7 use * Aden uset8 use) +2 ( Ader uset9use * Ader useth use) +2 (Alq geetllgse * Alggeet12 qse) +X ( ApWegetl3sse T ApWggt1d sse)j

st
den den | -
hpcy16 pes ~ ¥2 pirse+ Y3 psise ~ PY tlse TCOB  t2se = sep pirse ~ Tse p|r+CpSV|0,C,|, rs
] " tjise I (70)
~h pcy16 pes ty2 pirse Y10 pcse + y7jrplse + y9CIOSe >~ jise CpSVp, ¢ iirse
(71)
¥3 psise ~Ydise T Y6 jse ty12 ncse >—1p pisse ™ CoF ¢ vp.s.ise .
Ig Iq .
mwu ¢yl pcsse *ty5 pirse ty2 pirse *y10 pcse *y13 pcse PY t3se TCoB t4se Z-= PW pse ~ S€P pirse  h jch, c,s,i,r,se
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” (79)
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YL pesse' Y6 jse ¥ jrpise’ Y8use' Y9cpse’ Y10 pose’ Y11 pose’ Y14 pse’ Y1 pse’ Y16 pse
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Based on DSP, an upper-bound MP is written in each iteration for the objective function of
the biomass reverse supply chain as:

(87)
MP:MaX zprs e(ZCOE ng +r%%sze:ud dmpse)

% sze % % % CPAPrssedtjuseldq (1 - LUq) + SZe % % prsg CNe.Secjuse _ 5% —_
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Acceleration of the algorithm can be enhanced using an approach based on enhancing Pareto
optimal cuts [63]. A cut is Pareto optimal until the new cut does not make it redundant such
that the dual optimal solution of the above cut is Pareto optimal. If a DSP (main problem) has
several optimal solutions, in BSP (Bender’s sub-problem), the strongest Pareto optimal cut
can replace all production cuts. Accordingly, the convergence rate is improved, and the

acceleration of reaching the final cuts increases.
6. Sensitivity analysis

Generally, real-life problems are complex and have uncertainties. This study assumed quality,
demand, and capacity to be uncertain parameters. Quality was treated at three levels, i.e.,
input, supply, and recycled products. As mentioned, a robust optimization approach was
adopted to cope with supply chain uncertainties. Then, the BD algorithm was employed to
solve complex variables. The proposed model was formulated and solved in GAMS 24.7.3
and evaluated in ten iterations. Next, the deterministic and robust models were compared.
Eventually, the robust and BD models were compared and analyzed. Effective planning of
the biomass supply chain requires identifying biomass production centers. Fig. 2 depicts the
poultry biomass frequency in the potential Iranian provinces.

Please insert figure 2
6.1. Proposed model under deterministic and robust scenarios

The effects of various cost components on the supply chain network under different scenarios
were explored to evaluate the proposed model. Table 2 represents the profit of residue
recycling for different supply chain costs. An increase in the coefficient of variation of costs
reduces the demand and profit. The profit reduces as the operating costs increase in collection
and distribution. As a result, producing new products would no longer be cost-efficient, with
recycling costs having no contribution to the supply chain profit.
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Please insert table 2

According to Table 3, an increase in the production cost reduces the demand, profit, and
capacity of biomass production and raises the warehouse storage capacity. Upon the reduced
demand, the products are stored in the biogas facilities, thereby increasing the storage
capacity. Based on reverse logistics, the residues of biogas facilities are collected and
transferred to recycling centers to produce new products and save production costs.

please insert table 3

In the next step, the effects of the unmet demand and unproduced product penalization costs
on the expected demand and output were studied. Overproduction and penalty have an
inverse relationship; the network receives a lower penalty in the case of overproduction. The
proposed network seeks to bring a trade-off between overproduction and penalty. Network
optimization enables a trade-off between overproduction and the penalty cost to minimize
them. As a result, it provides a minimal trade-off in the system.

According to Table 4, an increase in the unmet demand penalty lowers the cost and expected
demand coverage and raises the quality level. Quality is directly related to the total profit and
customer demand. The high quality of raw materials raises production and avoids product
storage. Fig. 3 illustrates product storage versus quality and profit. As can be seen, the quality
of products directly influences the profit of the logistic network. The increased quality of
products prevents additional storage costs and lowers storage quality (an inverse
relationship).

Please insert table 4
Please insert figure 3

According to Table 5, the return of products to the production cycle saves on purchasing raw
materials. It prevents excess costs for purchasing raw materials and increases the profit of the
entire supply chain. Also, the increase in recycled products increases raw materials, which is
directly related to the output of products.

Please insert table 5

According to Fig. 4, an increase in overproduction costs reduces the quality and total profit.
In other words, storage (increased capacity) has inverse relationships with demand, quality,
and total profit.

Please insert figure 4

In the robust counterpart model, the risk level of the problem becomes controllable according
to the decision-maker’s approach. The number of uncertain parameters in the objective
function and constraints should be calculated to determine conservatism in the objective
function and constraints. In this process, the total number of uncertain data points for the
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objective function is maximized; i.e., conservatism reduces as uncertain data is reduced. The
conservatism level is 100% when the maximum uncertain dataset is the case. On the other
hand, the objective function has no conservatism when the uncertain dataset is zero. The level
of conservatism for the constraints was assumed in the range of /1:[0.1, 0.25,0.4,0.65, 0.8, 0.9] ,

considering their uncertainties. The model was executed once to define the level of
conservatism. The constraints are most likely to be feasible for a high level of conservatism.

According to Bertsimas and Sim approach [64], the lower-bound robustness of uncertain
parameters based on mathematical logic contradicts the objective; hence, the lower-bound
parameters are assumed to be certain, whereas upper-bound parameters are treated as
uncertain parameters. It is required to solve the model independently six times for the
objective function levels of conservatism and six times for the constraints. Scenarios were
defined for the supply chain network. A set of demand, capacity, and quality uncertainties
was developed for each scenario. For this purpose, a sensitivity analysis was carried out on
the objective function to understand the main effects of the parameters on the solutions (i.e.,
the costs, penalty, and uncertainties). The uncertainty radius could be changed using this

d . : . .
ﬂseenzo is evaluated to investigate the conservatism of the demand

uncertainty. For the violation of one constraint, demand is assumed to have a symmetric
distribution based on Eq. (24). Table 6 exhibits the changes in the total objective function
under different protection levels. Values can vary from 0.1 to 0.65. The increase in credibility
levels causes the risk aversion level of the model to increase and the value of the objective
function to go up. Table 7 shows that the increase in conservatism intensifies the volume of
calculations and increases the computational time of the model.

parameter while

Please insert table 6
Please insert table 7

According to the above Tables, the profit increases for the variability level while the
uncertainty probability declines. Hence, only the violation probability of robust constraints is
calculated. Table 8 describes the changes in the total objective function at different protection

levels. It focuses on the risk associated with the model, objective function values, and

den

computational time. Thus, the violation probability is 1 WhenﬂSe ,ﬂlsqe, andﬂlvs 3; i.e., when

Ig

the solution has the maximum value and zero robustness to changes. An increase in#Se g

and ﬂ:: from 3 to 12 reduces the constraint violation. Thus, a value below 12 should be

considered as it would be closer to 0 and has no significant difference. The objective function
value may be unacceptable. The selection of values in the range of 3-12 provides a good
trade-off in the supply chain.

Please insert table 8
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6.2. Evaluation of the proposed model using Bender’s decomposition Algorithm

The model was evaluated regarding the computational time, the number of BD cuts, and
lower-bound convergence through Pareto optimal cuts. Table 9 represents the effects of valid
inequalities on the number of iterations, computational time, lower bound, and optimal gap.
According to Table 9, the CPLEX computational time was longer for fewer scenarios.
However, the BD algorithm showed higher performance at larger numbers of scenarios. In
addition, the Pareto cuts had a longer computational time than the BD algorithm since it is
difficult to obtain a convergent cut. The maximum gap occurred at iteration 7. Hence, the
Pareto-optimality cut of the reduction generation scheme had the highest performance.

Please insert table 9

Fig. 5 depicts the convergence of the BD algorithm for the six scenarios at all iterations. The
lower bound is distant from the optimal solution at iterations 1, 2, and 3; i.e., the BD
optimality cut constraint is not limited at iterations 1-3. The upper and lower bounds became
closer after two iterations, converging toward each other at iteration 7 (optimal solution).
This convergence is a major advantage of the BD algorithm.

Please insert figure 5
Please insert figure 6

Fig. 6 compares problem-solving methods and demand uncertainty concerning the set of
biomass supply chain network costs. The problem has been investigated with three different
quality levels. CPLEX cannot solve the problem in the third experiment and does not have a
suitable answer for the effect of demand uncertainty on the cost. At the same time, the robust
approach is used to deal with the uncertainty of the parameters. Based on the obtained results,
the supply chain cost increased with the increase in the biomass quality. This process is fully
compatible with the model robustification approach. In other words, with increasing
uncertainty, more conservative solutions are produced. However, this method is not efficient
in large and complex dimensions. Therefore, the Benders algorithm is used to solve this
problem. The classic Banders algorithm at a higher level requires more time and cuts to solve
the problem. The accelerated Benders algorithm was used to improve the model’s efficiency
and solution time. The results of the accelerated Benders method show that it will get a better
solution in complex dimensions with more conservatism.

7.Managerial insights

The main goal of the current research is to maximize profit based on biogas production based
on different levels of biomass quality. The final product has a strategic value for business
areas. Based on this value, the mathematical model minimizes the problem of fines caused by
not meeting the customer’s demand. The studied network model simultaneously follows
strategic and tactical decisions. In strategic decision-making, critical axes, including locating
the main facilities, determining the capacity of biogas facilities and the quality level of
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biogas, and the circular use of biomass, were considered. Also, the tactical decisions of the
present problem have covered the estimation of biomass flows, the amount of biogas
produced and chemical fertilizers, the explanation of network costs, and the coverage of the
demand for final and secondary products.

In the following, the optimal policies were analyzed under uncertain conditions, and the key
determining uncertainties were applied in the flows related to the studied network. Overall,
increasing the coefficient of variability of operating and production costs in 6 scenarios
declined the production flow of biogas. As a result, a significant loss of profit is created. In
this respect, a significant drop of 44.45% in profit was achieved for up to six initial operating
scenarios. On the other hand, with the increase in the uncertainty level of biogas’s quality, the
lost demand rate for the main and secondary products increases, and the resulting penalty on
the network intensifies. The increase in fines has caused a 52% decrease in profit and a drop
in the storage level of manufactured products. In this case, the level faced with uncertainty is
estimated by employing the robust approach. By increasing the robustness confidence level in
each scenario, risk aversion increases by about 20% in the logistics network. Although the
network’s overall cost increases, the constraint’s violation has decreased significantly.
Therefore, the ability to control the conservatism level of the network is improved, and less
profit is lost. In addition, as the conservatism level increases, we reduce the number of
violations of the customer’s demand limit and achieve fewer lost sales. Hence, with an
integrated management approach, the appropriate level of protection is set by balancing
unsatisfied demand violations, quality, capacity, and cost. Furthermore, in the extended
network, from every 1 m* of biogas, 1.7 kilowatts per cubic meter are directly used as
electricity. Meanwhile, of every 1 m® of biogas, about 8% is supplied to customers as bio-
fertilizers from recycled channels. Therefore, the existence of production channels in direct
and reverse routes improves the sustainability of the chain.

By increasing the level and finding the convergent cut, the Benders algorithm needs a longer
computation time. However, from Scenario 3 onward, the accelerated Benders and the
Benders algorithms outperform the other algorithms. This issue indicates the optimality of
Pareto cuts iteration. More specifically, the optimal gap in Benders and accelerated Benders
algorithms has increased from 0.22 and 0.25 to 0.76 and 0.81, respectively. Optimized Pareto
cuts have better performance in the plan’s production cost reduction. In this respect, by
increasing the quality level and reducing waste, this algorithm lowers production costs and
declines the storage capacity of products. Waste minimization will ensure delivery of the
orders and prevent the re-production of raw materials. Subsequently, this minimization
lowers costs and increases the network profits significantly.

8. Conclusion

Resilience and sustainability play vital roles in supply chains. This paper introduced a two-
stage stochastic mathematical programming model for reverse supply chain networks. A
robustness approach was adopted to evaluate the proposed model based on the network
optimization results. Due to uncertainties in logistic networks, conservatism and maintenance
levels are crucial for managers. In this study, the coefficient of conservatism of the robust
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programming model was employed to maintain conservatism. Conservatism is maintained
through changes in the coefficient of conservatism, thereby raising the level of maintenance.
The proposed model indicated that a rise in the operating and reconstruction costs would
increase the capacity and reduce demand and profitability in the biomass reverse supply chain
network. The customer demand increased as the biomass quality level increased.
Consequently, the total profitability and saving warehouse (storage) costs increased. This
study exploited the BD to improve supply chain performance. The BD algorithm uses various
methods, including Pareto-optimal cuts. In this research, the computational time, the number
of BD cuts, and lower-bound convergence were evaluated for Pareto-optimal cuts. The
reduction generation scheme is an advantage of the BD algorithm. The Pareto-optimal cuts
had a longer computational time than the BD algorithm since it is complex to find a
convergent cut. Restrictions in the storage of poultry biomass due to the existence of diverse
weather conditions and the increase in the degree of perishability of biomass lead to an
increase in uncertainty in the supply and transfer of materials. On the other hand, limitations
in the location of biogas facilities and production centers. Biomass poses a serious challenge
to the planners of this field due to the environmental effects and limitations of the
transmission route and transportation systems. Accordingly, the following suggestions are
presented for developing various aspects of the biogas supply chain research.

e Development of location/allocation axes according to regional economic
indicators;

e Covering the uncertainty of vital parameters such as weather information and
supply of raw materials; and

e Focusing on the reliability approach in the production and distribution centers of
the biogas network concerning partial and general disturbances
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Table 2. Effects of operating costs on the reverse supply chain profit

Scenario Coefficient of Profit Demand (%) Recycling (%)
Variability
1 0 547012 97.23 99.47
2 0.4 412368 95.14 96.35
3 0.9 359673 86.78 89.23
4 2 234567 74.23 76.35
5 4 132587 60.86 67.41
6 6 -724876 52.78 59.14

Table 3. Effects of production costs on the profit, demand, and capacity

Scenario Coefficient of Profit Demand (%) Recycling (%)
Variability
1 0.2 521347 96.54 67.28
2 0.6 396542 94.28 70.89
3 1 302564 81.18 79.28
4 3 195472 75.35 84.25
5 5 -125476 69.87 89.47
6 7 -824876 49.25 98.54

Table 4. Expected demand coverage, unmet demand penalty, and quality

Scenario Coefficient of Profit Demand (%) Recycling (%)
Variability
1 0 77412 38.54 54.78
2 15 64538 47.24 60.34
3 30 55612 67.89 67.21
4 45 48735 7154 78.59
5 80 35478 84.92 89.65
6 100 24578 98.78 99.58

Table 5. Returned product cycle

Scenario Recycled Products Total Profit Output Products

(m3) (%)
1 10264 35791 67.54
2 30254 65874 79.68
3 50546 75469 81.57
4 64644 76589 82.46
5 54650 87691 87.57
6 10054 95547 98.87
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Table 6. Overall objective function changes under levels of conservatism,, . e’ tse)
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Rise Function

0.10 0 724563 215489

0.25 14.56 892354 254625.98
0.40 18.45 914523 263541.87
0.65 19.27 102456.67 278569.24
0.80 20 115698.36 286574.48
0.90 20 145268.78 293546.98

Table 7. Overall objective function change and computational time

pden ﬂlq ubw Obijective Function Computational Time  Overall Objective Function
se 1 I*se! se .
Rise (s)

0.10 0 326.00 256489.57

0.25 4 338.20 257625.14

0.40 8 349.10 258541.97

0.65 12 352.80 258669.31

0.80 16 376.20 258974.54

0.90 20 402.25 259546.61

Table 8. Overall objective function at different levels of conservatism

den 19 pw Objective Computational Overall Objective Cost

Hee 'Hse' Hge Function Rise Time (s) Function Object_ive
Function

0.10 0 326.00 256489.57 724563

0.25 14.56 338.20 257625.14 892354

0.40 18.45 349.10 258541.97 914523
0.65 19.27 352.80 258669.31 102456.67
0.80 20 376.20 258974.54 115698.36
0.90 20 402.25 259546.61 145268.78

Table 9. Lower bounds, optimal gap, number of iterations, and computational time (BD)

No. BD Accelerated BD CPLEX

@ 5 T 25 @ 5 = 25 o 25

@ = ES 55 s = EZ 58 e 5 E

€ o 50 Q= (S = 50 L = = _GQ_’, c

= 2 ¢ 51 - 2 ¢ o oL
1 10 5 0.25 8785 12 4 0.22 9902 8 9785
2 24 10 0.35 9254 34 14 0.32 10356 20 10154
3 38 30 0.99 11254 45 30 0.95 12354 30 11054
4 59 18 0.86 12354 69 16 0.81 12456 - 12132
5 68 10 0.68 13547 78 9 0.61 13698 - 13547
6 88 20 0.81 13869 90 19 0.76 13965 - 13869
7 100 30 1.35 14256 111.53 30 1.32 14256 - 14256
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