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Abstract 

Power system state estimation is vulnerable to stealthy false data injection attack (FDIA) that bypasses 

conventional bad data detectors. In this paper, an improved FDIA detection approach has been proposed using a 

phasor measurement unit (PMU) assisted linear power system state estimation scheme. The proposed detection 

approach tracks the changes of complex PMU measurements between the current time instant of the present-day 

and one step previous time instant of the previous day. This variation of complex PMU measurement is then 

compared with the variation of forecasted measurements. Manhattan distance has been applied to calculate the 

distance between the distribution of two different measurement variations. In the event of an FDIA, the 

Manhattan distance will increase significantly from normal conditions. The proposed approach has been 

validated on two IEEE benchmark test systems. The produced results clearly depict the efficacy of the proposed 

approach. 
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1. Introduction 

State estimation is an important tool in maintaining the secure and reliable operation of the power grid. The 

state estimation in power systems is generally performed with the conventional measurements obtained from 

various remote terminal units (RTUs). Conventional measurements typically incorporate injected real and 

reactive powers, real and reactive line flows, and generator buses' voltage magnitudes. Both PMU and RTU 

measurements in general comprise small random measurement errors which originate due to inaccurate 

measurement devices or noises [1-2]. However, faulty measurement equipment or defective telecommunication 

systems may cause the measurement noise to be large. These measurements comprising large noises are termed 

bad measurements. Traditional bad data detection approaches [3-4] can successfully detect these large 

measurement noises.  

Recently, the operation of power systems is subjected to the increasing threat from cyber attackers [5-7]. The 

vulnerability of state estimation to stealthy attack vectors which aren’t detected by conventional bad data 

detection approaches have been addressed by various researchers [8-30]. Liu et al. [8] first show that a maiden 

cyber-attack termed false data injection attack (FDIA) can simply get past the conventional bad data detection 

system. In their work, the researchers demonstrated that an attacker can exploit power system structure to 

instigate such attack that can infiltrate random noise into certain state variables while evading existing bad data 

detection approaches. 

Traditional bad data detection process fails to detect the FDIA, as the measurement residual obtained during 

FDIA remains unchanged. Several attempts have been made to assuage the effects of FDIA. Existing mitigation 

approaches are mainly based on protection [9-15] and detection [16-30] based methods. In order to defend 

against FDIA, Yang et al. [9] developed both protection based and detection-based methodology. In order to 

provide protection-based defense, they identify the critical meters to be protected by applying a heuristic-based 

approach. For detection-based methodology, spatial and temporal-based detection schemes have been 

implemented. Bobba et al. [10] have shown that FDIA can be detected by protecting a strategically selected set 

of basic measurements. Brute force-based approach has been implemented by them to select the measurement 

sets to be protected. Tian et al. [11] proposed a TOTAL protection strategy against both perfect and imperfect 

mailto:sk.17ee1102@phd.nitdgp.ac.in
mailto:ma.18ee1501@phd.nitdgp.ac.in
mailto:bk.saharoy@ee.nitdgp.ac.in
mailto:sst@ee.nitdgp.ac.in


2 

 

FDIA. The TOTAL protection framework reduces the attack impact of usual imperfect FDIA, while providing 

defense against usual perfect FDIA. The researchers constructed the meter selection problem as a linear binary 

programming or Integer programming based on whether the protection approach comprises of PMUs or not. 

Khanna et al. [12] developed a defense mechanism that chooses the most critical measurements to secure. For 

that purpose, a priority-based protection methodology has been implemented by incorporating normalized 

measurement Jacobian matrix instead of binary measurement Jacobian. In [13], the researchers formulated a 

least-budget defense approach to protect FDIA. They determined the meters to be protected and their 

corresponding defense budget. Das et al. [14] implemented a scheme that provides enhanced network resilience 

against FDIA. In order to select an optimal set of sensors, a computationally cheap approach based on logical 

analysis of data has been presented.  In [15], graphical methods have been suggested to safeguard against FDIA. 

The authors formulate the problem of securing minimal measurements as a variant Steiner tree problem in a 

graph. The problem has been solved by applying approximation method based on tree pruning approach. 

Protection-based methods have the drawback of decreased redundancy as only a few secured and reliable 

measurements can be utilized. Further, the protection-based approaches don’t guarantee secure protection 

always.  Unlike protection approaches, detection techniques can identify erroneous data that has been included 

into the measurements. 

Chaojun et al. [16] implemented Kullback-Leibler divergence for tracking the measurement dynamics to detect 

the FDIA. However, SCADA-based non-linear SE has been discussed in their paper. In [17], the researchers 

enhanced the accuracy of the above approach by applying a joint transformation-based technique. Some other 

approaches detect FDIA by implementing advanced state estimation methods like the data-driven approach [18] 

and least trimmed squares estimation [19]. A sequential detector that depends on the generalized likelihood ratio 

has been formulated in [20] for the detection of false data attacks. Further, in order to provide wide-area 

monitoring of the smart grid, a distributed sequential detector utilizing level-triggered sampling has been 

proposed in their work. In [21], Chen et al. detected false data attacks in smart grid by utilizing spatial-temporal 

relationships between grid structures. Liu et al. [22] developed the false data detection problem as a matrix 

separation problem and solved the problem by applying two approaches, i.e., the nuclear norm minimization 

approach and the low-rank matrix factorization technique. Ashok et al. [23] proposed an online detection 

approach to detect malicious false data. In their approach, the researchers utilized load forecasting information, 

generation schedules, and real-time synchro-phasor measurements to detect the injected false data. Furthermore, 

they have assumed that synchro-phasor data is free from data tampering as it has inherent cyber security 

mechanisms. However, some existing literature suggests that attackers can also inject malicious data into PMU 

measurements.  Basumallik et al. [24] exhibit the vulnerability of synchro phasor measurements to cyber-

attacks. However, their approach is based on adopting non-linear hybrid state estimation. In the references [25] 

and [26], synchro phasor data obtained from PMUs are manipulated due to the presence of a GPS spoofing 

attack (GSA). A highly discriminative detection approach utilizing the k-smallest residual similarity test is 

proposed in [27]. However, in their work the authors considered the FDIA to be an imperfect one. Artificial 

intelligence-based approaches like reinforcement learning [28], deep learning [29], and extreme learning 

machines [30] are also being applied for the detection of malicious data. Seemita et al. [31] evaluated the 

equivalent impedances of transmission lines for detection of data manipulation attacks in PMUs. However, they 

haven’t explored it for a PMU-assisted linear state estimation framework. In [32], the authors suggested a novel 

attack vector formulation method for linear SE framework by incorporating low-rank approach. However, the 

detection strategy hasn’t been discussed in their paper. Obata et al. [33] recently introduced a detection strategy 

based on distributed state estimation. In [34], the authors developed an unsupervised detection framework to 

detect the FDIA. Shuheng et al. [35] suggests a novel FDIA detection approach for unbalanced distribution 

systems. In their approach, square root unscented Kalman filter has been applied to produce SE results. 

Thereafter, a generalized likelihood ratio test is formulated to detect FDIAs. The authors of [36] implemented 

combined static and dynamic state estimation to detect FDIA. Although recently some references [37-40] have 

discussed cyber-attacks on PMUs, however, only few of them have concentrated on detection of FDIA. 

Moreover, most of those frameworks haven’t considered the identification of attacked measurements and none 

of those methodologies have the ability to detect successive attacks. 

Linear state estimation in power systems is obtained with the inclusion of measurements received from 

optimally placed PMUs. Therefore, determining the optimal locations of PMUs is vital in power systems. 
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Different techniques [41-43] have been suggested by various researchers for solving the problem of optimal 

PMU placement. Although all these approaches are different, they provide the same number of optimal PMUs.  

The existing literature mainly discusses various detection techniques to filter out injected false data in the 

conventional SCADA-based non-linear state estimator. However, recent research suggests that PMU 

measurements are also vulnerable to cyber-attacks. Considering this vulnerability, this article focuses on 

detecting false data attacks in PMU-assisted linear state estimator. Furthermore, the existing literature haven’t 

considered the detection of false data in successive time samples. The proposed framework successfully detects 

data manipulation in consecutive time samples. The main contributions of the article are summarized below. 

 Formulation of an improved FDIA detection approach that can successfully detect malicious data 

in complex PMU measurements, unlike most of the previous approaches, which detect false data 

in traditional SCADA measurements. 

 Application of Manhattan distance for obtaining the distance between the distribution of two 

different measurement variations to detect the injected malicious data, which traditional bad data 

detection (BDD) fails to detect. 

 Implementation of the proposed detection approach for PMU-assisted linear state estimation 

framework. 

 Successful detection of false data in consecutive time samples. 

 

The rest of the article is organized as below. Section 2 gives the mathematical background of PMU-assisted 

linear state estimation, traditional bad data detection approach, and FDI attacks. In Section 3, the proposed 

detection methodology, along with the Manhattan distance, are discussed. Section 4 provides the simulation set 

up and in section 5, results and discussions are provided. Finally, section 6 concludes the article. 

2. Mathematical Background  

In this section, mathematical formulation of optimal allocation of PMU, PMU-assisted linear state estimation, 

along with traditional bad data detection and FDI attacks are presented.  

2.1. Optimal allocation of PMU 

The optimal PMU placement problem for a system that consists of n  no. of buses can be mathematically 

expressed as 

min cos
1

n
t xi i

i



                                                                           (1) 

 st f x d  

where ‘ d ’ represents a unit vector of dimension ‘ n ’ and the PMU installation cost at  thi bus is represented by

  icost .  

 

The observability constraint function,  f x , determines whether a certain bus is observable or unobservable. If 

a particular bus is unobservable, then the corresponding entry of   f x  will be ‘zero’ and will be ‘one’ in the 

case of the observable bus. Assuming all the PMUs have equal and unity cost, the problem formulation of 

optimal PMU placement can be given as 

min
1

n
xi

i



                                                                               (2) 

 st f x d  

2.2. PMU-assisted linear state estimation 

PMU-assisted linear state estimation utilizes the linear measurement function, which is given in equation (3). 
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mz Hx                                                                              (3) 

 

Where, z
m

is  1m  dimensional vector of the complex PMU measurements, which comprises complex line 

currents and complex bus voltages, H  is the observation matrix, which is composed of two sub-matrices, i.e., 

1H  and 2H . The entries of  1H  is a function of line admittances, whereas 2H  is a unity matrix.  is the noise 

vector. The covariance matrix for   is given as  

0

0

l

v






 
  
 

                                                                                        (4) 

Where l  and v  are the covariance matrix for complex line currents and complex bus voltages, respectively. 

The gain matrix is calculated as  

1T

mG H H                                                                                          (5) 

The estimated state can be calculated as 

1 1T

m mx G H z                                                                                       (6) 

2.3. Bad data detection  

Conventional bad data detection approach relies on the residual analysis of m mr z Hx  . The presence of 

bad data is verified by comparing the residual with a threshold value. If the residual is larger than the threshold, 

then it is assumed that bad data is present in the measurements. Otherwise, the measurement is considered 

normal. The threshold is decided after performing a chi-square test considering a desired significance level.  

2.4. False data injection attack 

The work carried out in [8] shows that an attacker can generate stealthy false data and thereby inject if the 

attacker knows the network structure and can perturb several measurements at the same time. The formulated 

false data injection attack can circumvent the bad data detection method, if the attack vector ' 'a  satisfies the 

following condition, i.e., a Hc .  ‘ a ’ is the malicious data incorporated into the actual measurements, and 

' 'c  is the injected state estimation error. The manipulated measurements after being attacked can be 

mathematically written as  

att mz z a                                                                                       (7) 

 

After the injection of false data, the estimated state also comprises errors and can be mathematically represented 

as  

attx x c                                                                                          (8) 

Traditional bad data detection mechanism fails to detect false data injection attack as the measurement residuals 

remain unchanged. The measurement residuals after the attack can be represented as  

   a att att m mr z Hx z a H x c z Hx r                                      (9) 

This shows that the measurement residual remains unaffected even after the injection of false data. Thus, 

conventional bad data detection mechanism fails to detect false data injection attack. 

 

3. Proposed Methodology 

The proposed detection approach is an online detection method that tracks the variation of measurements 
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obtained at the current time instant  k  of the present day and one step previous time instant  1k   of the 

previous day. This variation of complex PMU measurement is then compared with the variation of forecasted 

measurements. Manhattan distance has been applied to calculate the distance between the distribution of two 

different measurement variations. Assuming ' '  is the distribution of measurement variation obtained from the 

deviation of real-time measurements whereas ' '  represents the distribution of measurement variation obtained 

from the historical measurements.   can be mathematically expressed as  

, 1k pre k

m mz z                                                                                     (10) 

The mathematical expression of   is given as  

, 1k pre k

forecasted forecastedz z                                                                       (11) 

 

k

mz  is the measurement vector at time instant k  of the present day and 
, 1pre k

mz 
 is the measurement vector at 

time instant 1k   of the previous day. 
k

forecastedz  is the forecasted measurement at time instant k  of the present 

day and 
, 1pre k

forecastedz 
 is the forecasted measurement at time instant 1k   of the previous day. It has been assumed 

that there is no significant load variation occurs in between two consecutive days.  

 

The deviation of these two different measurement variations can be mathematically given as  

                                                                                        (12) 

 

3.1 Manhattan Distance 

  

The Manhattan distance calculated between two vectors is same to the one-norm of the distance between the 

vectors. The Manhattan distance between two points x  and y  can be mathematically expressed as  

   ,d x y x y                                                                               (13) 

Considering the above formula, the Manhattan distance   can be mathematically obtained as  

 
1

m

dist

i

p  


                                                                                 (14) 

   , 1 , 1

1

m
k k pre k pre k

m forecasted forecasted m

i

z z z z 



    
                                            (15) 

where ' 'm is the total no. of measurements.  

In case of any data manipulation in power systems, the distp  value will become higher than that of normal 

conditions. Therefore, if the distp  value is higher at any instant; then it is assumed that FDIA occurs.  

 

3.2 Algorithmic steps 

 

      The algorithmic steps of the proposed approach are depicted through the flowchart provided in Figure 1. 

Initially, complex PMU measurements, viz. complex line currents and complex bus voltages, are obtained at the 

current time instant k  of the present day.  The next step is to compute the variation of real-time measurements 

  from equation (10). For calculating  , the complex PMU measurements of one step before time instant 

1k  of the previous day is compared with the complex PMU measurements obtained at time instant k  of the 

present day. It might be noted that in this methodology, one step before time instant of the previous day has 

been considered instead of the present day. This is because, by considering the one step before time instant of 

the previous day, the proposed methodology can successfully detect FDIA in successive time samples.  The next 

step is to compute the distribution of measurement variation   obtained from the historical measurements.  
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The Manhattan distance of the deviation of two different distributions   and   is further determined to detect 

the occurrence of FDIA.  

 

4. Simulation Details 

The simulation study has been carried out by varying the loads as provided in Reliability test systems of 

IEEE [44]. The present day is chosen Thursday, which has 96% peak load of the weekly peak load, and the 

previous day is Wednesday, which has 98% peak load of the weekly peak load. Power factor is supposed to be 

constant so that the reactive power follows the active counterpart. The total load change has been distributed 

among the generators based on their participation factors. Consecutive load flows have been done to determine 

the true values of the states. Simulated measurements are produced by inclusion of Gaussian noise of zero mean 

and standard deviation of 0.5% to the true values. The efficacy of the proposed approach has been verified on 

test networks of IEEE 14 bus and IEEE 118 bus. The line diagram of the IEEE 14 bus test system, along with 

the allocated PMU, is shown in Figure 2.  It is noticed that four PMUs have to be placed on buses 2, 6, 7, and 9 

for making the system completely observable. Each PMU measures the line currents with the connected buses 

and the voltage of the bus where it is installed. For the IEEE 118 bus system, 32 PMUs have to be allocated for 

entire system observability. The optimal locations for both IEEE 14 and 118 bus test systems are provided in 

Table 1.  

 

4.1 Performance Evaluation Indices 

 

The effectiveness of the proposed approach is evaluated through various performance evaluation indices as 

defined below. 

False positive rate: False positive represents the case when the detection technique detects an attack even if 

there is no attack. A false positive rate (FPR) can be mathematically given as  

 
FPFPR

FP TN



                                                                         (16) 

where FP  is the false positive and TN  is the true negative. 

 

False negative rate: False negative represents the case when the detection approach fails to detect an attack. 

The mathematical expression of false negative rate (FNR) is  

 
FNFNR

FN TP



                                                                           (17) 

where FN  is the false negative and TP  is the true positive.  

True positive rate: True positive rate (TPR) or detection rate represents the case when the detection technique 

successfully detects an attack. TPR is mathematically expressed as  

 
TPTPR

TP FN



                                                                        (18)  

Table 2 provides the details of attacked state variables and the magnitude of attacks. It is noted that for IEEE 14 

bus system the attacker tries to perturb the complex state variables at buses 9, 12, and 13 with an attack 

magnitude of 1-10%. Similarly, for IEEE 118 bus test system, the perturbed states are complex bus voltages at 

buses 112 and 118, and the attack magnitude is increased to 10 % from 1%. 

 

5. Results and Discussions 

The suggested detection method is tested on IEEE 14 bus and IEEE 118 bus systems. The results for both test 

systems are provided below. 

 

5.1 IEEE 14 bus test system 
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   Figure 3 depicts the calculated distp  when the state variables have been perturbed by 2% of their original 

value. From the figure, it is noted that during k=5, 6, 7, the distp  value rises from its normal conditions. The rise 

in distp  value suggests presence of false data attacks in the system. It is worth noting here that the distp  value 

remains high for successive time samples. Therefore, FDIA can be detected even it occurs in consecutive time 

samples.  

 

Similarly, Figure 4 exhibits the distp  value when the attack magnitude has been increased to 5%. From this 

figure, it is seen that the distp  value becomes higher during the occurrence of an attack in the system. It is also 

noted that with the increase in attack magnitude, the distp  value increases. Figure 5 gives the value of distp  

corresponds to a 10% increase in attack magnitude. It is worth pointing out here that even with the increase in 

attack magnitude, the proposed approach successfully detects the FDIA in successive time samples. Therefore, 

considering Figure 3-5, one can clearly detect if there is an attack in the system.  

 Figure 6 shows the variation of   through bar chart with varying measurement no. From this figure, it is noted 

that measurement no. 6, 9, 10, 12, 13, and 14 which are being attacked corresponds to the higher value of  .  

The attackers perturb those measurements to corrupt the states 9 12,  ,x x  and 13x . Figure 7 shows the changes of 

the false positive rate with the detection threshold. It is noticed that choosing of low detection threshold value 

increases the FPR. It is seen that with the increase in detection threshold, the FPR decreases and reduces to zero. 

Figure 8 depicts the variation of true positive rate with attack magnitudes for detection threshold 0.01. It is noted 

that when the attack magnitude is less than 0.01, the TPR is less than one. However, with the increase in attack 

magnitude, TPR increases and quickly becomes one.  

 

 

5.2 IEEE 118 bus system 

  

Figure 9 depicts the calculated distp  value when the attackers manipulate the state variables by 1%. It is noticed 

that during the FDIA, the value of distp  abruptly becomes higher. Increase in distp  value suggests that there is 

a disturbance in the system which is due to a cyber-attack. Figure 10 and Figure 11 show calculated distp  when 

the attack magnitude increased to 5% and 10% respectively. Similarly, it is noticed that during time samples 

k=5, 6, and 7, the distance value increases indicating the presence of a FDIA. From both figures, it is noted that 

the proposed approach successfully detects FDIA in consecutive time samples even when the attack intensity is 

increased. Figure 12 shows the variation of   through bar chart with varying measurement no. It is noticed that 

measurement no. 93, 95, and 139 have higher values of    which indicates that those measurements are being 

manipulated by the attackers to perturb the complex bus voltages at bus 112 and bus 118.   

Figure 13 exhibits the variation of FPR with changes in detection thresholds. It is noticed that when the 

detection threshold is low, the FPR is a little high. However, as the detection threshold increases the FPR 

reduces and finally settles to zero when the threshold equals to 0.01. The variation of TPR i.e., detection rate 

with the increase in attack magnitudes for detection threshold 0.01 is depicted in Figure 14. It shows that the 

proposed detection approach provides 100% successful detection rate irrespective of the attack magnitudes. 

From the above-discussed results, it can be easily inferred that the FPR depends on the detection thresholds. 

Choosing of high detection threshold eliminates the false positives case which yields an improved detection rate.  

 

5.3 Comparative discussions with other approaches 

 

In the existing literature, many approaches have been introduced by various researchers for detection of false 

data. However, most of the existing detection methodologies have concentrated on detecting false data in 

SCADA measurements based non-linear state estimator. Therefore, the existing literature lacks detection 

strategies for detection of false data in complex PMU measurements. Although the authors of [24] have studied 
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the impact of false data in PMU devices, they haven’t suggested a detection strategy to detect malicious false 

data.  The authors of [25] have studied the impact of GPS spoofing attack in PMU assisted forecasting aided 

state estimation (FASE). However, GPS spoofing attack is different from stealthy FDIA. Also, the authors have 

considered FASE framework in their approach. This is to be noted that only a handful of researchers [37-40] 

have concentrated on detecting cyber-attacks in PMUs. Further, only few of them [38-40] have discussed false 

data type intrusion detection. Comparison of proposed approach with the methods discussed in [37-40] is 

provided in Table 3.  For comparison, three parameters have been considered, viz. if the detected attack is FDIA 

or not, identification of attacked measurements, and lastly capability to detect FDIA in consecutive time 

samples.  

 

From Table 3, it is observed that only the authors of reference [38] has discussed on identification of attacked 

measurements. Furthermore, none of the references have focused on detecting FDIA in consecutive time 

samples.  

The proposed framework not only identifies the attacked measurements but also has the ability to detect attack 

in successive time samples. 

6. Conclusions 

In this paper, an improved FDIA detection approach has been suggested for linear power system state 

estimation which utilizes complex PMU measurements. The proposed detection framework is based on 

calculating the deviation of complex PMU measurements between the current time instant of the present day 

and one step before time instant of the previous day. Thereafter, the Manhattan distance has been applied to 

obtain the distance between the distributions of these two different measurement variations. The proposed 

approach has been implemented on IEEE 14 bus and IEEE 118 bus test systems. Provided results depict that the 

proposed framework has a high detection rate and low false positives. It is observed that the proposed detection 

approach successfully detects FDIA even if it occurs in subsequent time samples.  
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Figure 3 Calculated distp  when the attack magnitude increased to 2% 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Calculated distp  when the attack magnitude increased to 5% 
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   Figure 5 Calculated distp  when the attack magnitude increased to 10% 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Depiction of the variation of   through bar chart with varying measurement numbers 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7 Variation of false positive rate with a detection threshold 
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Figure 8 Variation of true positive rate with attack magnitudes for detection threshold 0.01 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Calculated distp  when the attack magnitude increased to 1% 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 10 Calculated distp  when the attack magnitude increased to 5% 
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Figure 12 Depiction of the variation of   through bar chart with varying measurement numbers 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Variation of false positive rate with detection threshold 
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Figure 14 Variation of true positive rate with attack magnitude for detection threshold 0.01 

 

Table 1 Optimal No. and Locations of PMUs 

 

Bus test system Optimal No. Locations of PMUs 

IEEE 14 4 2, 6, 7, 9 

IEEE 118 32 1,5,9,12,15,17,21,24,25,28,34,37,41, 

45,49,53,56,62,64,68,71,75,77,80,85, 

86,90,94,101,105,110,114 

 

Table 2 Attacked state variables and their magnitude of attacks 

 

Bus test system Attacked states Magnitude of attack (%) 

IEEE 14 
9 12,  ,x x  and 13x  1-10 

IEEE 118 
112x  and 118x  1-10 

 

Table 3 Comparison with other methods 

Reference Detection of FDIA? Identification of attacked 

measurements? 

Capability to detect 

FDIA in successive time 

samples? 

[37] No No No 

[38] Yes Yes No 

[39] Yes No No 

[40] Yes No No 

Proposed Yes Yes Yes 
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