| 1                                                                 | Four-variable Quasi-3D model for nonlinear thermal vibration of FG plates lying on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                 | Winkler-Pasternak-Kerr foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4<br>5<br>6                                                       | Belgacem Mamen <sup>1,2</sup> , Abdelhakim Bouhadra <sup>1,2</sup> , Fouad Bourada <sup>1, 3</sup> , Mohamed Bourada <sup>1</sup> ,<br>Abdelouahed Tounsi <sup>1,4,5,6*</sup> , Muzamal Hussain <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | <ul> <li><sup>1</sup>Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria.</li> <li><sup>2</sup>Civil Engineering Department, Faculty of Science &amp;Technology, Abbes Laghrour University, Khenchela, Algeria.</li> <li><sup>3</sup> Département des Sciences et de la Technologie, Université de Tissemsilt, BP 38004 Ben Hamouda, Algérie.</li> <li><sup>4</sup>Yonsei Frontier Lab, Yonsei University, Seoul, Korea</li> <li><sup>5</sup>Department of Civil and Environmental Engineering, King Fahd University of Petroleum &amp; Minerals, 31261 Dhahran, Eastern Province, Saudi Arabia</li> <li><sup>6</sup> Interdisciplinary Research Center for Construction and Building Materials, KFUPM, Dhahran, Saudi Arabia.</li> <li><sup>7</sup> Department of Mathematics, Govt. College University Faisalabad, 38000, Faisalabad, Pakistan.</li> </ul> |
| 19<br>20<br>21<br>22                                              | *Corresponding author, E-mail: tou_abdel@yahoo.com<br>Tel.: +213696848871<br>Fax: +21332731236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                                                | Abstract:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24                                                                | This paper presents the nonlinear thermodynamic results of functionally graded plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25                                                                | lying on Winkler/Pasternak and Kerr foundation through an analytical formulation. The field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26                                                                | displacement is defined by only four unknowns, including an indeterminate integral and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27                                                                | new shape function representing the transverse shear stresses. Material properties of the FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28                                                                | plates are temperature-dependent and graded according to a simple power-law distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29                                                                | Also, the thermodynamic equations of motion are deduced based on Hamilton's principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30                                                                | The exactitude of the present theory results is verified with those obtained by various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31                                                                | researchers. The effects of temperature-dependence material properties, power-law index,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32                                                                | nonlinear temperature rising, elastic foundation parameters, aspect, and slenderness ratio are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33                                                                | discussed. The results show that the increase in elastic foundation parameters would enhance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34                                                                | the thermodynamic response of the FG plates. Nevertheless, the degree of improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35                                                                | would be related to the nonlinear temperature change. Moreover, the plate's configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 36                                                                | effect is more significant when the nonlinear temperature difference is high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37                                                                | Keywords: Nonlinear thermodynamic, FG plates, Winkler/Pasternak/Kerr foundation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

38 Temperature-dependence material.

### 40 **1. Introduction**

The continuous evolution of thermomechanical properties between the lower and upper surfaces of functionally graded structures makes them widely used in diverse areas such as aerospace, nuclear reactors, power sources, biomechanical, optical, civil, automotive, electronic, chemical, and mechanical engineering [1].

The material features gradually differ along with one or various dimensions of the 45 structure to achieve intended functionalities. Researchers developed FG materials to resist 46 47 ultra-high temperatures. The FG structures have been tested under high-temperature gradients across the cross-sectional thickness, Thai et al. [2]. This type of material is prepared by 48 mixing two different constituents, such as ceramic and metal. This advanced manufacturing 49 process aims at developing ideal heat-resistant materials. In this way, thermal resistance is 50 provided by a heat-resistant ceramic on one side. At the same time, crack resistance is offered 51 52 by metal with high thermal conductivity and high hardness. Thanks to these simultaneous functions, the use of (FGMs) has been fostered in thermal protection systems for melting 53 54 reactors and heat exchanger pipes [3-9].

After their innovation in the late 90s, researchers carried out various investigations to assess the thermomechanical and dynamic behaviors of FGMs plates using different analytical methods [10-14]. Thai et al. [2] confirmed that the FSDT is also accurate in investigating the free vibration analysis of FGM plates composed of functionally graded face sheets and an isotropic homogeneous core with variable thickness. Ye et al. [15] recently analyzed the free vibration behavior of FG sandwich plates using new higher-order refined models.

As stated previously, to withstand the high temperatures, FGM structures made up of 61 ceramic/metallic components are generally of interest. Shariyat [16] introduced a generalized 62 global-local theory to investigate the vibration behavior of FG sandwich plates exposed to 63 thermo-mechanical loads. Malekzadeh and Monajjemzadeh [17] investigated the thermal 64 dynamic response of FG plates resting on elastic foundation and subjected to a moving load 65 based on the first-order shear deformation theory, including the initial thermal stresses' 66 67 effects. Two dimensions' free vibration responses of temperature-dependent FG plates have been analyzed by Attia et al. [18] using four-variable higher-order shear deformation theory. 68 69 Parida and Mohanty [6] employed higher-order shear deformation theory (HSDT) to consider 70 the free vibration response of rotating functionally graded plates subjected to the nonlinear temperature. Zaoui et al. [19] studied the free vibration of FG temperature-dependent 71 72 properties plates using an improved exponential-trigonometric two-dimensional higher shear 73 deformation theory. Furthermore, Arshid et al. [20] analyzed the thermomechanical buckling

and vibrational behavior of a sandwich-curved microbeam resting on the visco-Pasternak 74 foundation. Navier's solution method is used to solve the differential equations system 75 analytically. Based on the findings, such intelligent structures can be used to design and 76 manufacture various equipment, making high stiffness-to-weight ratios more accessible. Li et 77 al. [21] investigated the nonlinear vibration behavior of FG sandwich beams. In thermal 78 environments, the beams have been modeled with an auxetic porous copper core. Singha et al. 79 [22] analyzed the vibration analysis of a rotating pre-twisted graphene-reinforced composite 80 81 (GRC) cylindrical shell. The temperature-dependent material properties of the FG-GRC have 82 been predicted by employing the continued Halpin-Tsai model. Abouelregal et al. [23] analyzed the vibrational behavior of rotating isotropic nanobeams using the nonlocal theory of 83 elasticity. This study aims to contribute to understanding the dynamics of rotating nanobeams 84 subject to varying heat sources. Also, the thermoelastic vibrations of nanobeams resting on a 85 86 Pasternak foundation and thermally loaded by ramp-type varying heat have been investigated 87 by Nasr et al. [24].

Nevertheless, limited research has been carried out to analyze the 3D thermodynamic 88 behavior of FG structures or those lying on Winkler, Pasternak, and Kerr foundation [25-27]. 89 Malekzadeh et al. [25] investigated the three-dimensional thermal dynamic response of thick 90 FG annular plates in a thermal environment. The differential quadrature method (DQM) has 91 been used to drive the 3D thermoelastic equilibrium equations. Tu et al. [27] have considered 92 the heat conduction and temperature-dependent material properties to analyze functionally 93 graded plates' 3D free vibration behavior in thermal environments using an eight-unknown 94 higher-order shear deformation theory. On the one hand, Parida and Mohanty [6] and Zaoui et 95 al. [28] are the only researchers investigating the nonlinear thermal vibration behavior of FG 96 plates based on a displacement field containing four variables (2D shear deformation theory). 97 98 On the other hand, the main advantage of our study is to use a displacement field containing the same number of unknowns (four variables) with 3D theory. Additionally, this model 99 simplifies the problem and considers the effect of transverse stretching, which is not 100 101 considered in the case of 2D- shear deformation theories.

According to this literature, in all the previously mentioned research, the thermal conductivity has always been considered independent of temperature, affecting the obtained results when the temperature difference is at high levels. Therefore, this work deals with proposing a new 3D modelling concept and investigating the nonlinear temperature field effect on the free vibration behavior of FG plates resting on various elastic foundations. Even more, the implications of temperature-dependent material properties, power-law property index, non-linear temperature rise, elastic foundation parameters, and aspect ratio andslenderness ratio are reviewed.

### 110 2. FG plates

111 The considered plates of length (*a*), width (*b*), and thickness (*h*) lie on elastic 112 foundations (Winkler-Pasternak foundation and Kerr foundation). All the investigated plates 113 are exposed to the nonlinear temperature change, see Figure 1. Mechanical characteristics 114 vary progressively with thickness, from the lower metal surface to the upper ceramic surface.

115 Significantly, to more accurately describe the behavior of FG plates at elevated 116 temperatures, the material parameters need to be temperature-dependent P(z,T), including 117 Poisson's ratio, Young's modulus, the thermal expansion, and the thermal conductivity are 118 presented as [29-30]:

119 
$$P(z,T) = [P_c(T) - P_m(T)]V_c + P_m(T)$$
 (1)

120  $P_m(T)$  and  $P_c(T)$  denote the effective temperature-dependent properties of the metal and 121 ceramic, respectively.

122  $V_c$  denotes the ceramic fraction and it is given conforming to the power law:

123 
$$V_c = \left(\frac{1}{2} + \frac{z}{h}\right)^k \tag{2a}$$

124 In which *k* is the volume fraction exponent.

Touloukian [31] suggests the material properties as follows:

126 
$$P(T)_{i} = P_{0}(P_{-1}T^{-1} + 1 + P_{1}T + P_{2}T^{2} + P_{3}T^{3})$$
 (2b)

Where i = c, m. *T* is temperature in Kelvin, and  $P_j$  (j = -1, 1, 0, 1, 2, 3) are the temperaturedependent factors, see Table 1, Mamen [30]. Also, the variation of the effective temperaturedependent and independent material properties is illustrated in Figure 2.

Figures 2(a)-(c) show the evolution of temperature-dependent properties through the FG square plate's thickness. The temperature of the lower surface is constant ( $T_m = 300K$ ), while the upper surface temperature is varied ( $T_c = 300$  to 700K). It can find that the temperature has an important influence on all material properties except Poisson's coefficient. Therefore, in this investigation, Poisson's coefficient will be considered a constant (independent of temperature) and equals 0.28.

136

- 137
- 138
- 139

#### 140 **3.** Nonlinear temperature distribution

Assume the FGM plates are exposed to nonlinear temperature rise (NLTR). The temperature field distributes nonlinearly from the upper surface  $T_c$  to the lower surface  $T_m=300$  K. In this case, the one-dimensional steady-state heat conduction along the thickness is given as Salari et al. [32]:

145 
$$-\frac{d}{dz}\left[\kappa(z,T)\frac{dT(z)}{dz}\right] = 0$$
(3)

146

Taking into account the continuous thermal conditions yields to:

147 
$$T(z) = T_m + \Delta T \frac{\int_{-h/2}^{\infty} \frac{1}{\kappa(z,T)} dz}{\int_{-h/2}^{h/2} \frac{1}{\kappa(z,T)} dz}, \quad -\frac{h}{2} \le z \le \frac{h}{2}$$
(3a)

148 In which:  $\Delta T = T_c - T_m$ 

Eq. (3a) can be solved by using an approximation of polynomial series expansion [33-35] and Mamen [30]:

151 
$$T(z) = T_m + (T_c - T_m) \frac{D_1(z)}{D_0(z)}, \quad -\frac{h}{2} \le z \le \frac{h}{2}$$
 (3b)

152 
$$D_j(z) = \sum_{i=0}^r \left(\frac{\kappa_m - \kappa_c}{\kappa_m}\right)^i \frac{\left(\frac{1}{2} + \frac{z}{h}\right)^{(in+1)j}}{in+1}, (j=0,1)$$
 (3c)

153 Where r represents the item numbers in the series and is chosen equals to five to ensure the 154 computation is accurate.

## 155 4. Theory and governing equations

### 156 4.1 Kinematics and constitutive relations

The boundary conditions are the main limitation of the present model compared to computational methods. In other words, the present model could be only used for simplysupported plates. However, with a slight modification in solutions (functions in the double Fourier series), the present model could effectively predict the behavior of clamped or simply-clamped FG plates.

Based on 2D and 3D higher shear deformation theories, the fields of displacement aredescribed as follows:

$$164 \qquad \begin{cases} u(x,y,z,t) = u_0(x,y,t) - z \ \frac{\partial w_0(x,y,t)}{\partial x} + K_1 f(z) \int \theta(x,y,t) dx \\ v(x,y,z,t) = v_0(x,y,t) - z \ \frac{\partial w_0(x,y,t)}{\partial y} + K_2 f(z) \int \theta(x,y,t) dy \\ w(x,z,t) = w_0(x,y,t) + ng(z) \theta(x,y,t) \end{cases}$$
(4)

The undetermined integral in Eq. (4) is simplified and declared as, Bouhadra [36]:

166 
$$\int \theta(x, y, t) \, dx = A' \frac{\partial \theta(x, y, t)}{\partial x}$$
(5a)

167 
$$\int \theta(x, y, t) \, dy = B' \frac{\partial \theta(x, y, t)}{\partial y}$$
(5b)

168 Based on Eqs. (5a-b), Eq. (4) takes the following form:

$$169 \quad \begin{cases} u(x,y,z,t) = u_0(x,y,t) - z \ \frac{\partial w_0(x,y,t)}{\partial x} + k_1 A' f(z) \frac{\partial \theta(x,y,t)}{\partial x} \\ v(x,y,z,t) = v_0(x,y,t) - z \ \frac{\partial w_0(x,y,t)}{\partial y} + k_2 B' f(z) \frac{\partial \theta(x,y,t)}{\partial y} \\ w(x,y,z,t) = w_0(x,y,t) + ng(z)\theta(x,y,t) \end{cases}$$
(6)

- 170 Where  $u_0, v_0, w_0$  and  $\theta$  are unknown displacements of the mid-plane of the FGM plate.
- 171 Where the coefficients  $(k_1, k_2)$  and (A', B') are defined as:

172 
$$k_1 = -\lambda^2 \text{ and } A' = -\frac{1}{\lambda^2}$$
 (7a)

173 
$$k_2 = -\beta^2 \text{ and } B' = -\frac{1}{\beta^2}$$
 (7b)

174 Note that  $\lambda$  and  $\beta$  are defined in Eq. (31).

175 f(z) represents the shape function defining the distribution of transverse shear deformation, it

is written as follows, Mamen [30]:

177 
$$f(z) = z \left(\frac{27}{4} - 9z^2\right) \text{ and } g(z) = \frac{2}{15} \frac{df(z)}{dz}$$
 (8)

178 *n* is a real number and is given as follows:

179 
$$\begin{cases} n=0 \text{ for } 2D\\ n=1 \text{ for Quasi-3D} \end{cases}$$
(9)

180 The deformations associated with displacements in Eq. (6) are:

181 
$$\varepsilon_x = \frac{\partial u_0}{\partial x} - z \frac{\partial^2 w_0}{\partial x^2} + k_1 A' f(z) \frac{\partial^2 \theta}{\partial x^2}$$
(10a)

182 
$$\varepsilon_{y} = \frac{\partial v_{0}}{\partial y} - z \frac{\partial^{2} w_{0}}{\partial y^{2}} + k_{2} B' f(z) \frac{\partial^{2} \theta}{\partial y^{2}}$$
(10b)

183 
$$\varepsilon_z = g'(z)\theta$$
 (10c)

184 
$$\gamma_{xz} = \frac{\partial \theta}{\partial x} \Big[ k_1 A' f'(z) + g(z) \Big]$$
(10d)

185 
$$\gamma_{yz} = \frac{\partial \theta}{\partial y} \Big[ k_2 B' f'(z) + g(z) \Big]$$
(10e)

186 
$$\gamma_{xy} = \frac{\partial u_0}{\partial y} - 2z \frac{\partial^2 w_0}{\partial x \partial y} + k_1 f(z) A' \frac{\partial^2 \theta}{\partial x \partial y} + \frac{\partial v_0}{\partial x} + k_2 f(z) B' \frac{\partial^2 \theta}{\partial x \partial y}$$
(10f)

187 Where  $\varepsilon_x, \varepsilon_y$  and  $\varepsilon_z$  are the normal and the transverse strains, and  $\gamma_{xz}, \gamma_{yz}, \gamma_{xy}$  are the transverse 188 shear strains.

Based on 3D displacement field expressed in Eq. (6), the linear constitutive relationsare given as:

$$191 \qquad \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{56} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix}$$
(11)

192 The effective temperature-dependent elastic constants  $C_{ij}(z,T)$  depending on the normal strain

193  $\mathcal{E}_z$  are given as follows:

• Case of 2D (
$$\varepsilon_z = 0$$
), then  $C_{ij}$  are:

$$C_{11} = C_{22} = \frac{E(z,T)}{1 - v(z,T)^2}$$
195 
$$C_{12} = \frac{v(z,T) E(z,T)}{1 - v(z,T)^2}$$

$$C_{44} = C_{55} = C_{66} = \frac{E(z,T)}{2[1 + v(z,T)]}$$
(12a)

• Case of quasi-3D ( $\varepsilon_z \neq 0$ ), then  $C_{ij}$  are:

$$C_{11} = C_{22} = C_{33} = \frac{E(z,T) [1 - v(z,T)]}{[1 - 2v(z,T)] [1 + v(z,T)]}$$
197 
$$C_{12} = C_{13} = C_{23} = \frac{v(z,T) E(z,T)}{[1 - 2v(z,T)] [1 + v(z,T)]}$$

$$C_{44} = C_{55} = C_{66} = \frac{E(z,T)}{2[1 + v(z,T)]}$$
(12b)

# 198 **4.2** Governing equations of motion

By employing the Hamilton principle in its analytical form, the three governing equations are developed as follows, Esmaeilzadeh and Kadkhodayan [37]; Mamen [30]:

201 
$$\int_{t_1}^{t_2} \delta(U + P_f + V - K) dt = 0$$
(13)

202 In which  $t_1$  and  $t_2$  are the initial and end times, respectively.

203 The change of the total strain energy is represented as, Li et al. [38]:

204 
$$\delta U = \int_{V} \sigma_{ij} \delta \varepsilon_{ij} \, dV$$

205 (14)

206 
$$\delta U = \int_{-h/2}^{+h/2} \int_{0}^{a} \int_{0}^{b} \left( \sigma_{x} \delta \varepsilon_{x} + \sigma_{y} \delta \varepsilon_{y} + \sigma_{z} \delta \varepsilon_{z} + \tau_{xz} \delta \gamma_{xz} + \tau_{yz} \delta \gamma_{yz} + \tau_{xy} \delta \gamma_{xy} \right) dz \, dx \, dy \tag{15}$$

$$207 \qquad \delta U = \int_{0}^{a} \int_{0}^{b} \left[ N_{x} \frac{\partial \delta u_{0}}{\partial x} - M_{x}^{b} \frac{\partial^{2} \delta w_{0}}{\partial x^{2}} + k_{1} A' M_{x}^{s} \frac{\partial^{2} \delta \theta}{\partial x^{2}} + k_{2} B' M_{y}^{s} \frac{\partial^{2} \delta \theta}{\partial y^{2}} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{1} A' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy}^{s} \frac{\partial^{2} \delta \theta}{\partial x \partial y} + k_{2} B' M_{xy$$

208 Where *N*, *M*, *S* and *Q* are the force and moment components represented in the following 209 forms, Mamen [30]:

210 
$$\left(N_{i}, M_{i}^{b}, M_{i}^{s}\right) = \int_{-h/2}^{+h/2} (1, z, f(z)) \sigma_{i} dz, (i = x, y, xy)$$
 (17a)

211 
$$N_z = \int_{-h/2}^{+h/2} \sigma_z dz$$
 (17b)

212 
$$\left(S_{xz}^{s}, S_{yz}^{s}\right) = \int_{-h/2}^{+h/2} (\tau_{xz}, \tau_{yz}) g(z) dz$$
 (17c)

213 
$$\left(Q_{xz}^{s}, Q_{yz}^{s}\right) = \int_{-h/2}^{+h/2} \left(\tau_{xz}, \tau_{yz}\right) f'(z) dz$$
 (17d)

- Using Equations (10), (11) and (12b), *N*, *M*, *S* and *Q* can be represented, see Appendix
- 215 A (Eq.A.1).
- 216 The effective temperature-dependent stiffness elements are stated as follows:

217 
$$\begin{cases} A_{11} \quad B_{11} \quad D_{11} \quad B_{11}^{s} \quad D_{11}^{s} \quad H_{11}^{s} \\ A_{12} \quad B_{12} \quad D_{12} \quad B_{12}^{s} \quad D_{12}^{s} \quad H_{12}^{s} \\ A_{66} \quad B_{66} \quad D_{66} \quad B_{66}^{s} \quad D_{66}^{s} \quad H_{66}^{s} \end{cases} = \int_{-h/2}^{h/2} \left[ 1, z, z^{2}, f(z), zf(z), f^{2}(z) \right] \begin{cases} C_{11}(z,T) \\ C_{12}(z,T) \\ C_{66}(z,T) \end{cases} dz$$
(18)

218 
$$(A_{22}, B_{22}, D_{22}, B_{22}^s, D_{22}^s, H_{22}^s) = (A_{11}, B_{11}, D_{11}, B_{11}^s, D_{11}^s, H_{11}^s)$$
 (19a)

219 
$$\begin{cases} L \\ L^{a} \\ R \end{cases} = \int_{-h/2}^{h/2} C_{ij}(z,T) \begin{cases} 1 \\ z \\ f(z) \end{cases} g'(z) dz, \{R^{a}\} = \int_{-h/2}^{h/2} C_{33}(z,T) [g'(z)]^{2} dz \text{ and } (i = 1, 2; j = 3)$$
(19b)

220 
$$F_{44}^{s} = F_{55}^{s} = \int_{-h/2}^{h/2} C_{ii}(z,T) [f'(z)]^{2} dz$$
 and  $(i = 4, 5)$  (19c)

221 
$$X_{44}^{s} = X_{55}^{s} = \int_{-h/2}^{h/2} C_{ii}(z,T) f(z) g(z) dz$$
 and  $(i = 4, 5)$  (19d)

222 
$$A_{44}^{s} = A_{55}^{s} = \int_{-h/2}^{h/2} C_{ii}(z,T) [g(z)]^{2} dz$$
 and  $(i = 4, 5)$  (19e)

223 The variation of the potential energy of foundations is given by:

224 
$$\delta P_f = \int_0^a \int_0^b (f_e + f_{Kerr}) \delta w_0 \, dx \, dy \tag{20}$$

225 Where  $f_e$  and  $f_{Kerr}$  are the densities of reaction forces for the Pasternak foundation and Keer 226 foundation model, respectively.

Importantly, the Pasternak foundation is a two-parameter elastic model and its distributedreaction force is expressed as:

229 
$$f_e = K_w w_0 - K_p \left( \frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} \right)$$
(20a)

In which 
$$K_w$$
 and  $K_p$  are the Winkler and the shear layer coefficients of the elastic foundation,  
respectively.

232 More importantly, the Kerr model foundation is a three-parameter elastic model, and its233 distributed reaction force is expressed as:

234 
$$f_{Kerr} = \left(\frac{K_l K_u}{K_l + K_u}\right) w_0 - \left(\frac{K_s K_u}{K_l + K_u}\right) \left(\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2}\right)$$
(20b)

In which  $K_s$  is the shear layer parameter,  $K_u$  is the upper elastic layer, and  $K_l$  is the lower elastic layer. The kinetic energy variation is represented as, Mamen [30]:

$$238 \qquad \delta K = \int_{0}^{a} \int_{0}^{b+h/2} \rho(z) (\dot{u}_{0} \,\delta \dot{u}_{0} + \dot{v}_{0} \,\delta \dot{v}_{0} + \dot{w}_{0} \,\delta \dot{w}_{0}) dx dy dz \qquad (21)$$

$$= \int_{0}^{a} \int_{0}^{b-h/2} \rho(z) (\dot{u}_{0} \,\delta \dot{u}_{0} + \dot{v}_{0} \,\delta \dot{v}_{0} + \dot{w}_{0} \,\delta \dot{w}_{0}) dx dy dz \qquad (21)$$

$$= \int_{0}^{a} \int_{0}^{b} \left[ I_{0} (\dot{u}_{0} \,\delta \dot{u}_{0} + \dot{v}_{0} \,\delta \dot{v}_{0} + \dot{w}_{0} \,\delta \dot{w}_{0}) - I_{1} \left( \dot{u}_{0} \,\frac{\partial \delta \dot{w}_{0}}{\partial x} + \frac{\partial \dot{w}_{0}}{\partial x} \,\delta \dot{u}_{0} + \dot{v}_{0} \,\frac{\partial \delta \dot{w}_{0}}{\partial y} + \frac{\partial \dot{w}_{0}}{\partial y} \,\delta \dot{v}_{0} \right) \right] dx dy \qquad (21a)$$

$$= \int_{0}^{a} \int_{0}^{b} \left[ +J_{1} \left( k_{1}A' \dot{u}_{0} \,\frac{\partial \delta \dot{\theta}}{\partial x} + k_{1}A' \frac{\partial \dot{\theta}}{\partial x} \,\delta \dot{u}_{0} + k_{2}B' \dot{v}_{0} \,\frac{\partial \delta \dot{\theta}}{\partial y} + k_{2}B' \frac{\partial \dot{\theta}}{\partial y} \,\delta \dot{v}_{0} \right) \right] dx dy \qquad (21a)$$

$$= \int_{0}^{2} \left( k_{1}A' \frac{\partial \dot{w}_{0}}{\partial x} \,\frac{\partial \delta \dot{\theta}}{\partial x} + k_{1}A' \frac{\partial \dot{\theta}}{\partial x} \,\frac{\partial \delta \dot{w}_{0}}{\partial x} + k_{2}B' \frac{\partial \dot{w}_{0}}{\partial y} \,\frac{\partial \delta \dot{\theta}}{\partial y} + k_{2}B' \frac{\partial \dot{\theta}}{\partial y} \,\delta \dot{v}_{0} \right) + K_{2} \left[ (k_{1}A')^{2} \,\frac{\partial \dot{\theta}}{\partial x} \,\frac{\partial \delta \dot{\theta}}{\partial x} + (k_{2}B')^{2} \,\frac{\partial \dot{\theta}}{\partial y} \,\frac{\partial \delta \dot{\theta}}{\partial y} \right] + J_{0} \left( \dot{w}_{0} \delta \dot{\theta} + \dot{\theta} \delta \dot{w}_{0} \right) + K_{0} \dot{\theta} \delta \dot{\theta}$$

237

The dot–superscript convention is used to denote the time derivative.

241  $I_0, I_1, I_2, J_1, J_2, K_2, J_0$  and  $K_0$  are the independent-temperature mass inertias.

242 
$$[I_0, I_1, I_2, J_1, J_2, K_2, J_0, K_0] = \int_{-h/2}^{+h/2} \rho(z) [1, z, z^2, f(z), zf(z), f^2(z), g(z), ^2(z)] dz$$
 (21b)

243 The variation of work done by thermal loads is written in the following form:

244 
$$\delta V = \int_{0}^{a} \int_{0}^{b} \left( N_{x}^{T} \frac{\partial^{2} w}{\partial x^{2}} + 2N_{xy}^{T} \frac{\partial^{2} w}{\partial x \partial y} + N_{y}^{T} \frac{\partial^{2} w}{\partial y^{2}} \right) \delta w \, dx \, dy$$
(22)

245 Where  $N_x^T$ ,  $N_y^T$  and  $N_{xy}^T$  are defined as follows:

246 
$$N_x^T = \int_{-h/2}^{+h/2} C_{11}(z,T) \alpha(z,T) (T(z) - T_0) dz$$
(23-a)

247 
$$N_{y}^{T} = \int_{-h/2}^{+h/2} C_{22}(z,T) \alpha(z,T) (T(z) - T_{0}) dz$$
(23-b)

248 
$$N_{xy}^{T} = \int_{-h/2}^{+h/2} C_{12}(z,T) \alpha(z,T) (T(z) - T_0) dz$$
(23-c)

249 As  $C_{11} = C_{22}$ , we get  $N_x^T = N_y^T = N^T$ 

250 The variation of work done by thermal loads becomes as follows:

251 
$$\delta V = \int_{0}^{a} \int_{0}^{b} \left( N^{T} \left( \frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} \right) + 2N_{xy}^{T} \frac{\partial^{2} w}{\partial x \partial y} \right) \delta w \, dx \, dy$$
(24)

where T(z) is the nonlinear field of temperature (see Eqs. 3a-c), and the initial temperature  $T_0$ = 300*K*.

Substituting Eqs. (16), (20), (21a) and (24) into Eq. (13), the equations of motion are obtained in the following forms:

256 
$$\delta u_0: \frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = I_0 \ddot{u}_0 - I_1 \frac{\partial \ddot{w}_0}{\partial x} + J_1 k_1 A' \frac{\partial \ddot{\theta}}{\partial x}$$
(25a)

257 
$$\delta v_0: \frac{\partial N_y}{\partial y} + \frac{\partial N_{xy}}{\partial x} = I_0 \ddot{v}_0 - I_1 \frac{\partial \ddot{w}_0}{\partial y} + J_1 k_2 B' \frac{\partial \ddot{\theta}}{\partial y}$$
(25b)

$$\delta w_{0} : \frac{\partial^{2} M_{x}^{b}}{\partial x^{2}} + \frac{\partial^{2} M_{y}^{b}}{\partial y^{2}} + 2 \frac{\partial^{2} M_{xy}^{b}}{\partial x \partial y} - \left(f_{e} + f_{Kerr}\right) + N^{T} \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) + N^{T} g\left(0\right) \left(\frac{\partial^{2} \theta}{\partial x^{2}} + \frac{\partial^{2} \theta}{\partial y^{2}}\right) = I_{0} \ddot{w}_{0} + I_{1} \left(\frac{\partial \ddot{u}_{0}}{\partial x} + \frac{\partial \ddot{v}_{0}}{\partial y}\right) \\ - I_{2} \left(\frac{\partial^{2} \ddot{w}_{0}}{\partial x^{2}} + \frac{\partial^{2} \ddot{w}_{0}}{\partial y^{2}}\right) + J_{2} \left(k_{1} A' \frac{\partial^{2} \ddot{\theta}}{\partial x^{2}} + k_{2} B' \frac{\partial^{2} \ddot{\theta}}{\partial y^{2}}\right) + J_{0} \ddot{\theta}$$
259 (25c)

$$\delta\theta: -k_{1}A'\frac{\partial^{2}M_{x}^{s}}{\partial x^{2}} - k_{2}B'\frac{\partial^{2}M_{y}^{s}}{\partial y^{2}} - N_{z} + (k_{1}A' + k_{2}B')\frac{\partial^{2}M_{xy}^{s}}{\partial x\partial y} + k_{1}A'\frac{\partial Q_{xz}^{s}}{\partial x} + k_{2}B'\frac{\partial Q_{yz}^{s}}{\partial y} + \frac{\partial S_{xz}^{s}}{\partial x} + \frac{\partial S_{yz}^{s}}{\partial y}$$

$$= +N^{T}g\left(0\right)\left(\frac{\partial^{2}w_{0}}{\partial x^{2}} + \frac{\partial^{2}w_{0}}{\partial y^{2}}\right) + N^{T}g\left(0\right)^{2}\left(\frac{\partial^{2}\theta}{\partial x^{2}} + \frac{\partial^{2}\theta}{\partial y^{2}}\right) + 2N_{xy}^{T}g\left(0\right)\left(\frac{\partial^{2}w_{0}}{\partial x\partial y}\right) + N^{T}g\left(0\right)^{2}\left(\frac{\partial^{2}\theta}{\partial x\partial y}\right) = -J_{1}\left(k_{1}A'\frac{\partial\ddot{u}_{0}}{\partial x} + k_{2}B'\frac{\partial\ddot{v}_{0}}{\partial y}\right) + J_{2}\left(k_{1}A'\frac{\partial^{2}\ddot{w}_{0}}{\partial x^{2}} + k_{2}B'\frac{\partial^{2}\ddot{w}_{0}}{\partial y^{2}}\right) - K_{2}\left[\left(k_{1}A'\right)^{2}\frac{\partial^{2}\ddot{\theta}}{\partial x^{2}} + \left(k_{2}B'\right)^{2}\frac{\partial^{2}\ddot{\theta}}{\partial y^{2}}\right] + J_{0}\ddot{w}_{0} + K_{0}\ddot{\theta}$$

$$= 261$$

Eqs. (25a), (25b), (25c) and (25d) can be expressed in terms of  $u_0, v_0, w_0$  and  $\theta$  by using Eq. (18) as follows: 

(25d)

$$\delta u_{0} : A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}} + A_{66} \frac{\partial^{2} u_{0}}{\partial y^{2}} + (A_{12} + A_{66}) \frac{\partial^{2} v_{0}}{\partial x \partial y} - B_{11} \frac{\partial^{3} w_{0}}{\partial x^{3}} - (B_{12} + 2B_{66}) \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}} + \left[ B_{12}^{s} k_{2} B' + B_{66}^{s} \left( k_{1} A' + k_{2} B' \right) \right] \frac{\partial^{3} \theta}{\partial x \partial y^{2}} + B_{11}^{s} k_{1} A' \frac{\partial^{3} \theta}{\partial x^{3}} + L \frac{\partial \theta}{\partial x} = I_{0} \ddot{u}_{0} - I_{1} \frac{\partial \ddot{w}_{0}}{\partial x} + J_{1} k_{1} A' \frac{\partial \ddot{\theta}}{\partial x}$$

$$(26a)$$

$$\delta v_{0} : \left(A_{12} + A_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y} + A_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}} + A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}} - B_{22} \frac{\partial^{3} w_{0}}{\partial y^{3}} - \left(B_{12} + 2B_{66}\right) \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y} + \left[B_{12}^{s} k_{1} A' + B_{66}^{s} \left(k_{1} A' + k_{2} B'\right)\right] \frac{\partial^{3} \theta}{\partial x^{2} \partial y} + B_{22}^{s} k_{2} B' \frac{\partial^{3} \theta}{\partial y^{3}} + L \frac{\partial \theta}{\partial y} = I_{0} \ddot{v}_{0} - I_{1} \frac{\partial \ddot{w}_{0}}{\partial y} + J_{1} k_{2} B' \frac{\partial \ddot{\theta}}{\partial y}$$
(26b)

$$\begin{split} \delta w_{0} &: B_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}} + \left(B_{12} + 2B_{66}\right) \frac{\partial^{3} u_{0}}{\partial x \partial y^{2}} + \left(B_{12} + 2B_{66}\right) \frac{\partial^{3} v_{0}}{\partial x^{2} \partial y} + B_{22} \frac{\partial^{3} v_{0}}{\partial y^{3}} + 2\left(D_{12} + 2D_{66}\right) \frac{\partial^{4} w_{0}}{\partial x^{2} \partial y^{2}} \\ &- D_{22} \frac{\partial^{4} w_{0}}{\partial y^{4}} - D_{11} \frac{\partial^{4} w_{0}}{\partial x^{4}} + D_{11}^{s} k_{1} A^{'} \frac{\partial^{4} \theta}{\partial x^{4}} - \left[\left(D_{12}^{s} + 2D_{66}^{s}\right)\left(k_{1} A^{'} + k_{2} B^{'}\right)\right] \frac{\partial^{4} \theta}{\partial x^{2} \partial y^{2}} \\ &+ D_{22}^{s} k_{2} B^{'} \frac{\partial^{4} \theta}{\partial y^{4}} + L_{a} \left(\frac{\partial^{2} \theta}{\partial x^{2}} + \frac{\partial^{2} \theta}{\partial y^{2}}\right) - K_{w} w_{0} + K_{p} \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) - \left(\frac{K_{I} K_{u}}{K_{I} + K_{u}} w_{0}\right) \\ &+ \left(\frac{K_{s} K_{u}}{K_{I} + K_{u}}\right) \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) + N^{T} \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) + N^{T} g\left(0\right) \left(\frac{\partial^{2} \theta}{\partial x^{2}} + \frac{\partial^{2} \theta}{\partial y^{2}}\right) \\ &+ 2N_{xy}^{T} \left(\frac{\partial^{2} w_{0}}{\partial x \partial y}\right) + 2N_{xy}^{T} g\left(0\right) \left(\frac{\partial^{2} \theta}{\partial x \partial y}\right) = I_{0} \ddot{w}_{0} + I_{1} \left(\frac{\partial \ddot{u}_{0}}{\partial x} + \frac{\partial \ddot{v}_{0}}{\partial y}\right) - I_{2} \left(\frac{\partial^{2} \ddot{w}_{0}}{\partial x^{2}} + \frac{\partial^{2} \ddot{w}_{0}}{\partial y^{2}}\right) \\ &+ J_{2} \left(k_{1} A^{'} \frac{\partial^{2} \ddot{\theta}}{\partial x^{2}} + k_{2} B^{'} \frac{\partial^{2} \ddot{\theta}}{\partial y^{2}}\right) + J_{0} \ddot{\theta} \end{split}$$

(26c)

$$\begin{split} \delta\theta &: -B_{11}^{s}k_{1}A^{\prime}\frac{\partial^{3}u_{0}}{\partial x^{3}} - \left[B_{12}^{s}k_{2}B^{\prime} + B_{66}^{s}\left(k_{1}A^{\prime} + k_{2}B^{\prime}\right)\right]\frac{\partial^{3}u_{0}}{\partial x\partial y^{2}} - \left[B_{12}^{s}k_{1}A^{\prime} + B_{66}^{s}\left(k_{1}A^{\prime} + k_{2}B^{\prime}\right)\right]\frac{\partial^{3}v_{0}}{\partial x^{2}\partial y} \\ -B_{22}^{s}k_{2}B^{\prime}\frac{\partial^{3}v_{0}}{\partial y^{3}} + D_{11}^{s}k_{1}A^{\prime}\frac{\partial^{4}w_{0}}{\partial x^{4}} + \left[\left(D_{12}^{s} + 2D_{66}^{s}\right)\left(k_{1}A^{\prime} + k_{2}B^{\prime}\right)\right]\frac{\partial^{4}w_{0}}{\partial x^{2}\partial y^{2}} + D_{22}^{s}k_{2}B^{\prime}\frac{\partial^{4}w_{0}}{\partial y^{4}} \\ -H_{11}^{s}\left(k_{1}A^{\prime}\right)^{2}\frac{\partial^{4}\theta}{\partial x^{4}} - H_{22}^{s}\left(k_{2}B^{\prime}\right)^{2}\frac{\partial^{4}\theta}{\partial y^{4}} - \left[2H_{12}^{s}k_{1}A^{\prime}k_{2}B^{\prime} + \left(k_{1}A^{\prime} + k_{2}B^{\prime}\right)^{2}H_{66}^{s}\right]\frac{\partial^{4}\theta}{\partial x^{2}\partial y^{2}} \\ -\left[2Rk_{1}A^{\prime} - F_{55}^{s}\left(k_{1}A^{\prime}\right)^{2} - 2X_{55}^{s}k_{1}A^{\prime} - A_{55}^{s}\right]\frac{\partial^{2}\theta}{\partial x^{2}} - \left[2Rk_{2}B^{\prime} - F_{44}^{s}\left(k_{2}B^{\prime}\right)^{2} - 2X_{44}^{s}k_{2}B^{\prime} - A_{44}^{s}\right]\frac{\partial^{2}\theta}{\partial y^{2}} \\ +L_{a}\left(\frac{\partial^{2}w_{0}}{\partial x^{2}} + \frac{\partial^{2}w_{0}}{\partial y^{2}}\right) - L\left(\frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y}\right) - R_{a}\theta + N^{T}g\left(0\right)\left(\frac{\partial^{2}w_{0}}{\partial x^{2}} + \frac{\partial^{2}w_{0}}{\partial y^{2}}\right) + N^{T}g\left(0\right)^{2}\left(\frac{\partial^{2}\theta}{\partial x^{2}} + \frac{\partial^{2}\theta}{\partial y^{2}}\right) \\ +2N_{xy}^{T}g\left(0\right)\left(\frac{\partial^{2}w_{0}}{\partial x\partial y}\right) + 2N_{xy}^{T}g\left(0\right)^{2}\left(\frac{\partial^{2}\theta}{\partial x\partial y}\right) = -J_{1}\left(k_{1}A^{\prime}\frac{\partial u_{0}}{\partial x} + k_{2}B^{\prime}\frac{\partial v_{0}}{\partial y}\right) \\ +J_{2}\left(k_{1}A^{\prime}\frac{\partial^{2}w_{0}}{\partial x^{2}} + k_{2}B^{\prime}\frac{\partial^{2}w_{0}}{\partial y^{2}}\right) - K_{2}\left[\left(k_{1}A^{\prime}\right)^{2}\frac{\partial^{2}\theta}{\partial x^{2}} + \left(k_{2}B^{\prime}\right)^{2}\frac{\partial^{2}\theta}{\partial y^{2}}\right] + J_{0}\ddot{w}_{0} + K_{0}\ddot{\theta} \end{split}$$
(26d)

272

273

# 274 **4.3** Analytical solutions for FGM plate

We are interested here in finding exact solutions for the free vibration problem of simply-supported FG plate. With the Navier solution technique, the change in displacement can be calculated as follows:

278 
$$u_0(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{mn} \cos(\lambda x) \sin(\beta y) e^{i\omega_n t}$$
(27)

279 
$$v_0(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} v_{mn} \sin(\lambda x) \cos(\beta y) e^{i\omega_n t}$$
(28)

280 
$$w_0(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn} \sin(\lambda x) \sin(\beta y) e^{i\omega_n t}$$
(29)

281 
$$\theta(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \theta_{mn} \sin(\lambda x) \sin(\beta y) e^{i\omega_n t}$$
(30)

282 With: 
$$\lambda = \frac{m\pi}{a}$$
 and  $\beta = \frac{n\pi}{b}$  (31)

In which  $(u_{mn}, v_{mn}, w_{mn}, \theta_{mn})$  are unknown parameters to be determined. The boundary conditions are represented as: 

285  

$$v_{0} = w_{0} = \theta = \frac{\partial \theta}{\partial y} = N_{x} = M_{x}^{b} = M_{x}^{s} = 0 \text{ at } x = 0, a$$

$$u_{0} = w_{0} = \theta = \frac{\partial \theta}{\partial x} = N_{y} = M_{y}^{b} = M_{y}^{s} = 0 \text{ at } y = 0, b$$
(32)

Substituting 27, 28, 29 and 30 into 26a, 26b, 26c and 26d, respectively, leads to:

287 
$$\begin{bmatrix} -A_{11}\lambda^{2} - A_{66}\beta^{2} - I_{0}\omega_{n}^{2} \end{bmatrix} u_{mn} + \begin{bmatrix} -(A_{11} + A_{66})\lambda\beta \end{bmatrix} v_{mn} + \begin{bmatrix} B_{11}\lambda^{3} + (B_{12} + 2B_{66})\lambda\beta^{2} + I_{1}\omega_{n}^{2}\lambda \end{bmatrix} w_{mn} + \begin{bmatrix} -k_{1}A'J_{1}\lambda\omega_{n}^{2} - (B_{12}^{s}k_{2}B' + B_{66}^{s}(k_{1}A' + k_{2}B'))\lambda\beta^{2} - B_{11}^{s}k_{1}A'\lambda^{3} + L\lambda \end{bmatrix} \theta_{mn} = 0$$
288 (33a)

289
$$\begin{bmatrix} -(A_{12} + A_{66})\lambda\beta \end{bmatrix} u_{mn} + \begin{bmatrix} -A_{22}\beta^2 - A_{66}\lambda^2 - I_0\omega_n^2 \end{bmatrix} v_{mn} + \begin{bmatrix} I_1\omega_n^2\beta + B_{22}\beta^3 + (B_{12} + 2B_{66})\lambda^2\beta \end{bmatrix} w_{mn} + \begin{bmatrix} -k_2B'J_1\beta\omega_n^2 - (B_{12}^sk_1A' + B_{66}^s(k_1A' + k_2B'))\beta\lambda^2 - B_{22}^sk_2B'\beta^3 + L\beta \end{bmatrix} \theta_{mn} = 0$$
290 (33b)

$$\begin{bmatrix} I_{1}\omega_{n}^{2}\lambda + B_{11}\lambda^{3} + (B_{12} + 2B_{66})\lambda\beta^{2} \end{bmatrix}u_{mn} + \begin{bmatrix} I_{1}\omega_{n}^{2}\beta + B_{22}\beta^{3} + (B_{12} + 2B_{66})\lambda^{2}\beta \end{bmatrix}v_{mn} \\ + \begin{bmatrix} -\omega_{n}^{2}(I_{0} + I_{2}(\lambda^{2} + \beta^{2})) - 2(D_{12} + 2D_{66})\lambda^{2}\beta^{2} - D_{22}\beta^{4} - D_{11}\lambda^{4} \\ -K_{w} - K_{p}(\lambda^{2} + \beta^{2}) - (\frac{K_{1}K_{u}}{K_{1} + K_{u}}) - (\frac{K_{s}K_{u}}{K_{l} + K_{u}})(\lambda^{2} + \beta^{2}) + N^{T}(\lambda^{2} + \beta^{2}) - 2N_{xy}^{T}(\lambda\beta) \end{bmatrix}^{W_{mn}} \\ + \begin{bmatrix} -\omega_{n}^{2}(-J_{2}(k_{1}A'\lambda^{2} + k_{2}B'\beta^{2}) + J_{0}) + D_{11}^{s}k_{1}A'\lambda^{4} + (D_{12}^{s} + 2D_{66}^{s})(k_{1}A' + k_{2}B')\lambda^{2}\beta^{2} \\ + D_{22}^{s}k_{2}B'\beta^{4} - L_{a}(\lambda^{2} + \beta^{2}) + N^{T}g(0)(\lambda^{2} + \beta^{2}) - 2N_{xy}^{T}g(0)(\lambda\beta) \end{bmatrix} \theta_{mn} = 0 \end{aligned}$$
292
(33c)

$$\begin{bmatrix} -k_{1}A'J_{1}\lambda\omega_{n}^{2} - (B_{12}^{s}k_{2}B' + B_{66}^{s}(k_{1}A' + k_{2}B'))\lambda\beta^{2} - B_{11}^{s}k_{1}A'\lambda^{3} + L\lambda \end{bmatrix} u_{mn} \\ + \begin{bmatrix} -k_{2}B'J_{1}\beta\omega_{n}^{2} - (B_{12}^{s}k_{1}A' + B_{66}^{s}(k_{1}A' + k_{2}B'))\beta\lambda^{2} - B_{22}^{s}k_{2}B'\beta^{3} + L\beta \end{bmatrix} v_{mn} \\ + \begin{bmatrix} -\omega_{n}^{2}(-J_{2}(k_{1}A'\lambda^{2} + k_{2}B'\beta^{2}) + J_{0}) + D_{11}^{s}k_{1}A'\lambda^{4} + (D_{12}^{s} + 2D_{66}^{s})(k_{1}A' + k_{2}B')\lambda^{2}\beta^{2} \\ + D_{22}^{s}k_{2}B'\beta^{4} - L_{a}(\lambda^{2} + \beta^{2}) + g(0)N^{T}(\lambda^{2} + \beta^{2}) - 2N_{xy}^{T}g(0)(\lambda\beta) \end{bmatrix} w_{mn} \\ + \begin{bmatrix} -\omega_{n}^{2}(K_{2}((k_{1}A'))^{2}\lambda^{2} + (k_{2}B')^{2}\beta^{2}) + K_{0}) - (k_{1}A')^{2}H_{11}^{s}\lambda^{4} - (k_{2}B')^{2}H_{22}^{s}\beta^{4} \\ - (2H_{12}^{s}k_{1}A'k_{2}B' + H_{66}^{s}(k_{1}A' + k_{2}B')^{2})\lambda^{2}\beta^{2} \\ + (-F_{55}^{s}(k_{1}A')^{2} + 2k_{1}A'R - 2k_{1}A'X_{55}^{s} - A_{55}^{s})\lambda^{2} \\ + (-F_{44}^{s}(k_{2}B')^{2} + 2k_{2}B'R - 2k_{2}B'X_{44}^{s} - A_{44}^{s})\beta^{2} - R_{a} + N^{T}g(0)^{2}(\lambda^{2} + \beta^{2}) - 2N_{xy}^{T}g(0)^{2}(\lambda\beta) \end{bmatrix} \theta_{nn} = 0$$

295

By finding the determinant of the coefficient matrix of the above equations and setting this multinomial to zero, we can find natural frequencies  $\omega_n$ :

(33d)

298 
$$det \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & d_{32} & d_{33} & d_{34} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{bmatrix} = 0$$

Where the different components of the previous matrix are presented in Appendix B, (Eq.B.1).

301 5. Findings and discussion

Evaluations are made with analytical and numerical results published by various researchers. Additionally, the solutions in the tables and graphs are revealed in nondimensional formulas that are proposed as follows:

$$305 \qquad \overline{\beta} = \omega_n h \sqrt{\rho_c / E_c}$$

$$306 \qquad \overline{\psi} = \omega_n h \sqrt{\rho_m / E_m}$$

307 
$$\overline{\omega} = \omega_n \left( a^2 / h \right) \sqrt{\rho_0 \left( 1 - {v_0}^2 \right) / E_0}$$

308 Where:  $v_0 = 0.28$ 

309 
$$K_w = k_w D_0 / a^4$$
,  $K_p = k_p D_0 / a^2$ 

- 310  $K_l = k_l D_0 / a^4$ ,  $K_u = k_u D_0 / a^4$ ,  $K_s = k_s D_0 / a^2$
- 311 Where:  $D_0 = E_0 h^3 / 12 (1 v^2)$

312  $\rho_0$  and  $E_0$  are the parameters of metal at ambient temperature (300K).

The proposed shear deformation theory results, based on four variables, are verified in Table 2 by comparing the fundamental frequencies of FG square plates  $Al_2/Al O_3$  with the exact results published by Zaoui et al. [28] using five variables. Furthermore, the fundamental frequencies are given for different slenderness ratios (a/h=5, 10, and 20) and the first three modes. The comparison concludes that the proposed theory functions correctly and matches the results previously published by Zaoui et al. [28].

Additionally, the proposed theory's results are compared with those published by Zaoui et al. [28] and Mengzhen et al. [39] for FG square plates Al<sub>2</sub>/AlO<sub>3</sub> lying on elastic foundations by considering different power-law indexes, see Tables 3 and 4.

Finally, the fundamental frequencies of FG plates composed of (Si<sub>3</sub>N<sub>4</sub>-SUS304) are compared with those published by Huang and Shen, [3]; Parida and Mohanty [6], and Zaoui et al. [19] for (a/h=5 and 20), see Table 5. Calculations are performed for these FG plates with the subsequent properties: a/b=1, a=8h,  $\rho_c=2770 \ kg/m^3$ ,  $\rho_m=8166 \ kg/m^3$ , and  $v_c=v_m=0.28$ ,  $K_c=9.19 \ W/mK$ , and  $K_m=12.04 \ W/mK$ . Importantly, the present results reported in Table 5 agree satisfactorily with the published ones. The present method can successfully calculate the 3D dynamic response of FG plates exposed to nonlinear temperature rise.

As mentioned in Figure 2, the thermal conductivity will be considered temperaturedependent to meet the required results. Notably, the examination of Table 6 reveals that the natural frequencies in temperature-dependent are lower than those in temperature-independent plates.

Variations of fundamental frequencies of the FGM plates lying on Winkler/Pasternak and Kerr foundations at different temperatures on the ceramic side are shown in Tables 7 and 8, wherein the first five modes of free vibration are presented. The fundamental frequencies are evaluated for different k. The temperature of the bottom side is kept constant at  $T_m$ = 300*K*, while two different temperatures of the top side are considered with a rise of 100 and 300*K* from reference temperature ( $T_0$ =300*K*). Additionally, the variation of fundamental frequencies with change in temperature of the upper side is also shown in Tables 7 and 8.

Variations of the fundamental frequencies versus foundation parameters of plates lying on Winkler and Pasternak elastic foundation are respectively shown in Figures 3(a)-(b) and Figures 3(c)-(d) for different power-law index k and modes (1 and 3). All the plates are subjectebd to a nonlinear thermal rise of 400K. It is noted that by increasing the power-law index, the fundamental frequencies decrease whatever the type of foundation. This decrease is because an increase in the power-law index decreases the elasticity modulus. In other words, 346 the plate becomes softer as the metal's volume fraction increases, thus decreasing the 347 frequencies' values.

The variation of Winkler foundation stiffness slightly affects the fundamental frequencies only in the first mode, see Figure 3(a). Otherwise, its influence is neglected, see Figure 3(b). However, the results presented in Figures 3(c)-(d) show that the fundamental frequencies of the plate increase with the increase of Pasternak foundation's stiffness, whatever k, and the mode vibration. Because when the parameter  $k_p$  increases, it increases the bending stiffness of the plate and therefore entrains the increase of the natural frequency.

354 Variations of the fundamental frequencies of FG plates subjected to nonlinear temperature difference and resting on Winkler/Pasternak elastic foundation are respectively 355 356 shown in Figures 4(a)-(b) using a power-law index k=1. The maximum values of fundamental frequencies are obtained for  $(k_w = k_p = 100)$ ; this is due mainly to the inclusion of the shear 357 358 layer, which stabilizes the lateral movement of the plate. However, the minimum ones are reached for plates without shear layer  $(k_p=0)$ . The fundamental frequencies decrease with the 359 360 increase of the environment temperature's change. The reason is that increasing the temperature results in a decrease of the material rigidity while the system's mass remains 361 362 constant.

Figure 5 gives the fundamental frequencies of various plates versus Kerr foundation's 363 parameters  $(k_l, k_u, and k_s)$  under a nonlinear temperature change of 400K using a different 364 power-law index. Whatever the power-law index, all the curves exhibit almost the same 365 evolution. The fundamental frequencies fall rapidly when the parameter of the lower elastic 366 layer is small ( $k_l < 30$ ), while they slowly change when  $k_l > 30$ , see Figure 5(a). However, they 367 rise rapidly when the parameter of the upper elastic layer is small ( $k_u < 30$ ), while they slowly 368 change when  $k_u>30$ , see Figure 5(b). More importantly, Figure 5(c) gives the fundamental 369 natural frequency versus shear layer parameter for different FG plates. Notably, the 370 fundamental frequencies increase considerably as the shear parameter  $(k_s)$  increases. 371

The effect of parameters  $(k_l, k_u, k_s, \Delta T)$  on the fundamental frequencies of square plates is also studied, see Figure 6. Based on the variation of slope of fundamental frequencies, it is observed that increasing  $(k_l, k_u, k_s)$  has an insignificant influence on the effect of the  $\Delta T$  on the frequency of homogenous as well as FG plates. In other words, whatever the Kerr foundation's parameters, the fundamental frequencies decrease slightly as  $\Delta T$  increases. However, the lower spring, upper spring, and shear layer parameters have rising effects on the fundamental frequencies of FG plates.

Figures 7(a)-(b) and Figures 7(c)-(d) display a 3D analysis of fundamental frequency versus slenderness ratio a/h for homogenous plate (k=0) and FG square plates lying on two types of foundation and exposed to various nonlinear temperature changes: 0, 100, 200, 300, and 400K, respectively. As highlighted in Figure 7, the first natural frequencies are almost constant at  $\Delta T=0$ , whatever the foundation type. But, for high-temperature changes, the frequencies fall with growing a/h until it becomes zero. Therefore, the critical slenderness ratio for plates lying on the Winkler-Pasternak foundation is higher than that on the Kerr foundation. 

Figures 8(a)-(b) and Figures 8(c)-(d) show the influence of the aspect ratio b/a on the fundamental frequencies of the homogenous plate (k=0) and FG square plates lying on two types of foundation and exposed to various nonlinear temperature changes: 0, 100, 200, 300, and 400 K, respectively. Importantly, it is found that increasing b/a reduces the frequencies of the structures significantly. More importantly, the fundamental frequencies drop rapidly when the aspect ratio is small (b/a < 6) while they become constant b/a > 6, see Figure 8(a). Furthermore, the frequencies are decreased with increasing the temperature change  $\Delta T$ , and this effect becomes more remarkable with increasing the aspect ratio b/a. 

## 411 6. Conclusions

In this study, the new four-unknown shear deformation theory is used to analyze the 3D free thermal vibration of FGM plates for the first time. The governing equations are established based on Hamilton's principle. Validation studies have been performed to confirm the relevance of the current theory formulation. The obtained results are very similar to those published by various researchers.

- The increase in elastic foundation parameters would enhance the free-vibrational response of homogenous and FG plates in the same manner. However, this increase has an insignificant influence on the effect of the temperature change ( $\Delta T$ ) on the fundamental frequencies of these structures.
- The increase in the temperature change ( $\Delta T$ ) softens the FG plate and reduces the natural frequency. This reduction is related to the compressive stress caused by the thermal gradients.
- The effect of the plate's configuration is more significant when the nonlinear temperature difference ( $\Delta T$ ) is at high levels.
- Even at high temperatures, the Pasternak/Kerr foundation models are suitable for
   performing free-vibrational analysis of FG plates using large values of shear layer
   stiffness.
- Pasternak foundation model is better suited for the free-vibrational response of FG
  plates than the Kerr foundation model. For large values of upper spring modulus, the
  Kerr model tends to that of Pasternak.
- 432

### 433 **Declaration of competing interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

- 436
- 437
- 438
- 439
- 440
- 441
- 442

## 444 **References**

- Sayyad, A.S. and Ghugal, Y.M. "Modeling and analysis of functionally graded sandwich beams: A review", Mechanics of Advanced Materials and Structures, 26(21), pp. 1776-1795 (2019).
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. "Analysis of functionally graded sandwich
  plates using a new first-order shear deformation theory", European Journal of MechanicsA/Solids, 45, pp. 211-225 (2014).
- 451 3. Huang, X.L. and Shen, H.S. "Nonlinear vibration and dynamic response of functionally
  452 graded plates in thermal environments", International Journal of Solids and
  453 Structures, 41(9-10), pp. 2403-2427 (2004).
- 454 4. Lei, Z.X., Zhang, L.W. and Liew, K.M. "Buckling analysis of CNT reinforced 455 functionally graded laminated composite plates", Composite Structures, 152, pp. 62-73 456 (2016).
- 457 5. Sayyad, A.S. and Ghugal, Y.M. "A unified shear deformation theory for the bending of
  458 isotropic, functionally graded, laminated and sandwich beams and plates", International
  459 Journal of Applied Mechanics, 9(01), p. 1750007 (2017).
- 460 6. Parida, S. and Mohanty, S.C. "Free vibration analysis of rotating functionally graded
  461 material plate under nonlinear thermal environment using higher order shear deformation
  462 theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
  463 Mechanical Engineering Science, 233(6), pp. 2056-2073 (2018).
- Van Do, V. N., & Lee, C. H. "Quasi-3D isogeometric buckling analysis method for
  advanced composite plates in thermal environments", Aerospace Science and
  Technology, 92, pp. 34-54 (2019).
- 467 8. Li, S.R. and Ma, H.K. "Analysis of free vibration of functionally graded material micro468 plates with thermoelastic damping", Archive of Applied Mechanics, 90(6), pp. 1285469 1304 (2020).
- 470 9. Mehditabar, A., Rahimi, G.H. and Vahdat, S.E. "Integrity assessment of functionally
  471 graded pipe produced by centrifugal casting subjected to internal pressure: experimental
  472 investigation", Archive of Applied Mechanics, 90(8), pp. 1723-1736 (2020).
- 473 10. Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S. and Tounsi, A.
  474 "Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear 475 deformation theory", Smart structures and systems, 22(1), pp. 121-132 (2018).
- 476 11. Mahmoudi, A., Benyoucef, S., Tounsi, A. and Benachour, A. "On the effect of the
  477 micromechanical models on the free vibration of rectangular FGM plate resting on elastic
  478 foundation", Earthquakes and Structures, 14(2), p.117 (2018).
- 479 12. Zenkour, A.M. and Radwan, A.F. "Hygrothermo-mechanical buckling of FGM plates
  480 resting on elastic foundations using a quasi-3D model", International Journal for
  481 Computational Methods in Engineering Science and Mechanics, 20(2), pp. 85-98 (2019).
- 482 13. Woodward, B. and Kashtalyan, M. "Three-dimensional elasticity analysis of sandwich
  483 panels with functionally graded transversely isotropic core", Archive of Applied
  484 Mechanics, 89, pp. 2463-2484 (2019).
- 485 14. Hieu, P.T. and Van Tung, H. "Thermal and thermomechanical buckling of shear
  486 deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially
  487 restrained edges", Archive of Applied Mechanics, 90(7), pp. 1529-1546 (2020).
- 488 15. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. "Bending and free vibration 489 analysis of sandwich plates with functionally graded soft core, using the new refined 490 higher-order analysis model", Journal of Sandwich Structures & Materials, 23(2), pp. 491 680-710 (2021).

- 492 16. Shariyat, M. "A generalized global–local high-order theory for bending and vibration
  493 analyses of sandwich plates subjected to thermo-mechanical loads", International Journal
  494 of Mechanical Sciences, 52(3), pp. 495-514 (2010).
- 495 17. Malekzadeh, P. and Monajjemzadeh, S.M. "Dynamic response of functionally graded
  496 plates in thermal environment under moving load", Composites Part B:
  497 Engineering, 45(1), pp.1521-1533 (2013).
- 498 18. Attia, A., Tounsi, A., Bedia, E. A., & Mahmoud, S. R. "Free vibration analysis of
  499 functionally graded plates with temperature-dependent properties using various four
  500 variable refined plate theories", Steel Compos. Struct, 18(1), pp. 187-212 (2015).
- 501 19. Zaoui, F.Z., Ouinas, D., Tounsi, A., Viña Olay, J.A., Achour, B. and Touahmia, M.
  502 "Fundamental frequency analysis of functionally graded plates with temperature503 dependent properties based on improved exponential-trigonometric two-dimensional
  504 higher shear deformation theory", Archive of Applied Mechanics, 91(3), pp. 859-881
  505 (2021).
- 20. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. "Free vibration and buckling analyses
  of FG porous sandwich curved microbeams in thermal environment under magnetic field
  based on modified couple stress theory", Archives of Civil and Mechanical
  Engineering, 21, pp. 1-23 (2021).
- 510 21. Li, C., Shen, H.S. and Yang, J. "Nonlinear Vibration Behavior of FG Sandwich Beams
  511 with Auxetic Porous Copper Core in Thermal Environments", International Journal of
  512 Structural Stability and Dynamics, p. 2350144 (2023).
- 513 22. Singha, T.D., Bandyopadhyay, T. and Karmakar, A. "A numerical solution for thermal
  514 free vibration analysis of rotating pre-twisted FG-GRC cylindrical shell
  515 panel", Mechanics of Advanced Materials and Structures, 30(15), pp.3013-3031 (2023).
- 23. Abouelregal, A. E., Mohammad-Sedighi, H., Faghidian, S. A., & Shirazi, A. H.
  "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis, Series: Mechanical Engineering, 19(4), pp. 633-656 (2021).
- 520 24. Nasr, M.E., Abouelregal, A.E., Soleiman, A. and Khalil, K.M. "Thermoelastic Vibrations
  521 of Nonlocal Nanobeams Resting on a Pasternak Foundation via DPL Model", Journal of
  522 Applied and Computational Mechanics, 7(1), pp.34-44 (2021).
- 523 25. Malekzadeh, P., Shahpari, S.A. and Ziaee, H.R. "Three-dimensional free vibration of
  524 thick functionally graded annular plates in thermal environment", Journal of Sound and
  525 Vibration, 329(4), pp.425-442 (2010).
- 526 26. Malekzadeh, P. and Safaeian Hamzehkolaei, N. "A 3D discrete layer-differential quadrature free vibration of multi-layered FG annular plates in thermal environment", Mechanics of Advanced Materials and Structures, 20(4), pp.316-330 (2013).
- 530 27. Tu, T.M., Quoc, T.H. and Van Long, N. "Vibration analysis of functionally graded plates
  531 using the eight-unknown higher order shear deformation theory in thermal
  532 environments", Aerospace Science and Technology, 84, pp. 698-711 (2019).
- 28. Zaoui, F.Z., Tounsi, A. and Ouinas, D. "Free vibration of functionally graded plates
  resting on elastic foundations based on quasi-3D hybrid-type higher order shear
  deformation theory", Smart structures and systems, 20(4), pp. 509-524 (2017).
- 29. Zhou, L. "A novel similitude method for predicting natural frequency of FG porous plates
  under thermal environment", Mechanics of Advanced Materials and Structures, 29(27),
  pp. 6786-6802 (2022).
- 30. Mamen, B., Bouhadra, A., Bourada, F., Bourada, M., Tounsi, A., Mahmoud, S.R. and
   Hussain, M. "Combined effect of thickness stretching and temperature-dependent

- material properties on dynamic behavior of imperfect FG beams using three variable
  quasi-3D model", Journal of Vibration Engineering & Technologies, pp.1-23 (2022).
- 543 31. Touloukian, Y.S. "Thermophysical properties of high temperature solid materials",
  544 Volume 4. Oxides and their solutions and mixtures. Part I. Simple oxygen compounds
  545 and their mixtures. Defense Technical Information Center (1966).
- 32. Salari, E., Ashoori, A.R., Vanini, S.S. and Akbarzadeh, A.H. "Nonlinear dynamic
  buckling and vibration of thermally post-buckled temperature-dependent FG porous
  nanobeams based on the nonlocal theory", Physica Scripta, 97(8), p.085216 (2022).
- 33. Javaheri, R. and Eslami, M.R. "Thermal buckling of functionally graded plates based on
  higher order theory", Journal of thermal stresses, 25(7), pp. 603-625 (2002).
- 34. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", Journal of Mechanical Science and Technology, 25(9), pp. 2195-2209 (2011).
- 35. Ebrahimi, F. and Barati, M.R. "Temperature distribution effects on buckling behavior of
  smart heterogeneous nanosize plates based on nonlocal four-variable refined plate
  theory", International Journal of Smart and Nano Materials, 7(3), pp. 119-143 (2016).
- 36. Bouhadra, A., Menasria, A. and Rachedi, M.A. "Boundary conditions effect for buckling
  analysis of porous functionally graded nanobeams", Advances in Nano Research, 10(4),
  p.313 (2021).
- 37. Esmaeilzadeh, M., & Kadkhodayan, M. "Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping", Aerospace Science and Technology, 93, p. 105333
  (2019).
- 38. Li, S.R., Su, H.D. and Cheng, C.J. "Free vibration of functionally graded material beams
  with surface-bonded piezoelectric layers in thermal environment", Applied Mathematics
  and Mechanics, 30(8), pp. 969-982 (2009).
- 39. Li, M., Soares, C.G. and Yan, R., "Free vibration analysis of FGM plates on
  Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Composite
  Structures, 264, p.113643 (2021).
- 40. Reddy, J.N. and Chin, C.D. "Thermomechanical analysis of functionally graded cylinders
  and plates. Journal of thermal Stresses, 21(6), pp. 593-626 (1998).
- 573
- 574
- 575

- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584

## 586 **Figure and Table Captions**

- **Figure 1:** Geometry and coordinate system of FG square plates lying on elastic foundations:
- 588 (a) Winkler-Pasternak foundation, and (b) Kerr foundation.
- 589 Figure 2: Temperature-dependent properties through the FG square plates' thickness: (a)
- 590 Young's modulus, (b) thermal expansion coefficient, (c) thermal conductivity, and (d)591 Poisson's coefficient.
- **592** Figure 3: Variation of  $\overline{\omega}$  of square plates versus the elastic foundation parameters ( $k_w$  and  $k_p$ )
- under nonlinear temperature gradient ( $\Delta T$ =400 K): (a) effect of  $k_w$  in first mode, (b) effect of
- 594  $k_{\rm w}$  in fourth mode (c) effect of  $k_{\rm p}$  in first mode, (d) effect of  $k_{\rm p}$  in fourth mode.
- **Figure 4:** 3D fundamental frequencies  $\bar{\omega}$  depending on the nonlinear temperature change  $\Delta T$
- of the square plates lying on different elastic foundations: (a) Homogenous plate (k=0) and (b)
- 597 FG plate (*k*=1).
- **598** Figure 5: Effect of Kerr foundation parameters  $(k_1, k_u \text{ and } k_s)$  on  $\overline{\omega}$  of square plates exposed
- to nonlinear temperature change ( $\Delta T$ =400 K).
- **Figure 6:** 3D  $\overline{\omega}$  depending on the nonlinear temperature change  $\Delta T$  of the square plates lying on different Kerr foundations: (a) Homogenous plate (*k*=0) and (b) FG plate (*k*=1).
- **Figure 7:** 3D fundamental frequencies  $\bar{\omega}$  of square plates lying on two types of foundations
- and exposed to various nonlinear temperature changes ( $\Delta T$ ) versus the side-to-thickness ratio:
- 604 (a-b) Homogenous plate (k=0) and (c-d) FG plate (k=1).
- **Figure 8:** 3D fundamental frequencies  $\overline{\omega}$  of square plates lying on two types of foundations
- and exposed to various nonlinear temperature changes ( $\Delta T$ ) versus the plate aspect ratio: (a-b) Homogenous plate (k=0) and (c-d) FG plate (k=1).
- 608
- Table 1. Factor defining the temperature dependence of Si3N4 and SUS304, Reddy [40] andMamen [30]
- 611 **Table 2.** Comparaison of 3D fundamental frequencies  $\overline{\beta}$  for square FG plate Al<sub>2</sub>/AlO<sub>3</sub> with

612  $E_c = 380 \text{ GPa}, E_m = 70 \text{ GPa}$ ,  $\rho_c = 3800 \text{ kg}/m^3$ ,  $\rho_m = 2702 \text{ kg}/m^3$  and  $v_c = v_m = 0.3$ .

- **Table 3.** Comparaison of first 3D fundamental frequencies  $\bar{\psi}$  for square Al<sub>2</sub>/Al O<sub>3</sub> plate lying
- 614 on Winkler/Pasternak foundation
- **Table 4.** Comparaison of first 3D fundamental frequencies  $\bar{\psi}$  for square Al<sub>2</sub>/Al O<sub>3</sub> plate lying
- 616 on Kerr foundation

**Table 5.** Comparaison of first fundamental frequencies  $\bar{\omega}$  for Si<sub>3</sub>N<sub>4</sub>-SUS304 square plates in nonlinear thermal environments with a/b=1 and a=8h**Table 6.** 3D fundamental frequencies  $\bar{\omega}$  for Si<sub>3</sub>N<sub>4</sub>-SUS304 square plates in thermal environments with a/b=1 and a=8h. **Table 7.** 3D fundamental frequencies  $\bar{\omega}$  of FG square plates lying on Winkler/Pasternak foundations with a/b=1 and a=8h. **Table 8.** 3D fundamental frequencies  $\overline{\omega}$  of FG square plates lying on Kerr foundation with a/b=1, a=8h and  $k_l=100$ . 



**Figure 1:** Geometry and coordinate system of FG square plates lying on elastic foundations:





Figure 2: Temperature-dependent properties through the FG square plates' thickness: (a)
Young's modulus, (b) thermal expansion coefficient, (c) thermal conductivity, and (d)
Poisson's coefficient.



**Figure 3**: Variation of  $\overline{\omega}$  of square plates versus the elastic foundation parameters ( $k_w$  and  $k_p$ ) under nonlinear temperature gradient ( $\Delta T$ =400 K): (a) effect of  $k_w$  in first mode, (b) effect of  $k_w$  in fourth mode (c) effect of  $k_p$  in first mode, (d) effect of  $k_p$  in fourth mode.



**Figure 4**: 3D fundamental frequencies  $\overline{\omega}$  depending on the nonlinear temperature change  $\Delta T$ of the square plates lying on different elastic foundations: (a) Homogenous plate (*k*=0) and (b) FG plate (*k*=1).



**Figure 5**: Effect of Kerr foundation parameters  $(k_1, k_u \text{ and } k_s)$  on  $\overline{\omega}$  of square plates exposed to nonlinear temperature change ( $\Delta T$ =400 *K*).



**Figure 6**: 3D  $\overline{\omega}$  depending on the nonlinear temperature change  $\Delta T$  of the square plates lying on different Kerr foundations: (a) Homogenous plate (*k*=0) and (b) FG plate (*k*=1).



**Figure 7**: 3D fundamental frequencies  $\overline{\omega}$  of square plates lying on two types of foundations and exposed to various nonlinear temperature changes ( $\Delta T$ ) versus the side-to-thickness ratio: (a-b) Homogenous plate (*k*=0) and (c-d) FG plate (*k*=1).



**Figure 8**: 3D fundamental frequencies  $\bar{\omega}$  of square plates lying on two types of foundations and exposed to various nonlinear temperature changes ( $\Delta T$ ) versus the plate aspect ratio: (a-b) Homogenous plate (*k*=0) and (c-d) FG plate (*k*=1). 

Table 1. Factor defining the temperature dependence of Si3N4 and SUS304, Reddy [40] and Mamen [30]

| Constituents | Properties                  | $P_0$     | $P_{-1}$ | $P_1$     | $P_2$     | $P_3$      |
|--------------|-----------------------------|-----------|----------|-----------|-----------|------------|
|              | E (Pa)                      | 201.04e+9 | 0        | 3.079e-4  | -6.534e-7 | 0          |
| SUS204       | $\alpha$ (K <sup>-1</sup> ) | 12.330-6  | 0        | 8.086e-4  | 0         | 0          |
| 303304       | $\kappa (Wm^{-1}K^{-1})$    | 15.379    | 0        | -1.264e-3 | 2.092e-6  | -7.223e-10 |
|              | ν                           | 0.3262    | 0        | -2.002e-4 | 3.797e-7  | 0          |
|              | $\rho$ (kg/m <sup>3</sup> ) | 8166      | 0        | 0         | 0         | 0          |
|              | E (Pa)                      | 348.43e+9 | 0        | -3.070e-4 | 2.160e-7  | -8.946e-11 |
|              | $\alpha$ (K <sup>-1</sup> ) | 5.8723e-6 | 0        | 9.095-4   | 0         | 0          |
| $Si_3N_4$    | $\kappa (Wm^{-1}K^{-1})$    | 13.723    | 0        | -1.032-3  | 5.466e-7  | -7.876e-11 |
|              | ν                           | 0.24      | 0        | 0         | 0         | 0          |
|              | $\rho$ (kg/m <sup>3</sup> ) | 2370      | 0        | 0         | 0         | 0          |

| . Л.  | Mode N°       | Courses                |        |        | k      |        |        |
|-------|---------------|------------------------|--------|--------|--------|--------|--------|
| a/n   | (m, n)        | Source                 | 0      | 0.5    | 1      | 4      | 10     |
|       | 1 (1 1)       | Zaoui et al. [28]-5v   | 0.2126 | 0.1829 | 0.1663 | 0.1411 | 0.1320 |
|       | 1(1, 1)       | Present (quasi-3D)-4v  | 0.2127 | 0.1832 | 0.1663 | 0.1410 | 0.1321 |
| 5     | 2(1, 2)       | Zaoui et al. [28]-5v   | 0.4674 | 0.4052 | 0.3687 | 0.3052 | 0.2817 |
| 3     | 2(1,2)        | Present (quasi-3D)-4v  | 0.4674 | 0.4058 | 0.3687 | 0.3049 | 0.2817 |
|       | 3 (2, 2)      | Zaoui et al. [28]-5v   | 0.6783 | 0.5911 | 0.5381 | 0.4389 | 0.4018 |
|       |               | Present (quasi-3D)-4v  | 0.6778 | 0.5914 | 0.5377 | 0.4383 | 0.4014 |
|       | 1 (1 1)       | Zaoui et al. [28]-5v   | 0.0579 | 0.0495 | 0.0450 | 0.0390 | 0.0369 |
|       | 1 (1, 1)      | Present (quasi-3D)-4v  | 0.0578 | 0.0495 | 0.0449 | 0.0389 | 0.0369 |
| 10    | 2(1, 2)       | Zaoui et al. [28]-5v   | 0.1383 | 0.1186 | 0.1078 | 0.0924 | 0.0868 |
| 10    | 2(1,2)        | Present (quasi-3D)-4v  | 0.1384 | 0.1188 | 0.1079 | 0.0923 | 0.0869 |
|       | 2 (2 2)       | Zaoui et al. [28]-5v   | 0.2126 | 0.1829 | 0.1663 | 0.1411 | 0.1320 |
|       | 5 (2, 2)      | Present (quasi-3D)-4v  | 0.2127 | 0.1832 | 0.1663 | 0.1410 | 0.1321 |
| 20    | 1 (1 1)       | Zaoui et al. [28]-5v   | 0.0148 | 0.0126 | 0.0115 | 0.0100 | 0.0095 |
| 20    | 1 (1, 1)      | Present (quasi-3D)-4v  | 0.0148 | 0.0126 | 0.0115 | 0.0100 | 0.0095 |
| 4v: ] | Four variable | s, 5v: Five variables. |        |        |        |        |        |

**Table 2.** Comparaison of 3D fundamental frequencies  $\overline{\beta}$  for square FG plate Al<sub>2</sub>/AlO<sub>3</sub> with

 $E_c = 380 \text{ GPa}$ ,  $E_m = 70 \text{ GPa}$ ,  $\rho_c = 3800 \text{ kg}/m^3$ ,  $\rho_m = 2702 \text{ kg}/m^3$  and  $v_c = v_m = 0.3$ .

**Table 3.** Comparaison of first 3D fundamental frequencies  $\bar{\psi}$  for square Al<sub>2</sub>/Al O<sub>3</sub> plate lying

# 682 on Winkler/Pasternak foundation

| $(\mathbf{k} \cdot \mathbf{k})$ | h/a     | Source                | k      |        |        |        |        |  |  |
|---------------------------------|---------|-----------------------|--------|--------|--------|--------|--------|--|--|
| $(\kappa_w, \kappa_p)$          | n/a     | Source                | 0      | 0.5    | 1      | 2      | 5      |  |  |
|                                 | 0.05    | Zaoui et al. [28]-5v  | 0.0406 | 0.0387 | 0.0380 | 0.0376 | 0.0378 |  |  |
|                                 | 0.05    | Present (quasi-3D)-4v | 0.0406 | 0.0387 | 0.0379 | 0.0376 | 0.0378 |  |  |
| (0, 100)                        | 0.1     | Zaoui et al. [28]-5v  | 0.1594 | 0.1525 | 0.1497 | 0.1483 | 0.1489 |  |  |
| (0, 100)                        | 0.1     | Present (quasi-3D)-4v | 0.1595 | 0.1527 | 0.1498 | 0.1483 | 0.1489 |  |  |
|                                 | 0.2     | Zaoui et al. [28]-5v  | 0.6015 | 0.5795 | 0.5701 | 0.5652 | 0.5662 |  |  |
|                                 | 0.2     | Present (quasi-3D)-4v | 0.6036 | 0.5828 | 0.5730 | 0.5671 | 0.5674 |  |  |
|                                 | 0.05    | Zaoui et al. [28]-5v  | 0.0298 | 0.0257 | 0.0236 | 0.0219 | 0.0208 |  |  |
|                                 | 0.05    | Present (quasi-3D)-4v | 0.0298 | 0.0257 | 0.0236 | 0.0218 | 0.0208 |  |  |
| (100, 0)                        | 0.1     | Zaoui et al. [28]-5v  | 0.1164 | 0.1007 | 0.0924 | 0.0854 | 0.0809 |  |  |
| (100, 0)                        | 0.1     | Present (quasi-3D)-4v | 0.1164 | 0.1008 | 0.0924 | 0.0853 | 0.0809 |  |  |
|                                 | 0.2     | Zaoui et al. [28]-5v  | 0.4290 | 0.3737 | 0.3433 | 0.3161 | 0.2948 |  |  |
|                                 | 0.2     | Present (quasi-3D)-4v | 0.4293 | 0.3745 | 0.3436 | 0.3156 | 0.2948 |  |  |
|                                 | 0.05    | Zaoui et al. [28]-5v  | 0.0411 | 0.0393 | 0.0386 | 0.0383 | 0.0385 |  |  |
|                                 |         | Present (quasi-3D)-4v | 0.0410 | 0.0393 | 0.0386 | 0.0383 | 0.0385 |  |  |
| (100, 100)                      | 0.1     | Zaoui et al. [28]-5v  | 0.1614 | 0.1548 | 0.1522 | 0.1509 | 0.1517 |  |  |
| (100, 100)                      | 0.1     | Present (quasi-3D)-4v | 0.1614 | 0.1549 | 0.1522 | 0.1509 | 0.1517 |  |  |
|                                 | 0.2     | Zaoui et al. [28]-5v  | 0.6093 | 0.5884 | 0.5797 | 0.5754 | 0.5770 |  |  |
|                                 | 0.2     | Present (quasi-3D)-4v | 0.6115 | 0.5918 | 0.5827 | 0.5774 | 0.5784 |  |  |
| 4v: Four var                    | iables, | 5v: Five variables.   |        |        |        |        |        |  |  |

| 1. / | Courses                                                                                                 | k      |        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------|---------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| n/a  | Source                                                                                                  | 0      | 0.5    | 1                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 0.05 | Mengzhen et al. [39]-5v                                                                                 | 0.0294 | 0.0253 | 0.0231                                                 | 0.0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.05 | Present (quasi-3D)-4v                                                                                   | 0.0294 | 0.0253 | 0.0231                                                 | 0.0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.1  | Mengzhen et al. [39]-5v                                                                                 | 0.1149 | 0.0988 | 0.0903                                                 | 0.0830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|      | Present (quasi-3D)-4v                                                                                   | 0.1150 | 0.0990 | 0.0904                                                 | 0.0830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.2  | Mengzhen et al. [39]-5v                                                                                 | 0.4225 | 0.3659 | 0.3345                                                 | 0.3059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.2  | Present (quasi-3D)-4v                                                                                   | 0.4237 | 0.3673 | 0.3353                                                 | 0.3060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.05 | Mengzhen et al. [39]-5v                                                                                 | 0.0356 | 0.0329 | 0.0316                                                 | 0.0307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|      | Present (quasi-3D)-4v                                                                                   | 0.0356 | 0.0329 | 0.0316                                                 | 0.0307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.1  | Mengzhen et al. [39]-5v                                                                                 | 0.1395 | 0.1292 | 0.1243                                                 | 0.1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.1  | Present (quasi-3D)-4v                                                                                   | 0.1396 | 0.1293 | 0.1244                                                 | 0.1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.2  | Mengzhen et al. [39]-5v                                                                                 | 0.5218 | 0.4873 | 0.4705                                                 | 0.4580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.2  | Present (quasi-3D)-4v                                                                                   | 0.5237 | 0.4898 | 0.4724                                                 | 0.4589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| •    | <ul> <li>h/a</li> <li>0.05</li> <li>0.1</li> <li>0.2</li> <li>0.05</li> <li>0.1</li> <li>0.2</li> </ul> |        |        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | h/aSourcek0.05Mengzhen et al. [39]-5v0.02940.02530.02310.05Present (quasi-3D)-4v0.02940.02530.02310.1Mengzhen et al. [39]-5v0.11490.09880.0903Present (quasi-3D)-4v0.11500.09900.09040.2Mengzhen et al. [39]-5v0.42250.36590.3345Present (quasi-3D)-4v0.42370.36730.33530.05Mengzhen et al. [39]-5v0.03560.03290.0316Present (quasi-3D)-4v0.03560.03290.03160.05Mengzhen et al. [39]-5v0.13950.12920.12430.1Mengzhen et al. [39]-5v0.52180.48730.47050.2Mengzhen et al. [39]-5v0.52180.48730.47050.2Mengzhen et al. [39]-5v0.52180.48730.47050.2Mengzhen et al. [39]-5v0.52180.48730.4705 | h/a         Source         k           0.05         Mengzhen et al. [39]-5v         0.0294         0.0253         0.0231         0.0212           0.05         Present (quasi-3D)-4v         0.0294         0.0253         0.0231         0.0212           0.1         Mengzhen et al. [39]-5v         0.1149         0.0988         0.0903         0.0830           0.2         Mengzhen et al. [39]-5v         0.1150         0.0990         0.0904         0.0830           0.2         Mengzhen et al. [39]-5v         0.4225         0.3659         0.3345         0.3059           Present (quasi-3D)-4v         0.4237         0.3673         0.3353         0.3060           0.05         Mengzhen et al. [39]-5v         0.0356         0.0329         0.0316         0.0307           Present (quasi-3D)-4v         0.0356         0.0329         0.0316         0.0307           0.1         Mengzhen et al. [39]-5v         0.1395         0.1292         0.1243         0.1210           0.1         Present (quasi-3D)-4v         0.1396         0.1293         0.1244         0.1210           0.2         Mengzhen et al. [39]-5v         0.5218         0.4873         0.4705         0.4580           0.2         Mengzhen et al. |  |  |

**Table 4.** Comparaison of first 3D fundamental frequencies  $\bar{\psi}$  for square Al<sub>2</sub>/Al O<sub>3</sub> plate lying on Kerr foundation

**Table 5.** Comparaison of first fundamental frequencies  $\overline{\omega}$  for Si<sub>3</sub>N<sub>4</sub>-SUS304 square plates in nonlinear thermal environments with a/b=1 and a=8h

| Т                                              | k         | Present    | Present | Huang and Shen | Parida and Mohanty | Zaoui et al. |
|------------------------------------------------|-----------|------------|---------|----------------|--------------------|--------------|
| 1                                              | ĸ         | (quasi-3D) | (2D)    | [3]-2D         | [6]-2D             | [19]-2D      |
|                                                | $Si_3N_4$ | 12.537     | 12.503  | 12.495         | 12.587             | 12.508       |
| T 200 K                                        | 0.5       | 8.640      | 8.607   | 8.675          | 9.094              | 8.610        |
| $T_c = 300 \text{ K}$<br>$T_c = 300 \text{ K}$ | 1.0       | 7.572      | 7.542   | 7.555          | 7.656              | 7.545        |
| $I_{m}$ - 500 K                                | 2.0       | 6.791      | 6.769   | 6.777          | 6.78               | 6.771        |
|                                                | SUS304    | 5.425      | 5.410   | 5.405          | 5.445              | 5.411        |
|                                                | $Si_3N_4$ | 12.332     | 12.299  | 12.397         | 12.387             | 12.308       |
| T = 400 K                                      | 0.5       | 8.514      | 8.483   | 8.615          | 8.615              | 8.454        |
| $T_c = 400 \text{ K}$<br>$T_c = 200 \text{ K}$ | 1.0       | 7.468      | 7.440   | 7.474          | 7.51               | 7.399        |
| $I_m = 500 \text{ K}$                          | 2.0       | 6.701      | 6.680   | 6.693          | 6.642              | 6.632        |
|                                                | SUS304    | 5.318      | 5.304   | 5.311          | 5.311              | 5.279        |
|                                                | $Si_3N_4$ | 11.932     | 11.901  | 11.984         | 11.971             | 11.887       |
| T = 600 V                                      | 0.5       | 8.266      | 8.236   | 8.269          | 8.272              | 8.119        |
| $T_c = 000 \text{ K}$<br>$T_c = 200 \text{ K}$ | 1.0       | 7.260      | 7.235   | 7.171          | 7.186              | 7.082        |
| $I_{m} = 300 \text{ K}$                        | 2.0       | 6.522      | 6.503   | 6.398          | 6.327              | 6.323        |
|                                                | SUS304    | 4.979      | 4.964   | 4.971          | 4.989              | 4.945        |

**Table 6.** 3D fundamental frequencies  $\overline{\omega}$  for Si<sub>3</sub>N<sub>4</sub>-SUS304 square plates in thermal environments with a/b=1 and a=8h.

| Т                                              | 1.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Modes  |        |        |
|------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|
| 1                                              | ĸ                              | (1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1, 2) | (2, 2) | (1, 3) | 2, 3)  |
|                                                | $Si_3N_4$                      | 12.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.147 | 44.196 | 53.498 | 66.566 |
| T = 200 V                                      | 0.5                            | 8.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.270 | 30.718 | 37.170 | 46.228 |
| $T_c = 300 \text{ K}$<br>$T_c = 200 \text{ K}$ | 1.0                            | 7.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.785 | 26.882 | 32.373 | 40.188 |
| $I_m = 500 \text{ K}$                          | 2.0                            | 6.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.986 | 24.157 | 29.185 | 36.224 |
|                                                | SUS304                         | $\begin{array}{c ccccc} \hline Mode \\ \hline (1,1) & (1,2) & (2,2) \\ \hline 12.411 & 29.147 & 44.196 \\ 8.637 & 20.270 & 30.713 \\ \hline 7.601 & 17.785 & 26.887 \\ \hline 6.836 & 15.986 & 24.157 \\ \hline 4 & 5.495 & 12.873 & 19.469 \\ \hline 12.204 & 28.757 & 43.655 \\ \hline 8.510 & 20.049 & 30.422 \\ \hline 7.490 & 17.555 & 26.454 \\ \hline 6.746 & 15.844 & 23.986 \\ \hline 4 & 5.395 & 12.709 & 19.276 \\ \hline 12.336 & 29.061 & 44.114 \\ \hline 8.5734 & 20.197 & 30.643 \\ \hline 7.540 & 17.702 & 26.815 \\ \hline 6.777 & 15.915 & 24.097 \\ \hline 4 & 5.434 & 12.797 & 19.400 \\ \hline 11.799 & 28.033 & 42.677 \\ \hline 8.264 & 19.639 & 29.894 \\ \hline 7.286 & 17.233 & 26.055 \\ \hline 6.571 & 15.580 & 23.675 \\ \hline 4 & 5.086 & 12.140 & 18.52 \\ \hline 12.185 & 28.890 & 43.956 \\ \hline 8.445 & 20.049 & 30.509 \\ \hline 7.417 & 17.558 & 26.686 \\ \hline 6.656 & 15.773 & 23.955 \\ \hline 4 & 5.309 & 12.644 & 19.265 \\ \hline \end{array}$ | 19.469 | 23.530 | 29.216 |        |
| T = 400 K                                      | $Si_3N_4$                      | 12.204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.757 | 43.655 | 52.843 | 65.786 |
| $T_c = 400 \text{ K}$<br>$T_c = 200 \text{ K}$ | 0.5                            | 8.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.049 | 30.425 | 36.813 | 45.814 |
| $T_m = 500 \text{ K}$                          | 1.0                            | 7.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.555 | 26.454 | 31.810 | 39.200 |
| dependent                                      | 2.0                            | 6.746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.844 | 23.986 | 28.974 | 35.995 |
| dependent                                      | SUS304                         | 5.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.709 | 19.270 | 23.275 | 28.939 |
| T = 400 K                                      | Si <sub>3</sub> N <sub>4</sub> | 12.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.061 | 44.114 | 53.398 | 66.475 |
| $I_c = 400 \text{ K}$<br>T = 200 K             | 0.5                            | 8.5734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.197 | 30.648 | 37.084 | 46.151 |
| $T_m = 500 \text{ K}$                          | 1.0                            | 7.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.702 | 26.815 | 32.233 | 40.015 |
| independent                                    | 2.0                            | 6.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.915 | 24.091 | 29.099 | 36.149 |
| maependent                                     | SUS304                         | 5.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.797 | 19.401 | 23.436 | 29.138 |
| T (00 K                                        | Si <sub>3</sub> N <sub>4</sub> | 11.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.033 | 42.677 | 51.657 | 64.394 |
| $I_c = 600 \text{ K}$                          | 0.5                            | 8.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.639 | 29.894 | 36.164 | 45.073 |
| $I_m = 500 \text{ K}$                          | 1.0                            | 7.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.233 | 26.055 | 31.343 | 38.713 |
| Temperature                                    | 2.0                            | 6.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.580 | 23.673 | 28.585 | 35.579 |
| dependent                                      | SUS304                         | 5.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.140 | 18.521 | 22.323 | 27.851 |
| T (00 K                                        | Si <sub>3</sub> N <sub>4</sub> | 12.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.890 | 43.950 | 53.198 | 66.293 |
| $I_c = 600 \text{ K}$<br>T = 200 K             | 0.5                            | 8.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.049 | 30.509 | 36.910 | 45.996 |
| $I_m = 500 \text{ K}$                          | 1.0                            | 7.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.558 | 26.680 | 32.060 | 39.862 |
| independent                                    | 2.0                            | 6.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.773 | 23.959 | 28.927 | 35.999 |
| maependent                                     | SUS304                         | 5.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.644 | 19.265 | 23.245 | 28.981 |

**Table 7.** 3D fundamental frequencies  $\overline{\omega}$  of FG square plates lying on Winkler/Pasternak foundations with a/b=1 and a=8h.

| Т             | k          | k          | k                              |                                                                                                           |        | Modes  |        |        |
|---------------|------------|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|
| 1             | $\kappa_w$ | $\kappa_p$ | κ                              | (1, 1)                                                                                                    | (1, 2) | (2, 2) | (1, 3) | (2, 3) |
|               |            |            | Si <sub>3</sub> N <sub>4</sub> | 12.204                                                                                                    | 28.757 | 43.655 | 52.843 | 65.786 |
|               |            |            | 0.5                            | 0.5         8.510         20.049         30.425           1.0         7.490         17.555         26.454 |        |        |        | 45.814 |
|               | 0          | 0          | 1.0                            | 7.490                                                                                                     | 17.555 | 26.454 | 31.810 | 39.200 |
|               |            |            | 2.0                            | 6.746                                                                                                     | 15.844 | 23.986 | 28.974 | 35.995 |
|               |            |            | SUS304                         | 5.395                                                                                                     | 12.709 | 19.270 | 23.275 | 28.939 |
|               |            |            | Si <sub>3</sub> N <sub>4</sub> | 13.290                                                                                                    | 29.216 | 43.950 | 53.083 | 65.976 |
|               |            |            | 0.5                            | 9.361                                                                                                     | 20.410 | 30.656 | 37.001 | 45.963 |
|               | 100        | 0          | 1.0                            | 8.278                                                                                                     | 17.891 | 26.671 | 31.989 | 39.342 |
|               |            |            | 2.0                            | 7.483                                                                                                     | 16.159 | 24.189 | 29.140 | 36.126 |
| $T_c = 400 K$ |            |            | SUS304                         | 6.092                                                                                                     | 13.008 | 19.463 | 23.433 | 29.064 |
| $T_m=300 K$   |            |            | $Si_3N_4$                      | 26.363                                                                                                    | 46.247 | 62.808 | 72.820 | 86.782 |
|               |            |            | 0.5                            | 19.297                                                                                                    | 33.482 | 45.187 | 52.234 | 62.046 |
|               | 0          | 100        | 1.0                            | 17.348                                                                                                    | 29.918 | 40.140 | 46.193 | 54.487 |
|               |            |            | 2.0                            | 15.890                                                                                                    | 27.344 | 36.708 | 42.312 | 50.097 |
|               |            |            | SUS304                         | 13.550                                                                                                    | 22.938 | 30.540 | 35.002 | 41.291 |
|               |            |            | $Si_3N_4$                      | 26.883                                                                                                    | 46.533 | 63.013 | 72.994 | 86.926 |
|               |            |            | 0.5                            | 19.686                                                                                                    | 33.698 | 45.343 | 52.367 | 62.156 |
|               | 100        | 100        | 1.0                            | 17.702                                                                                                    | 30.115 | 40.283 | 46.316 | 54.589 |
|               |            |            | 2.0                            | 16.216                                                                                                    | 27.527 | 36.840 | 42.426 | 50.192 |
|               |            |            | SUS304                         | 13.962                                                                                                    | 23.415 | 31.126 | 35.725 | 42.121 |
|               |            |            | $Si_3N_4$                      | 11.799                                                                                                    | 28.033 | 42.677 | 51.657 | 64.394 |
|               |            |            | 0.5                            | 8.264                                                                                                     | 19.639 | 29.894 | 36.164 | 45.073 |
|               | 0          | 0          | 1.0                            | 7.286                                                                                                     | 17.233 | 26.055 | 31.343 | 38.713 |
|               |            |            | 2.0                            | 6.571                                                                                                     | 15.580 | 23.673 | 28.585 | 35.579 |
|               |            |            | SUS304                         | 5.086                                                                                                     | 12.140 | 18.521 | 22.323 | 27.851 |
|               |            |            | Si <sub>3</sub> N <sub>4</sub> | 12.919                                                                                                    | 28.503 | 42.978 | 51.903 | 64.587 |
|               |            | _          | 0.5                            | 9.138                                                                                                     | 20.007 | 30.130 | 36.356 | 45.224 |
|               | 100        | 0          | 1.0                            | 8.094                                                                                                     | 17.575 | 26.276 | 31.524 | 38.857 |
|               |            |            | 2.0                            | 7.326                                                                                                     | 15.900 | 23.879 | 28.754 | 35.712 |
| $T_c = 600 K$ |            |            | SUS304                         | 5.819                                                                                                     | 12.452 | 18.721 | 22.488 | 27.981 |
| $T_m = 300 K$ |            |            | $Si_3N_4$                      | 26.178                                                                                                    | 45.800 | 62.132 | 71.964 | 85.732 |
|               |            | 100        | 0.5                            | 19.190                                                                                                    | 33.239 | 44.835 | 51.784 | 61.507 |
|               | 0          | 100        | 1.0                            | 17.262                                                                                                    | 29.732 | 39.883 | 45.876 | 54.140 |
|               |            |            | 2.0                            | 15.817                                                                                                    | 27.194 | 36.508 | 42.053 | 49.807 |
|               |            |            | SUS304                         | 13.673                                                                                                    | 23.251 | 31.006 | 35.621 | 42.034 |
|               |            |            | $Si_3N_4$                      | 26.701                                                                                                    | 46.089 | 62.340 | 72.140 | 85.877 |
|               |            |            | 0.5                            | 19.582                                                                                                    | 33.458 | 44.992 | 51.918 | 61.617 |
|               | 100        | 100        | 1.0                            | 17.617                                                                                                    | 29.931 | 40.027 | 45.999 | 54.243 |
|               |            |            | 2.0                            | 16.145                                                                                                    | 27.379 | 36.642 | 42.167 | 49.901 |
|               |            |            | SUS304                         | 13.841                                                                                                    | 23.105 | 30.662 | 35.108 | 41.379 |

**Table 8.** 3D fundamental frequencies  $\overline{\omega}$  of FG square plates lying on Kerr foundation with *a/b=1*, *a=8h* and *k<sub>i</sub>=100*.

| T                                              | k          | k          | k                              |                     |        | Modes  |        |        |
|------------------------------------------------|------------|------------|--------------------------------|---------------------|--------|--------|--------|--------|
| 1                                              | $\kappa_u$ | $\kappa_s$ | ĸ                              | (1, 1)              | (1, 2) | (2, 2) | (1, 3) | (2, 3) |
|                                                |            |            | Si <sub>3</sub> N <sub>4</sub> | 12.759              | 28.987 | 43.803 | 52.963 | 65.881 |
|                                                |            |            | 0.5                            | 8.946               | 20.230 | 30.541 | 36.907 | 45.888 |
|                                                | 100        | 0          | 1.0                            | 7.894               | 17.726 | 26.562 | 31.912 | 39.296 |
|                                                |            |            | 2.0                            | 7.124               | 16.002 | 24.087 | 29.057 | 36.060 |
|                                                |            |            | SUS304                         | 5.754               | 12.859 | 19.367 | 23.354 | 29.002 |
|                                                |            |            | Si <sub>3</sub> N <sub>4</sub> | 12.204              | 28.757 | 43.655 | 52.843 | 65.786 |
| T 100 K                                        |            |            | 0.5                            | 8.510               | 20.049 | 30.425 | 36.813 | 45.814 |
| $I_c = 400 \text{ K}$<br>$T_c = 200 \text{ K}$ | 0          | 100        | 1.0                            | 7.490               | 17.557 | 26.454 | 31.823 | 39.225 |
| $I_m = 500 \text{ K}$                          |            |            | 2.0                            | 6.746               | 15.844 | 23.986 | 28.974 | 35.995 |
|                                                |            |            | SUS304                         | 5.395               | 12.709 | 19.270 | 23.275 | 28.939 |
|                                                |            |            | Si <sub>3</sub> N <sub>4</sub> | 20.878              | 38.682 | 54.206 | 63.720 | 77.084 |
|                                                |            |            | 0.5                            | 15.168              | 27.730 | 38.614 | 45.266 | 54.604 |
|                                                | 100        | 100        | 1.0                            | 13.594              | 24.654 | 34.081 | 39.744 | 47.546 |
|                                                |            |            | 2.0                            | 12.421              | 22.462 | 31.088 | 36.331 | 43.677 |
|                                                |            |            | SUS304                         | 10.586              | 18.840 | 25.887 | 30.150 | 36.136 |
|                                                |            |            | Si <sub>3</sub> N <sub>4</sub> | 12.372              | 28.269 | 42.828 | 51.780 | 64.491 |
|                                                |            |            | 0.5                            | 8.712               | 19.824 | 30.012 | 36.260 | 45.148 |
|                                                | 100        | 0          | 1.0 7.701 17.404               | 26.165              | 31.430 | 38.779 |        |        |
|                                                |            |            | 2.0                            | 6.959               | 15.741 | 23.776 | 28.670 | 35.646 |
|                                                |            |            | SUS304                         | 5.465               | 12.297 | 18.622 | 22.406 | 27.916 |
|                                                |            |            | $Si_3N_4$                      | 11.799              | 28.033 | 42.677 | 51.657 | 64.394 |
| T = 600 V                                      |            |            | 0.5                            | 8.264               | 19.639 | 29.894 | 36.164 | 45.073 |
| $T_c = 000 \text{ K}$<br>$T_c = 300 \text{ K}$ | 0          | 100        | 1.0                            | 7.286               | 17.233 | 26.055 | 31.339 | 38.706 |
| $I_m = 300 \text{ K}$                          |            |            | 2.0                            | 6.571               | 15.580 | 23.673 | 28.585 | 35.579 |
|                                                |            |            | SUS304                         | 5.086               | 12.140 | 18.521 | 22.323 | 27.851 |
|                                                |            |            | Si <sub>3</sub> N <sub>4</sub> | $20.64\overline{4}$ | 38.146 | 53.421 | 62.740 | 75.899 |
|                                                |            |            | 0.5                            | 15.032              | 27.436 | 38.200 | 44.743 | 53.986 |
|                                                | 100        | 100        | 1.0                            | 13.483              | 24.425 | 33.775 | 39.362 | 47.123 |
|                                                |            |            | 2.0 12.328 22.278              | 22.278              | 30.849 | 36.025 | 43.339 |        |
|                                                |            |            | SUS304                         | 10.429              | 18.457 | 25.330 | 29.419 | 35.270 |

|     |                                               |                 |                        |                 |                        |                        |              |                                      |                     |                               |       |                                        |                                        |   |   | ∂v∩                                                                     |
|-----|-----------------------------------------------|-----------------|------------------------|-----------------|------------------------|------------------------|--------------|--------------------------------------|---------------------|-------------------------------|-------|----------------------------------------|----------------------------------------|---|---|-------------------------------------------------------------------------|
|     |                                               | Г               |                        |                 |                        |                        |              |                                      |                     | c.                            |       |                                        |                                        |   | ٦ | $\frac{\partial Y_0}{\partial y}$                                       |
| ſN  | -                                             | A <sub>11</sub> | $A_{12}$               | 0               | <i>B</i> <sub>11</sub> | <i>B</i> <sub>12</sub> | 0            | 0                                    | $B_{12}^{s}k_{2}B'$ | $B_{11}^{s}k_{1}A'$           | L     | 0                                      | 0                                      | 0 | 0 | $\frac{\partial u_0}{\partial u_0} + \frac{\partial v_0}{\partial v_0}$ |
| N   | y                                             | A12             | A <sub>22</sub>        | 0               | $B_{12}$               | <i>B</i> <sub>22</sub> | 0            | 0                                    | $B_{22}^{s}k_{2}B'$ | $B_{12}^{s}k_{1}A'$           | L     | 0                                      | 0                                      | 0 | 0 | $\partial y = \partial x$                                               |
| N   | xy                                            | 0               | 0                      | A <sub>66</sub> | 0                      | 0                      | <i>B</i> 66  | $B^s_{66}\left(k_1A'\!+k_2B'\right)$ | 0                   | 0                             | 0     | 0                                      | 0                                      | 0 | 0 | $-\frac{\partial^2 w_0}{\partial x^2}$                                  |
| M   | $b \\ x$                                      | B <sub>11</sub> | <i>B</i> <sub>12</sub> | 0               | $D_{11}$               | $D_{12}$               | 0            | 0                                    | $D_{12}^{s}k_{2}B'$ | $D_{11}^{s} k_{1} A'$         | $L_a$ | 0                                      | 0                                      | 0 | 0 | $\partial^2 w_0$                                                        |
| M   | b<br>y                                        | B <sub>12</sub> | B <sub>22</sub>        | 0               | $D_{12}$               | D <sub>22</sub>        | 0            | 0                                    | $D_{22}^{s}k_{2}B'$ | $D_{12}^{s}k_{1}A'$           | $L_a$ | 0                                      | 0                                      | 0 | 0 | $-\frac{\partial}{\partial y^2}$                                        |
| M   | b<br>xy                                       | 0               | 0                      | <i>B</i> 66     | 0                      | 0                      | D66          | $D^s_{66}\big(k_1A'\!+k_2B'\big)$    | 0                   | 0                             | 0     | 0                                      | 0                                      | 0 | 0 | $-2\frac{\partial^2 w_0}{\partial w_0}$                                 |
| M   | $\begin{bmatrix} s \\ x \\ s \end{bmatrix} =$ | $B_{11}^s$      | $B_{12}^{s}$           | 0               | $D_{11}^{s}$           | $D_{12}^{s}$           | 0            | 0                                    | $H_{12}^{s}k_{2}B'$ | $H_{11}^{s}k_{1}A'$           | R     | 0                                      | 0                                      | 0 | 0 | $\partial x \partial y$                                                 |
| M   | y y                                           | $B_{12}^s$      | $B_{22}^{s}$           | 0               | $D_{12}^{s}$           | $D_{22}^s$             | 0            | 0                                    | $H_{22}^{s}k_{2}B'$ | $H_{12}^{s}k_{1}A'$           | R     | 0                                      | 0                                      | 0 | 0 | $\frac{\partial^2 \theta}{\partial x \partial y}$                       |
| M   | xy                                            | 0               | 0                      | $B_{66}^{s}$    | 0                      | 0                      | $D_{66}^{s}$ | 0                                    | 0                   | $H_{66}^{s}(k_{1}A'+k_{2}B')$ | 0     | 0                                      | 0                                      | 0 | 0 | $\partial^2 \theta$                                                     |
| N   |                                               | L               | L                      | 0               | $L_a$                  | $L_a$                  | 0            | 0                                    | $k_2 B'R$           | $k_1 A' R$                    | $R_a$ | 0                                      | 0                                      | 0 | 0 | $\partial y^2$                                                          |
|     | vz                                            | 0               | 0                      | 0               | 0                      | 0                      | 0            | 0                                    | 0                   | 0                             | 0     | $F_{44}^{s}(k_{2}B')^{2} + X_{44}^{s}$ | 0                                      | 0 | 0 | $\partial^2 \theta$                                                     |
|     | vz<br>s                                       | 0               | 0                      | 0               | 0                      | 0                      | 0            | 0                                    | 0                   | 0                             | 0     | 0                                      | $F_{55}^{s}(k_{1}A')^{2} + X_{55}^{s}$ | 0 | 0 | $\frac{\partial x^2}{\partial t}$                                       |
|     | vz.<br>5                                      | 0               | 0                      | 0               | 0                      | 0                      | 0            | 0                                    | 0                   | 0                             | 0     | $X_{44}^{s}k_{2}B' + A_{44}^{s}$       | 0                                      | 0 | 0 | <u>∂</u>                                                                |
| (3) | rz J                                          | 0               | 0                      | 0               | 0                      | 0                      | 0            | 0                                    | 0                   | 0                             | 0     | 0                                      | $X_{55}^{s}k_{1}A' + A_{55}^{s}$       | 0 | 0 | ду<br>др                                                                |
|     |                                               |                 |                        |                 |                        |                        |              |                                      |                     |                               |       |                                        |                                        |   |   | $\frac{\partial v}{\partial r}$                                         |

748

749

**Appendix B:** 

(Eq.A.1)

 $\frac{\partial u_0}{\partial x}$ 

0

 $d_{11} = \left[ -A_{11}\lambda^2 - A_{66}\beta^2 - I_0\omega_n^2 \right]$ 750  $d_{12} = d_{21} = \left[ -(A_{11} + A_{66})\lambda\beta \right]$ 751  $d_{13} = d_{31} = \left[ B_{11}\lambda^3 + (B_{12} + 2B_{66})\lambda\beta^2 + I_1\omega_n^2\lambda \right]$ 752  $d_{14} = d_{41} = \left[ -k_1 A' J_1 \lambda \omega_n^2 - \left( B_{12}^s k_2 B' + B_{66}^s \left( k_1 A' + k_2 B' \right) \right) \lambda \beta^2 - B_{11}^s k_1 A' \lambda^3 + L \lambda \right]$ 753  $d_{22} = \left[ -A_{22}\beta^2 - A_{66}\lambda^2 - I_0\omega_n^2 \right]$ 754 (Eq.B.1)  $d_{23} = d_{32} = \left[ I_1 \omega_n^2 \beta + B_{22} \beta^3 + (B_{12} + 2B_{66}) \lambda^2 \beta \right]$ 755  $d_{24} = d_{42} = \left[ -k_2 B' J_1 \beta \omega_n^2 - \left( B_{12}^s k_1 A' + B_{66}^s \left( k_1 A' + k_2 B' \right) \right) \beta \lambda^2 - B_{22}^s k_2 B' \beta^3 + L\beta \right]$ 756  $d_{33} = \begin{bmatrix} -\omega_n^2 \left( I_0 + I_2 \left( \lambda^2 + \beta^2 \right) \right) - 2 \left( D_{12} + 2D_{66} \right) \lambda^2 \beta^2 - D_{22} \beta^4 - D_{11} \lambda^4 \\ -K_w - K_p \left( \lambda^2 + \beta^2 \right) - \left( \frac{K_l K_u}{K_l + K_w} \right) - \left( \frac{K_s K_u}{K_l + K_w} \right) \left( \lambda^2 + \beta^2 \right) + N^T \left( \lambda^2 + \beta^2 \right) - 2N_{xy}^T \left( \lambda \beta \right) \end{bmatrix}$ 757  $d_{34} = d_{43} = \begin{bmatrix} -\omega_n^2 \left( -J_2 \left( k_1 A' \lambda^2 + k_2 B' \beta^2 \right) + J_0 \right) + D_{11}^s k_1 A' \lambda^4 + \left( D_{12}^s + 2D_{66}^s \right) \left( k_1 A' + k_2 B' \right) \lambda^2 \beta^2 \\ + D_{22}^s k_2 B' \beta^4 - L_a \left( \lambda^2 + \beta^2 \right) + g \left( 0 \right) N^T \left( \lambda^2 + \beta^2 \right) - 2N_{xy}^T g \left( 0 \right) \left( \lambda \beta \right) \end{bmatrix}$ 758

$$759 \qquad d_{44} = \begin{bmatrix} -\omega_n^2 \left( K_2 \left( (k_1 A')^2 \lambda^2 + (k_2 B')^2 \beta^2 \right) + K_0 \right) - (k_1 A')^2 H_{11}^s \lambda^4 - (k_2 B')^2 H_{22}^s \beta^4 \right] \\ - \left( 2H_{12}^s k_1 A' k_2 B' + H_{66}^s \left( k_1 A' + k_2 B' \right)^2 \right) \lambda^2 \beta^2 \\ + \left( -F_{55}^s \left( k_1 A' \right)^2 + 2k_1 A' R - 2k_1 A' X_{55}^s - A_{55}^s \right) \lambda^2 \\ + \left( -F_{44}^s \left( k_2 B' \right)^2 + 2k_2 B' R - 2k_2 B' X_{44}^s - A_{44}^s \right) \beta^2 - R_a \\ + N^T g \left( 0 \right)^2 \left( \lambda^2 + \beta^2 \right) - 2N_{xy}^{T} g \left( 0 \right)^2 \left( \lambda \beta \right) \end{bmatrix}$$

## 782 **Biographies**

Belgacem MAMEN holds a MSc degree (2010) in Modeling and Experimentation in Solid 783 Mechanics from Joseph Fourier University and INPG Institute, Grenoble (FRANCE). He 784 received his Ph.D. degree (2013) in Engineering Sciences (Mechanics, Mechanical 785 Engineering, Civil Engineering) from Franche-Comté University, Besancon (FRANCE). He 786 is an Associate Professor in Structural Engineering at the Department of Civil Engineering at 787 788 Abbes Laghrour University of Khenchela (ALGERIA). He has supervised three Ph.D. theses and more than ten MSc students. His interests include experimental research, composite 789 material, thermomechanical modeling, numerical analysis, and programming, especially 790 791 Maple and ABAQUS.

Abdelhakim BOUHADRA holds a Ph.D. degree (2015) in Civil Engineering from Djillali
Liabes University of Sidi Bel Abbes (ALGERIA). He is an Associate Professor in Structural
Engineering at the Department of Civil Engineering at Abbes Laghrour University of
Khenchela (ALGERIA). He has supervised more than 5 Ph.D. and 10 MSc students.
Moreover, he has published more than 20 journal papers. His research interests include
composite structures, nanocomposites and mechanics of nano-structures, numerical analysis,
and programming, especially Maple.

Fouad BOURADA holds a Ph.D. degree (2018) in Civil Engineering from Belhadj Bouchaib
University of Ain Temouchent, Ain Temouchent (ALGERIA). He is an Associate Professor at
the Department of Science and Technology, Center University of Tissemsilt, Ben Hamouda
(ALGERIA). His research interests include Plate/beam theories, composite structures,
functionally graded structures, nanocomposite structures, nanoplates, nanobeams, and nonlocal elasticity.

Mohamed BOURADA holds a Ph.D. degree (2013) in Civil Engineering from Djillali Liabes
University of Sidi Bel Abbes (ALGERIA). He is a Professor at the Department of Civil
Engineering, Djillali Liabes University of Sidi Bel Abbes (ALGERIA). His research interests
include Topics: Functionally graded material, Plate theory, Beam (structure), Boundary value
problems, and Virtual work.

Abdelouahed TOUNSI obtained his Ph.D. degree (2002) at the University of Sidi-Bel-Abbes, Bel Abbes (ALGERIA). He is a Professor at the Civil Engineering Department, University of Sidi-Bel-Abbes, Bel Abbes (ALGERIA). He is an active researcher, producing more than 682 papers in index journals. He is also a member of several national and international organizations. His research interests include Plate/beam theories, composite structures, functionally graded structures, nanocomposite structures, nanoplates, nanobeams, and non-local elasticity.

Muzamal HUSSAIN holds a Ph.D. in Mechanics and Energy from the University of Lille
(FRANCE). He is an Assistant Professor at National Textile University Faisalabad (Pakistan).

Muzamal does research in Discrete Mathematics, Algorithm Analysis, Applied Mathematics,
Wave Propagation, Vibration Analysis, and functionally graded structures.