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Abstract. Extensive exploration of ZnO luminous material for biomedical applications has been 

conducted in recent years due to its biocompatibility and optical characteristics that can be 

customized to meet specific needs. The ZnO was modified with carbon quantum dot (CQD) to 

produce a ZnO@COD composite with enhanced photoluminescence and to obtain ZnO 

luminescence to be used as a bioimaging material. The hydrothermal process was adopted to 

produce ZnO nanoparticles. The modification of ZnO with carbon quantum dots was performed 

via a simple method of stirring and sonication. The effects of variations in the amount of carbon 

dots on the optical properties of ZnO@CQD nanocomposites were investigated. The optical 

properties of ZnO@CQD were characterized using UV-Vis and photoluminescence 

spectroscopy. The UV-Vis spectra revealed a decrease in the gap energy of ZnO@CQD. 

Additionally, the photoluminescence spectroscopy showed a significant increase in 

photoluminescence intensity with the addition of 10 ml of carbon dots. There was also a redshift 

of the photoluminescence band to the long-wavelength region. The optical properties of the 

ZnO@CQD nanocomposites discovered in this study demonstrate their potential use as 

bioimaging materials in biomedical applications. 
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1. Introduction 

The demand for biocompatible and environmentally friendly nanomaterials has continued 

to grow each year. The need is particularly significant for photocatalysts [1–3], biomedical [4,5], 

and other applications. The use of nanomaterials in the biomedical field has rapidly developed, 

which includes materials for diagnosis, treatment, and therapy. The application of imaging 

techniques for the diagnosis of diseases has particularly garnered significant interest among 

researchers. Biological imaging technology employs various strategies to analyze and solve the 
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mysteries of the human body, understand the roots of disease, and develop individualized or 

personalized treatment. The performance of the bioimaging techniques relies on the use of 

probes with high specificity and sensitivity. Therefore, exploring materials with excellent 

photoluminescence properties and employing suitable strategies for their synthesis and 

application is necessary to analyze the biological microenvironment and related processes [6–8]. 

Despite the growing proposal of new imaging strategies in recent studies, further development of 

phosphors with enhanced brightness and luminous properties is required. In addition, the recent 

advances in clinical technology and instruments for photoluminescence imaging induction 

surgery in patients have led to the demand for further development of photoluminescence [9–11].  

Photoluminescence imaging technology offers advantages for biomedical imaging 

applications, which include high sensitivity, low cost, and high spatial/temporal resolution. The 

use of materials such as nanocarbon [12,13], semiconductor quantum dots (QDs) [14], and rare 

earth-doped nanoparticles [15] as fluorescent probes have been reported in several studies. 

However, these probes have limitations that include low quantum yield, low solubility, high 

cytotoxicity, and low photostability. The use of Zinc oxide (ZnO) has garnered considerable 

interest due to its high photoluminescence in visible regions, low cost, and biocompatibility [16–

20]. The use of ZnO nanoparticles as photocatalysts [21–26], anti-bacterial agents [27], sensor 

components [28,29], drug delivery agents [30], and others have been reported in recent studies. 

Although ZnO exhibits considerably enhanced photoluminescence in the visible light area, the 

resulting photoluminescence is unstable due to defects, such as vacancies and interstitial and 

dangling bonds on the ZnO surface [18,20,21]. Therefore, it is necessary to modify the ZnO 

surface with other materials to improve its photoluminescence properties.  

One material with the potential for hybridization with ZnO is carbon quantum dot (CQD). 

CQDs have received substantial attention because of their properties, including non-toxic, 

photostable, low-cost, heavy metal-free, and eco-friendly [31–33]. The application of CQDs has 

been acknowledged due to the characteristic photo-induced electron transfer [34,35] and up-

conversion of photoluminescence properties [36]. CQD is synthesized from dried banana leaves 

using the hydrothermal method. The application of green chemistry in the synthesis process is 

fundamental for biomaterial development to produce non-toxic materials that are 

environmentally friendly and safe for human use [10,14,37]. However, the hybridization of ZnO 

and CQD for bioimaging applications is still limited. In this study, the ZnO surface was modified 



3 

 

using CQDs via sonication technique to increase the intensity and stability of ZnO 

photoluminescence. A volume of 10 mL of CQD could significantly increase the 

photoluminescence of ZnO@CQD. However, adding more CQDs could cause a quenching effect 

on their photoluminescence. This article reports in detail the influence of the amount of CQD on 

the structure and optical properties of ZnO@CQD. 

 

2.   Methods 

2.1 Materials  

ZnO@CQD nanocomposites were synthesized using the following materials: sodium 

hydroxide (NaOH, Bratachem), zinc nitrate (Zn(NO3)2.6H2O, Merck). The synthesized 

nanocomposites were characterized using an X-ray diffractometer (XRD) (Bruker D8 Advance), 

photoluminescence (PL) (Horiba MicrO Photoluminescence Microspectrometer), scanning 

electron microscopy (SEM) (SEM, Zeiss, EVO 15), and Fourier transform infrared spectroscopy 

(FTIR) (FTIR, Nicolet iS50). 

 

2.2 Experiment  

2.2.1 Synthesis ZnO 

The hydrothermal process was adopted for the synthesis of ZnO. The ZnO was prepared 

by mixing Zn(NO3)2.6H2O and NaOH at a molar mass ratio of 1:2. Zn(NO3)2.6H2O of 0.5 M and 

1 M NaOH was dissolved in 50 ml and 10 ml of distilled water, respectively. The 

Zn(NO3)2.6H2O solution was stirred using a magnetic stirrer with a rotational speed of 300 rpm, 

with a gradual addition of NaOH solution using a dropper until a pH of 11 was achieved. The 

sample was autoclaved at 180 °C for three hours in an oven. Next, the sample was filtered and 

washed twice with alcohol and distilled water. Then, the sample was put into the furnace and 

heated at 200 °C for 12 hours. The sample was crushed to obtain ZnO powder, which was 

subsequently used for structural and optical analysis. 

 

2.2.2 Synthesis of CQD 

CQD synthesis was achieved via the hydrothermal process. Banana leaves were dried in a 

furnace at 200 °C for one hour. At this temperature, the celluloses in dried banana leaves start to 

decompose [38]. Next, the dried banana leaves were crushed and filtered using a 300-mesh sieve. 
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The carbonization process was carried out at 400 °C for one hour in a furnace. Subsequently,  0.5 

g of carbon powder was dissolved in 50 ml of distilled water and transferred to an autoclave 

oven to initiate the hydrothermal process at 180 °C for 12 hours.  

 

2.2.3 Synthesis of ZnO@CQD 

The synthesis of ZnO@CQD was carried out by dissolving 0.3 g of ZnO powder in 5 ml 

of CQD colloid. The solution was subsequently sonicated for 90 minutes. Next, the solution was 

heated in an oven at 180 °C for 15 hours. The precipitate was crushed using a mortar and pestle 

to obtain ZnO@CQD powder. All these steps were repeated using a volume of 10 and 20 ml of 

CQD colloid. 

 

3. Results and Discussion 

3.1 XRD and SEM Analysis  

The XRD diffraction patterns of ZnO and ZnO/CQD (5 mL) are shown in Figure 1 (a). The 

XRD analysis of ZnO revealed diffraction peaks that match the ICDD data reference code 01-

073-8765. The highest peak was identified at angle 2θ = 36.23
o
 with the Miller index (101). The 

crystal structure of ZnO appeared as hexagonal wurtzite with lattice parameters of a = b = 3.25 Å 

and c = 5.20 Å. The ZnO@CQD nanocomposite exhibited ZnO and C (CQD) diffraction peaks, 

with the highest peak at an angle of 2θ = 36.21
o
, identified as ZnO. The results indicate the 

absence of peaks that correspond to possible impurities. The crystal structure of ZnO appeared as 

a hexagonal wurtzite with lattice parameters of a = b = 3.25 Å and c = 5.20 Å. The presence of 

CQD in the sample is evidenced by carbon diffraction peaks at 2θ = 23.55
o
 and 2θ = 41.16

o
, 

which correspond to the Miller indices (002) and (440), respectively. ICDD data with reference 

code 00-049-1717 shows a cubic crystal structure of phase C with lattice parameters of a = b = c 

= 12.38 Å, which corresponds to the sp
2
 graphite crystal of the graphene phase. The d-spacing of 

CQD is 3.77 Å, which is slightly larger than the d-spacing of graphite (3.4 Å). This increase in 

the interlayer distance value was likely caused by the presence of oxygen on the CQD surface 

[39]. The crystal size of ZnO nanoparticles and ZnO@CQD nanocomposites was determined 

using the Debye-Scherrer equation. 

      
 cos

K
D



 
       (1) 
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In eq. (1), D is the nanoparticle crystalline size, K represents the Scherrer constant (0.98), λ 

denotes the wavelength (1.54 Å), and β denotes the full width at half maximum (FWHM). 

The crystal size of ZnO nanoparticles was 27.27 nm, while the ZnO@CQD nanocomposite was 

40.86 nm. The results also indicate an increase in crystal size with the addition of CQD to ZnO 

nanoparticles. The XRD data reveals that the increase in crystal size was also accompanied by an 

increase in d-spacing, i.e., 2.47919 Å (ZnO) to 2.48039 Å (ZnO@CQD).  

 The morphology and particle size of ZnO@CQD are presented in Figure 2 (b). The 

particles appeared spherical, with a diameter of 20–50 nm. The particle size appeared relatively 

homogeneous, with an average size of 42.5 nm. 

 

3.2 FTIR Analysis 

The profiles of ZnO@CQD nanocomposites with CQD variations of 10 ml and 20 ml were 

generated via FTIR analysis. This characterization aimed to investigate the molecular groups 

contained in the nanocomposite at wavenumbers of 400 cm
-1

 to 4500 cm
-1

. The FTIR profile is 

shown in Figure 3. 

Figure 3 shows the similarities in the absorption peaks in the two samples and their differences— 

the higher the CQD colloid volume, the weaker the absorption. In general, the O-H (hydroxyl) 

group with wavenumbers 3338.78 cm
-1

-3392.79 cm
-1

 was present in all samples. This absorption 

peak indicates the presence of water as a solvent. The wavenumbers of 1348.24 cm
-1 

represent 

the C-H functional group bond, whereas the wavenumbers of 1583.56 cm
-1

-1631.78 cm
-1 

indicate 

the C=C functional group and the wavenumbers of 1764.87 cm
-1

-1934.60 cm
-1

 indicates the C=O 

bond. These peaks indicate the formation of CQD, as C=C is the main functional group in CQD 

[40,41] Meanwhile, the absorption peak at wavenumbers of 476.42 cm
-1

-526.57 cm
-1

 indicates 

the formation of Zn-O bonds. 

 

3.3 UV-Vis and Photoluminescence Analysis 

The optical characteristics of ZnO and ZnO@CQD were determined using UV-Vis and 

photoluminescence spectroscopy. The results from the UV-Vis analysis are presented in Figure 

4. Figure 4 (a) shows the absorption spectrum of ZnO and ZnO@CQD against wavelength and 

Figure 4 (b) shows the gap energy of ZnO and ZnO@CQD. 
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Figure 4 (a) depicts the higher absorption of ZnO@CQD than ZnO. The absorption peak 

of ZnO@CQD increased as the energy gap decreased, as proven by the application of the 

Kubelka−Munk function from the Tauc plot method presented in Figure 4(b). The energy gap 

value for ZnO and ZnO@CQD was 3.39 eV and 3.34 eV, respectively. The results demonstrate a 

slight decrease in the energy gap due to the presence of CQD. 

The photoluminescence spectra of ZnO and ZnO@CQD nanocomposites are shown in 

Figure 5. There are two emission bands: The first band is a narrow UV emission band (λ = 360 

nm for ZnO and λ = 370 nm for ZnO@CQD). The UV emission peak denotes the optical activity 

of the intrinsic defects of ZnO, which resulted in near-band edge (NBE) excitons. The second 

band is the visible light emission peak (λ = 500–760 nm), which corresponds to deep-level 

defects (DLE) in ZnO. The synthesis process, morphology, vacancies, and surface defects 

influence luminescence emission in the visible light region. In UV emission (NBE), ZnO 

nanoparticles can only absorb light of less than 400 nm, indicating a response range that is 

concentrated in the UV region. 

Additionally, the ZnO@CQD composite exhibited a continuous absorption edge in the 

visible light region, suggesting the ability of CQD to extend the light response to the visible light 

region, thereby absorbing more photons. CQD did not only absorb visible light but also 

demonstrated an up-conversion luminescence, resulting in a higher absorption by the 

CQD@ZnO composite. Similar photoluminescence curves were observed for ZnO nanoparticles 

and ZnO@CQD nanocomposites, indicating that CQD modification does not produce new 

photoluminescence responses and characteristics. Nevertheless, an increase in intensity and a 

shift in the emission region occurred as a result of the modification.  

The addition of CQD to ZnO caused a significant increase in photoluminescence 

intensity, particularly in the visible light region. The change is caused by the rapid recombination 

of electrons and holes between ZnO and CQD. The highest photoluminescence intensity was 

obtained from the ZnO@CQD sample (10 mL), while the lowest intensity was obtained from the 

ZnO@CQD sample (5 mL). However, adding more CQD to ZnO@CQD (20 mL) reduced the 

photoluminescence intensity due to the quenching effect in the presence of excess CQD. 

Excessive amount of CQD causes internal absorption in the CQD [42,43]. Other studies have 

attributed the quenching effect in the presence of excess CQD to the lack of dispersion and 

formation of CQD aggregates, thereby reducing contact between ZnO and the CQD [44,45]. 
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Besides, CQD also triggers a shift in the emission band at longer wavelengths. ZnO produces 

yellow photoluminescence, while the addition of CQD produces orange photoluminescence. The 

photoluminescence mechanism of ZnO and ZnO@CQD is shown in Figure 6. 

Figure 6 (a) shows the photoluminescence spectrum of ZnO and ZnO@CQD (10 mL) 

and Figure 6 (b) shows the difference in optical transition between ZnO and ZnO@CQD. There 

was a change in electron transition energy from the donor to the acceptor level, such as purple 

emission (NBE), which is a transition from the edge of the conduction band at the exciton 

binding energy level, i.e., from 0.06 eV below the conduction band to the valence band with an 

energy of 3.33 eV in ZnO and 3.28 eV in ZnO@CQD. The yellow emission (2.1 eV) was caused 

by the electron transition from Zni to the oxygen vacancy state (VO) [46,47]. In ZnO@CQD, 

there was a shift from yellow emission to orange emission (1.9 eV), which was caused by the 

transition of electrons from interstitial Zn (Zni) to interstitial oxygen (Oi), which is translated as a 

decrease in the transition energy by ~ 0.2 eV. The results from photoluminescence analysis 

demonstrate that the addition of CQD causes a decrease in the amount of VO and an increase in 

the amount of Oi in ZnO. In addition, the increase in intensity and shift of the photoluminescence 

band at longer wavelengths (orange) in the ZnO@CQD nanocomposite may also be caused by 

plasmon resonance on the CQD surface [48,49]. 

 

Conclusion 

 In this research, a ZnO@CQD luminescent nanocomposite material was developed. The 

analysis results from XRD, SEM, FTIR, and optical characterization confirm the successful 

synthesis of ZnO@CQD nanocomposites via the hydrothermal process. The XRD results show 

the formation of ZnO and ZnO@CQD phases with no impurity phases present. Additionally, 

ZnO nanoparticles produced yellow emissions in the visible light wavelength region, and the 

coupling of ZnO with varied amounts of CQD significantly increased the photoluminescence 

intensity. Besides increasing the intensity of photoluminescence, the presence of CQD in the 

ZnO@CQD nanocomposite also caused a shift in the emission band to the long wavelength 

region, namely orange emission. The optical properties of ZnO@CQD demonstrate its potential 

use in biomedical applications, particularly as bioimaging material. 
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Figure 1. (a) XRD pattern of ZnO and ZnO@CQD 

 

 

 

Figure 2. SEM image of ZnO@CQD 
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Figure 3. FTIR spectra of ZnO@CQD nanocomposites  

 

Figure 4. (a) UV-Vis absorption of ZnO and ZnO@CQD and (b) the energy gap in ZnO and 

ZnO@CQD. 
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Figure 5. Photoluminescence spectrum on ZnO and ZnO@CQD. 

 

 

 

Figure 6. (a) Photoluminescence spectrum of ZnO and ZnO@CQD, (b) Band structure diagram 

of ZnO and ZnO@CQD obtained based on photoluminescence results. 
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