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Abstract 

Some business process management systems (BPMSs) have been developed in the field of smart 

factories. These systems are typically based on technical or production areas and technical 

processes. However, many existing systems, with respect to technologies used in smart factories 

and also the dynamic nature of the processes in these environments,  are not able meet 

requirements of smart factories in the business process execution. The present study presents a 

new prototype of BPMS architecture based on smart factories’ characteristics. This prototype has 

several components. In the monitoring component, process management can take place through 

process mining techniques inside a defined data analysis system for collecting event logs from 

big data. This component could operate based on control and optimization modules. The control 

module is applied to discover process models and their conformity with models extracted from 

business process analysis using Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and 

Adaptive Boosting (AdaBoost) algorithms. Also, the optimization module can improve the 

processes model based on Business Process Intelligence (BPI) technique and Key Performance 

Indicators (KPIs). The results of the new prototype execution on a case study indicate that the 

proposed architecture is highly accurate, complete, and optimal in process management for smart 

factories.  
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1- Introduction 

The Fourth Industrial Revolution (Industry 4.0) created the smart factory, including new 

technologies such as Cyber-Physical Systems (CPSs), the Internet of Things (IoTs), cloud 

computing, big data, and smart sensors. CPSs can monitor physical and production processes 

through different computer algorithms that communicate with each other and humans using the 

IoT structure. Also, produced organizational services could be applied with other partners using 

the cloud environment [1]. 

A Business Process (BP) contains a set of activities in an organizational environment to achieve 

a business goal [2]. Business Process Management (BPM) consists of principles, methods, and 

tools that integrate management sciences, Information Technology (IT), and industrial 

engineering [3]. In fact, BPM supports the life cycle of BP. In this case, BPMS can be used as a 

software tool for the technical support of BPM.  

BPMS architecture [2,4] includes several components employed to hold up the BP life cycle. 

These components include a main component entitled process engine, which is applied for 

executing modeled BPs with a specific modeling language (e.g., Business Process Model & 

Notation 2.0 (BPMN 2.0)) [5]. Another key component is a user interface that interacts between 

users and the process engine for process management [6]. Also, control and monitoring of 

processes are other functions of inward BPMS. These processes can be done by data extraction 

from executed process instances. In this case, they have been considered to decide in the context 

of BPs optimal execution. These operations can be performed through a new group of 

techniques, such as process mining [7]. Process mining uses digital traces of processes to 

understand their visualizations and measure the performance of BPs [8]. The techniques like 

process mining have been applied as an appropriate tool in BPM to enrich the management of the 

smart factory in various aspects [9]. 

In this factory, process execution is in a smart status based on new technologies (e.g., big data, 

IoT, and cloud computing). In this case, big data analytics can provide useful information for 

information systems [10]. This function is possible by smartly collecting and analyzing huge 

amounts of data from various sources (e.g., market trends and future demands) [10]. Also, IoT, 

as a dynamic information network, includes objects connected to the Internet, such as sensors, 

actuators, and other smart equipment [11]. Besides, scalable resources have been provided using 

cloud computing dynamically [12]. Hence, due to the dynamic nature of smart factories’ 

business and their various potentials, including controlling dynamic business processes [13], 

different systems and tools (e.g., BPMS) should be applied to control processes under dynamic 

conditions. Initially, a dynamic BP has not a precisely defined execution. Thus, its execution 

states are changed at runtime under new conditions (e.g., changes in business rules at runtime). 

In static business processes, however, the sequences of activities execution are determined at the 
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early stage [14]. Many models and frameworks have been presented to describe smart factories’ 

characteristics [15]. One the other hand, traditional approaches inward information systems 

architecture do not cover dynamicity in business process requirements [14]. As a result, classic 

information systems such as BPMSs do not cover these requirements adequately. Hence, the 

main gap is the absence of dynamic BPMS development in the smart factory.  

To obtain competitive conditions in the market, rapid response to the customer, response to a 

wide range of changes in the factory environment, and further business-IT alignment, smart 

factories require a new generation of BPMSs to manage their BPs in dynamic conditions. 

Accordingly, this paper presents a new extension of a dynamic BPMS to BP monitoring and 

executing in a smart factory. Overall, the mentioned goal can be achieved by responding to the 

following research questions: 

Rq1) What is the best architecture for designing a new extension of a BPMS based on smart 

factory characteristics? 

Rq2) How can the use of the integration of big data analytics and process mining techniques 

in process monitoring inward the proposed BPMS appropriately? 

 

The first research question considers the best architecture of BPMSs based on the smart 

factories’ characteristics. In this case, new components are required to develop. The second 

research question focuses on the role of big data analytics and process mining techniques in 

processes monitoring inward proposed BPMS. The main contributions of this study are: 

 

 Presenting a new architecture of BPMS which can apply in smart factories; 

 Defining a data analysis system for collecting event logs from big data; and 

 Monitoring the behavior of smart factories’ processes through process mining techniques 

inside a defined data analysis system. 

The remainder of this paper is organized as follows: Section 2 presents the literature review. 

Section 3 defines the proposed BPMS architecture. Section 4 provides the performance 

evaluations. Section 5 discusses the results. Finally, Section 6 presents the conclusions and future 

works. 

2- Literature review 

Several studies have been proposed by different researchers in the context of BPMSs, process 

mining techniques, and processes’ optimization and control methods. In this section, previous 

BPMS-related studies are reviewed. These studies are described in the following: 
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2-1- Process mining techniques 

Process mining is employed to analyze the behavior of an organization by extracting knowledge 

from event logs and using techniques to discover, monitor, and enrich process models [16]. 

Process mining consists of three sections: process discovery involves techniques employed to 

discover process models based on event logs information. Conformance checking includes 

algorithms used for reasons such as inspecting the conformance between the event log and the 

process model and checking the conformance between the discovered model and the observed 

behavior [17]. Enhancement contains techniques employed to enrich or develop process models.  

Several process discovery algorithms, such as alpha, alpha+, heuristic mining, etc., have been 

presented in the literature. The alpha algorithm extracts process models by analyzing the 

relationships between activities in an event log. In this regard, Aalst et al. demonstrated the 

ability of this algorithm to discover a class of workflow processes [18]. One of the limitations of 

the alpha algorithm is that it does not detect short loops. To solve this problem, De Medeiros et 

al. presented an extended version of this algorithm called the alpha+ algorithm [19]. A heuristic 

mining algorithm [20] can process noise event logs. The disadvantage of this algorithm is the 

inability to identify non-free choice or non-local structural patterns.  

One of the methods of discovering process models is using meta-heuristic algorithms. In this 

regard, de Medeiros et al. [21] applied the genetic algorithm to discover process models. They 

used the genetic algorithm to take advantage of the global searches performed by these types of 

algorithms. In [22], a combination of Particle Swarm Optimization (PSO) and simulated 

annealing algorithms was suggested for process mining and extraction of optimal process 

models. The researchers’ goal in the proposed method was to improve the execution time of the 

algorithm and the quality of the extracted models. Also, Alizadeh and Norani [17] proposed a 

new algorithm called ICMA to discover process models. To this end, they integrated the 

imperialist competitive algorithm into their proposed algorithm. Xu et al. [23] proposed a 

combination of alpha and genetic algorithms to discover process models. They believe that the 

proposed algorithm provides better performance than the alpha algorithm. 

Some conformance-checking algorithms have been proposed in the literature, including 

Footprint, Replay, and Alignment. In [7], these approaches are mentioned and discussed. Also, in 

[24], a new token-based replay technique is suggested to increase speed and scalability in the 

field of conformance checking. They believed that this approach could provide more accurate 

diagnoses, thereby preventing problems such as token flooding. This new technique is 

implemented by the PM4Py library. Burattin et al. [25] presented an online conformance-

checking method using behavioral patterns evaluation. These authors aimed to identify 

deviations online so that they can be retrieved before the execution of the process instance is 
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completed. De Leoni et al. [26] presented a method for aligning event logs and process models 

by considering perspectives such as data and resources. According to these authors, unlike other 

conformance-checking methods that focus on control flows, the proposed method also considers 

data and resources when conformance checking of process. 

2-2- BPs monitoring methods 

In the modern business world, organizations must reorganize BPs to achieve success in the 

market [27]. This goal is achieved by monitoring processes that include control and optimization. 

Saraeian et al. [28]  developed a new controller component for inward uncertain BPMS. This 

component monitors the critical infrastructure in the automatic closed-loop supply chain. Vera-

Baquero et al. [29] presented an architecture that integrates big data analytics and BPM in a 

distributed environment. In this case, users can analyze the results of BP execution. Also, 

different tools (e.g., SAS business intelligence and analytics) are presented to control the 

processes. Pourmirza et al. [30]  designed a BPMS reference architecture that can control the 

behavior of process instances by using such tools. Krumeich et al. [31]  proposed hybrid 

architecture of big data analysis methods and complex event processing techniques to control 

processes in a sample company in the field of Industry 4.0. In [32], a solution was proposed for 

re-engineering BPs and optimizing them. The proposed approach can by identifying the priority 

of the activities, detect the insignificant activities that consume a lot of time and resources. Duran 

et. al [33] presented a method for analyzing BPs based on a machine-learning algorithm.  

In the context of meta-heuristic methods, Vergidis and Tiwari [34] used a developed version of 

the genetic algorithm, i.e., NSGA-II, to optimize the features of the BPs design. This 

optimization aims to design BP through optimal features such as cost and process execution 

time. In [35], a resource allocation method was developed to optimize resource allocation using 

the improved PSO  algorithm. Also, the proposed method considers different indicators of 

process performance evaluation, such as resource cost and time. Mahammed et. al [36] presented 

an extended version of genetic algorithm to optimize BPs. This method uses a multi-population 

genetic algorithm for optimal design of processes.  

As mentioned earlier, process mining techniques are among the methods of discovering and 

optimizing business processes [22]. Jiang et al. [37] presented a new method to analyze and 

optimize BP models using the process mining technique. This method is based on service-

oriented architecture. Also, Yang et al. [38] proposed an architecture to analyze production 

processes through big data and process mining techniques. Hongtao et al. [39] defined a process 

mining architecture based on BPs optimization. This architecture uses knowledge about 

processes and hidden relations for optimization goals. This architecture employs a measurement 

module to investigate the optimized process’s performance.  
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2-3- Architectures of BPMSs  
2-3-1- Reference architectures 

 

In terms of the reference architecture of BPMS, Hollingsworth provided workflow reference 

architecture for Workflow Management System (WFMS) entitled workflow management 

coalition. This researcher also introduced essential components and interfaces of the workflow 

management system [40]. 

 As shown in Figure 1, this architecture consists of several components with different 

functionalities, such as analysis, modeling, and description of BP using process definition tools. 

Workflow API and interchange formats can regulate the relationship between system 

components and workflow control software. Also, workflow execution service includes one or 

more workflow engines employed to create, manage, and execute workflow instances. In 

addition, workflow client applications include software that interacts with the end user. 

Moreover, invoked applications include services, applications, or invoked programs for different 

purposes. Finally, the administration and monitoring tools component can monitor and manage 

workflow engines. 

Grefen and de Vries presented Mercurius as another reference architecture. This reference 

architecture was designed for a mature WFMS for mobile workflow customers in heterogeneous 

environments [41]. BPMSs have been becoming pervasive since 2005. These systems are mostly 

based on service-oriented architecture (SOA) technologies and protocols. In this respect, 

Arsanjani et al. [42], proposed a reference architecture for these systems, entitled service-

oriented solution stack. This system, provides reference architecture based on SOA in nine layers 

to enrich the business. A review of different BPMS architectures characteristics is presented in 

Table 1. 

Although each of the above architectures considered significant points (e.g., flexibility, proper 

interaction with end-user, etc.), the critical points that are less addressed are smart factories’ 

dynamic and scalable conditions. In real life, managing and monitoring smart factories’ changes 

is essential. Therefore, considering dynamic conditions in architectural modeling is a research 

gap in this field. 

2-3-2- Commercial BPMSs 

Meidan et al. introduced varieties of open-source or commercial BPMSs that any organization 

can use [50]. A review of the features of some of these BPMSs is presented in Table 2. 

Commercial BPMSs cannot support dynamic processes [51] and can primarily act in a static 

state. Also, due to the dynamicity of business rules in dynamic processes [50], business rule 

changes cannot be supported in commercial BPMS. Thus, these types of BPMS do not have 

optimal functionality in smart factories. 
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2-3-3- Academic BPMSs 

Delgado et al. [6] created a generic BPMS user portal using the integration of the process 

engines (such as Bonita and Activiti). This BPMS consists of a process engine and a web user 

portal. Saraeian et al. [52] designed an uncertain BPMS based on a new engine through different 

standards and interfaces definitions. This BPMS was implemented for managing uncertainty at 

runtime. Schulte et al. [53] designed an elastic BPMS to manage processes that are executed 

using cloud resources. This architecture has different capabilities, such as scheduling and 

decentralized coordination. Alexopoulou et al. [54] proposed another BPMS architecture using 

the approach of events-based process modeling for dynamic processes. These models require 

BPMS architecture with an engine that acts based on receiving events. Vasilecas et al. [14] 

proposed a new simulation and modeling method of dynamic BPs based on context changes and 

business rules changes at runtime. 

Based on the above studies, it is concluded that when an event happens, the BPMS must be able 

to record information related to the event and notify other sections to perform some 

functionalities to deal with it [54]. As a result, employing a classic BPMS to execute dynamic 

processes is inappropriate and avoids flexibility [54]. Hence, there is a need for a BPMS that 

fully supports the changes in business rules due to the dynamic conditions of smart factories.  

2-3-4- BPMSs applications in smart factories 

Researchers have presented different approaches to improve smart factories challenges through 

BPMSs. Kozma et al. [55] proposed a workflow based on SOA for production systems. They 

believe that the proposed approach can meet the requirements of smart factories such as 

decentralization, modularity, etc. Seiger et al. [56] presented an architecture integrating Industrial 

IoT (IIoT) and BPM for smart factories. This approach shows the benefits of employing BPM 

technology for production processes in IIoT. Gorski et al. [57] presented a workflow for 

predictive maintenance in support of manufacturing operations. The results show that this 

method can enrich maintenance processes. In [58], a workflow architecture is suggested for a 

production environment in smart factories. This architecture can provide benefits such as 

reducing the time and cost of transactions. Li et. al [59] proposed a new workflow for production 

scheduling in smart factories. This method can provide optimal scheduling for production in 

these environments. In this research, the authors have used Genetic and Tabu Search algorithms 

for optimization.Table 3 provides an overview of BPMSs application inward smart factories. 

In general, this research aims to monitor BPs and present an architecture based on the dynamic 

and scalable structure of smart factories. In the field of BP monitoring, previous studies did not 

consider process control and optimization together. Therefore, in this study, control and 
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optimization of processes are considered simultaneously in the monitoring component. Also, the 

proposed method fully supports improving BP rules integrated with big data analysis to obtain 

better accuracy and efficiency. Regarding architectural design, by studying commercial BPMSs, 

academic BPMSs, and reference architectures, it was concluded that the existing designs did not 

consider the dynamic and scalable conditions of smart factories as they should. Thus, the present 

research offers a new architecture to model the dynamic conditions of smart factories.  

3- Proposed BPMS architecture 

As mentioned before, to fill the mentioned gap, the present study develops a new prototype of 

BPMS architecture. This architecture aims to enrich the existing architectures to employ an 

architecture in smart factories to execute and control business processes. Figure 2 illustrates 

different defined components in the new architecture. 

These components include several modules interacting with the architecture’s central core. The 

process enactment service includes one or more process engines employed to execute BP 

instances. Also, dynamic BPs should react to business rules, and environment changes at runtime 

[14]. In this case, business rules and events of the business environment should be defined in the 

rules engine component. Accordingly, after defining business events, a set of rules are selected to 

execute the next activities in BP. The client applications component is another main component 

containing different applications used for user interactions with process engines to perform 

desired activities. 

The present study developed new components (e.g., the modeling and monitoring components) 

containing several modules. They are described in more detail later. 

3-1 Modeling Component 

Smart factories encounter dynamic processes that can use real-time data generated with the IoT. 

Thus, BPMN 2.0, as a common modeling language, is unsuitable for our purpose due to 

insufficient elements for this type of modeling. Therefore, the present study developed the 

BPMN 2.0 language with accepted new elements of reference [64] that provides different 

elements for modeling this type of process. These elements are presented in Table 4. 

Therefore, the extended version of the BPMN2.0 language could be modeled different dynamic 

processes inward smart factories. 

Also, the metamodel of the new extended modeling language from the BPMN2.0 language is 

presented in Figure 3. 
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3-2 Data Analysis 

Due to using new technologies such as the IoT and big data in smart factories, there is a large 

amount of data for mining. In addition to the structured data, streaming data related to IoT (such 

as IoT sensor data) are also considered in the proposed architecture. Since traditional approaches 

to batch data processing cannot be used for streaming data, big data analysis techniques can be 

used to process streaming data. Figure 4 demonstrates the method used to analyze big data. 

As shown in Figure 4, the proposed data analysis method considers both structured data and 

streaming data. First, to analyze streaming data, parallel and real-time processing is performed 

on this data using Apache Spark Streaming tool. The result of the processing is stored in the 

Hadoop HDFS file system. Then, from the structured data, event logs are extracted and stored in 

HDFS. In this study, the Apache SparkSQL tool was used to create a query on HDFS. Using the 

above tools allowed for preparing log files for the process mining. 

 

3-3 Monitoring Component 

The proposed monitoring component in the new architecture provides the control of executed 

processes status. This component includes control and optimization modules with several 

functionalities, described in the following sections. 

 

3-3-1 Control Module 

In the proposed architecture, the control module allows controlling the status of executing 

processes. This control includes two types of functions: 1) a control of the behavior of executing 

process models and 2) a control of running process instances. First, the behavior of the process 

models is evaluated using the Process Model Controller function, and then the Process Instance 

Controller function controls the running process instances. Hence, these functions’ inward 

control module provides strong support for monitoring processes.  

3-3-1-1 Process model controller function 

As mentioned earlier, the executable data is provided as an event log concerning BPMS. The 

process model controller function could be controlled the behavior of BPs through the process 

mining technique. Thus, conformance checking step inward process mining can compare process 

model execution with past process models extracted from event logs using the discover 

operation. The executions can continue if the process models run truly; otherwise, the 

improvement operation should be performed for investigated process models (Figure 5). 

In this paper, NSGA-II, as an extended version of the Genetic Algorithm (GA), has been used to 

discover the optimal process models. The advantages of this algorithm are as follows: 
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 It provides a solution close to the Pareto optimal solution using non-dominated sorting 

techniques. 

 It uses crowding distance techniques to maintain diversity in solutions.  

 It preserves the best solution of the current population in the next generation by using 

elitist techniques. 

The remarkable point is that conventional process mining algorithms can produce a single 

process model that may not describe recorded behavior well. In this case, NSGA-II could be 

employed for generating several process models from event logs [65]. In general, a process 

model can be defined as a casual matrix as follows [22,66]: 

     , , 1...i iIn a Out a i nCM     

where ai is considered an activity (or task) in the event log, In(ai) includes the set of activities 

preceding the ai activity, Out(ai) includes the set of activities following the ai activity, and n is 

the total number of activities. Also, in discovering process models using NSGA-II, individuals 

are casual matrixes. In other words, all individuals in a population are defined by a set of 

activities. The flowchart of this algorithm is presented in Figure 6. 

In the process mining technique, NSGA-II starts by creating an initial population of individuals 

(chromosomes). Each individual is associated with a process model. This algorithm can calculate 

the fitness metrics for each individual. Also, the algorithm performs the fitness evaluation and 

sorting of the population based on a fitness function and dominating conditions, respectively. In 

this case, two individuals in the population who have the highest fitness value are selected as 

parents. This selection should be performed based on the lower individual`s rank and its high 

crowding distance. 

In the next step, the initial population is integrated using an obtained population from the 

mutation and crossover operators. Thus, the members from the top of the sorted list are selected, 

and other remaining population members are discarded. These selected members can make the 

next generation of the population. All the mentioned steps are repeated until the desired 

generation (the most optimal individuals) as models can be employed.  

Also, crossover and mutation operators were used to create the individuals of the next 

generation. Crossover is used to recombine existing individuals in the current population. In fact, 

these individuals can be generated by combining a subset of the causality relations in the 

population. The pseudo-code of the crossover operator is shown in Algorithm 1. 
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Algorithm 1. Crossover operator [21, 67] 

 
Input: Two parents (e.g., parent1 and parent2), crossover rate 

Output: Two recombined offspring (e.g., offspring1 and offspring2) 

1. Offspring1          parent1 and offspring2         parent2. 

2. With probability crossover rate: 

a. Select (Randomly) a task (e.g., a) to the crossover point of the offspring. 

b. Select (Randomly) a swap point sp1 for In1(a). (The swap point goes from position 1 to n-1, where n is 

the number subsets in the condition function In1(a)). 

c. Select (Randomly) a swap point sp2 for In2(a). 

d. remainingSet1(a) equals subsets in In1(a) between positions 0 and sp1. 

e. swapSet1(a) equals subsets in In1(a) whose position equals or bigger than sp1. 

f. Repeat steps 2d and 2e but use remainingSet2(a), In2(a), sp2 and swapSet2(a) instead of 

remainingSet1(a), In1(a), sp1 and swapSet1(a). 

g. For every subset S2 in swapSet2(a), do: 

With equal probability, perform one of the following steps: 

A. Add S2 as a new subset in remainingSet1(a). 

B. Join S2 with an existing subset X1 in remainingSet1(a). 

C. Select a subset X1 in remainingSet1(a), delete the elements of X1 that are also in S2, and add S2 

to remainingSet1(a). 

h. Repeat step 2g but use S1, swapSet1(a), X2 and remainingSet2(a) instead of S2 and swapSet2(a), X1 

and remainingSet1(a). 

i. In1(a)          remainingSet1(a) and In2(a)          remainingSet2(a). 

j. Repeat steps 2b to 2h but use Out(a) instead of In(a). 

k. Update the related task to a. 

3. Return offspring1 and offspring2. 

Also, in the mutation, some changes occur in an individual. In other words, the mutation operator 

may change a population’s existing casualty relations. Algorithm 2 presents the pseudo-code of 

the mutation operator. 
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                      Algorithm 2. Mutation operator [21, 67] 

 
Input: An individual mutation rate 

Output: A mutated individual 

1. For every task (e.g., a) in the individual, do: 

a. With probability mutation rate, do one of the following operations for the condition function In(a): 

i. Select a subset X in In(a) and add a task, e.g., a’ to X, where a’ belongs to the set of tasks in the 

individual. 

ii. Select a subset X in In(a) and delete a task, e.g., a’ from X, where a’ belongs to X. If X is empty 

after a’ removal, exclude X from In(a). 

iii. Distribute the elements in In(a) again. 

b. Repeat step 1a, but use the condition function out(a) instead of In(a). 

c. Update the related tasks to a. 

The discovered process models should be applied in comparison with executing process models. 

This comparison was made through the AdaBoost algorithm. AdaBoost is one of the important 

algorithms in the machine learning field with significant characteristics such as computational 

accuracy and simplicity [66]. Algorithm 3 presents the AdaBoost algorithm to check the 

conformity of process models. 

 

Algorithm 3. Pseudo-code of AdaBoost algorithm [66] 

 

 Input: 

 T (maximum number of iterations), n (number of activities), t = 1, and z (normalizer); 

 Train dataset             discovered process model; 

 Test dataset               executing process model; 

 Labels of samples            (a
i
, In(a

i
), Out(a

i
));  

 

 Given a discovered process model {( a
i
, (In(a

i
), Out(a

i
))), ∀ i = 1…n} as a training set;  

 Initialize the observation weights: w
t
(i) = 

1

n
; 

 For t = 1… T 

   1.Train a weak classifier such as h
t
(a) by weighted training data to minimize error; 

   2 .Calculate the voting weight of h
t
(a): α

t
= 

1

2
 log (

(1−𝑒𝑡)

𝑒
𝑡

); 

3. Calculate the new weights of training samples to increase the misclassified sample weights and 

decrease the incorrect classified sample weights (W
t+1

(i) = wt(i) exp {- αt 
(In(a

𝐢
),Out(a

𝐢
))h

𝐭
(a)

𝑧
𝑡

}); 

 Output: 

 Define predictions through the final strong classifier result and test dataset (H(a
i
) = sign(∑ 𝑎𝑡ℎ𝑡(𝑎𝑖)𝑇

𝑡=1 )). 
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Theoretically and empirically, this algorithm is a powerful ensemble learning algorithm [68]. 

First, this algorithm is trained through the discovered process model. Hence, the algorithm trains 

weak classifiers constantly. Weak classifiers focus on samples mislabeled in the previous steps. 

Therefore, process model execution is evaluated using the trained algorithm.  

After controlling the behavior of executing processes, smart factory performance criteria are 

calculated based on KPI in the process instance controller function. Calculating these criteria is 

necessary to evaluate the performance of the optimization process. 

3-3-1-2 Process instance controller function 

This function inward control module can control the execution of process instances based on 

real-time data of execution through BPI techniques. BPI can measure the activities of a company 

and show the optimality and bottlenecks of processes [69]. Smart factory performance indicators 

are calculated based on runtime data. As shown in Figure 2, the process evaluator is responsible 

for evaluating performance indicators. These indicators will use in the optimization module.  

There are different evaluation criteria to evaluate different sorts of processes. In this paper, the 

process evaluator evaluates the process instances based on Eqs. (1), (2), and (3) [70]. These 

criteria have been identified and used following the KPI standard. 

 Time: Process duration utility was generated from the activity flow, as follows [70]. 

   

 

,

1

1

1

m

i j in
j

i i

T

pR a Exp s

n E p
im

xp
e

s










  

(1) 

 

where n is the number of end products in the process ps, Expi is the expected duration for the 

ith product in ps, and R(ai,j) is the real duration of the jth activity of the ith product in ps. 

 

 Cost: The total cost-utility of the process [70]. 

 

   

 
1

o

C

cos , c s
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os

s

z

i e

i

e

P t ps t P t ps

P t ps
t








 

 

(2) 

where z is the process cycle is divided into z parts and 𝑃 cos 𝑡(𝑝𝑠, 𝑡𝑖) is the running cost of 

process ps in time 𝑡𝑖. 
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 Quality: Better process quality is achieved when the cost efficiency of transforming the 

process cost into the value of the external customers is high [70]. 

 

     1 1 1i iw CRQua wli Pt Ay P        
(3) 

 

where CPRi is the cost efficiency of a certain process that satisfies the external customers’ 

demands, PAi denotes the cost efficiency of the process in supporting the primary activities 

to achieve their targets, and W is a lower weighting (w) when there is more concern about  

customer satisfaction. 

3-3-2 Optimization Module 

As mentioned earlier, the process should be optimized when there is a difference between the 

running process model and the model extracted from log files. In this paper, a BPI approach is 

used for process optimization to identify and evaluate the effectiveness of BPs. In this module, 

process-related rules are retrieved from the rules engine, and the appropriate values are placed in 

the process attributes. Regarding the multiplicity of BPs and the high volume of data resulting 

from implementing processes, determining the overall structure of BPI depends on the expected 

output of organizational managers. In this paper, analysis and optimization of production 

processes are considered. The parts used for optimizing the process model are shown in Figure 2. 

1- Change rule: In this step, the defined rules of the process are retrieved from the Rules 

Engine module and are applied to the process model. 

2- Metric analysis: The evaluation of smart factory performance indicators is recalculated 

after applying new rules to the process model. 

Optimizing process models will improve KPI indicators and ultimately enhance the satisfaction 

of organizational managers. 

4- Performance evaluation 

The proposed architecture was evaluated by considering a medium-sized food production smart 

factory. The plant uses industry 4.0 technologies, including IoT and collaborative robots. Event 

processing and production management are performed in real-time. The factory structure is 

designed based on a 3-layer model. The bottom layer, called the physical layer, includes all the 

physical devices. The next layer, called the data layer, transfers data from machines to higher 

layers. Finally, the highest layer, i.e., the control layer, controls and optimizes the process. 

For evaluation, we first simulated a virtual prototype of the smart factory using Digital Twin 

technology. Digital Twin is a virtual set of infrastructures and facilities that simulate a product in 
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industry and factories. We used DC-E DigitalClone software to simulate the conditions of the 

smart factory. 

4-1 Evaluation of the monitoring component 

Control and optimization modules’ inward monitoring component was evaluated separately in 

the following subsections. 

4-1-1 evaluation of the control module 

The performance of the control module was assessed by applying Python programming language 

and the ProM 6.10 tool. Several cases were tested through the latest ProM version. This version 

uses extended versions of plug-ins, which can provide better results than other versions. Also, 

Hadoop 3.3.0, and Spark 3.3.1 were used in these experiments. Experiments were performed on 

a computer with a triple-core processor, 12 GB of RAM, and 1 TB of hard disk space. The 

features of the log files are presented in Table 5. 

4-1-1-1 Evaluation metrics 

The process model discovery algorithm was evaluated using fitness functions based on Eqs. (4) 

to (8) [66]: 

all parsed activites of casual matrix penalty

number of event log activites
Completeness




 
(4) 

 

all mising relations of casual matrix

number of traces log number of traces missing relation 1
Penalty 

 
 (5) 

 

 1 max 0,P ,r d rPecisi Pon    (6) 

1

all enabled activites of the discovered model
dP   

 

1

all enabled activites of the real model 
rP   

(7) 

 

 (8) 

  

Also, the conformance-checking algorithm was evaluated through the following concepts and 

metrics with Eqs. (9) to (12) [7,66]: 

 True Positive: process instances successfully detected as correct instances; 

 False Negative: process instances predicted as incorrect instances but should be detected 

as correct instances; 

 True Negative: process instances successfully detected as incorrect instances; and 
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 False Positive: process instances predicted as correct instances but should be detected as 

incorrect instances 

# true positive

# true positive # false negative
True positive rate 


 (9) 

# false positive

# false positive # true negative
False positive rate 


 

 

(10) 

 
# true negative # true positive

N
Accuracy


  

 

(11) 

     
 # true negative  # false negative  # true positive  # false positiveN    

 

(12) 

4-1-1-2 Evaluation results of the control module 

To compare the performance of the NSGA-II algorithm with other algorithms, Tables 6, 7, and 8 

show the list of parameters selected for them. Also, Table 9 shows the evaluation results of the 

process discover step based on the log files characteristics presented in Table 5. 

In general, evaluating the metrics revealed that NSGA-II and Inductive Miner are more suitable 

mining algorithms. Inductive Miner provided a better completeness value than NSGA-II, but its 

precision is less than NSGA-II. As a result, new traces may be found in the discovered model 

that is not seen in the event log. Therefore, if the discovered process is not accurate enough, the 

evaluation of deviations in it will not be accurate. Hence, a more accurate algorithm is more 

important in our work. Also, as shown in Table 9, when a trade-off between completeness and 

precision is required, and the overall quality of the discovered model is important, the NSGA-II 

algorithm is a more reliable option. On the other hand, a conventional process discovery 

algorithm produces a single process model at a time, but NSGA-II can simultaneously produce a 

set of models by constructing a Pareto front process model. In this way, the user can choose a 

process model with a trade-off between quality dimensions based on his/her preferences. 

Therefore, based on a general evaluation, it can be concluded that the NSGA-II provides better 

performance in discovering process models. 

Table 10 shows the evaluation results of the process conformance check step based on the log 

files characteristics presented in Table 5. 

Table 10 presents the robustness and optimal performance of the AdaBoost algorithm to conform 

process models based on different logs. Obviously, the high accuracy of this algorithm is the 

main reason for obtaining optimal results. 
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4-1-2 evaluation of the optimization module 

As mentioned in Section 3, optimization occurs when there is a difference between the 

executable model and the model extracted from the log files. Process instance optimization is 

performed at the time of process execution. Therefore, the optimization module must be 

evaluated in real conditions. 

4-1-2-1 Evaluation metrics 

In a smart factory, each process follows some rules, including threshold values based on standard 

KPI. These thresholds are about the features of the process, such as cost, time, and quality. In 

this study, some rules are considered about the production processes as follows: 

o Rule 1) The maximum total execution time of a production process is 200 ms. If the total 

execution time of the executable model is more than 200 ms, set a lower execution 

priority for the process.  

o Rule 2) The minimum total execution time of a production process is 100 ms. If the total 

execution time of the executable model is less than 100 ms (i.e., the process failure), put 

the process in the process queue for the next execution. 

4-1-2-2 Evaluation results of the optimization module 

After running the proposed BPMS in the simulation environment, event logs are collected in log 

files. If the executable model is different from the model extracted from log files, the related rule 

must be fetched from the rules engine, and appropriate values must be applied to the process. 

Table 11 presents the result of running this procedure in the virtual smart factory. 

Table 11 compares all process models with models extracted from log files based on the total 

execution time criterion. If the total execution time of the executable model is different from the 

model extracted from the log file, the rules related to the total execution time are called and 

applied to the process to obtain the desired result at the execution time of the processes. 

5- Discussion 

With the advent of smart factories and the need to use the latest technologies, such as the IoT, 

big data, and cloud computing,  BPM has become increasingly essential. However, one of the 

major challenges is that existing BPMSs is not optimized enough to be used in today’s industries 

with high data volumes, high dynamicity, and high scalability. In this regard, classic BPMSs 

have a limited ability to execute BPs in a dynamic environment such as smart factories. 

Therefore, this paper presents a new architecture of a BPMS for smart factories. In the proposed 

architecture, the integration of Apache Big Data Analysis tools and process mining techniques 
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has been used for real-time processing. In this way, big data processing is done with considerable 

speed, and log files are provided to other modules more efficiently. 

Since the elements used in BPMN 2.0 are not sufficient for modeling dynamic IoT-based 

processes, this paper developed a new extension of the BPMN 2.0 language with accepted new 

elements of reference [64] in the modeling component. The new extension makes it possible to 

design dynamic business models more accurately and in accordance with the dynamic nature of 

smart factories. 

As mentioned in the article, the conditions of smart factories should be monitored according to 

their changing status. These continuous changes are not sufficiently considered in most existing 

BPMSs. Therefore, the proposed architecture includes a monitoring component. This component 

comprises a control module to discover process models and their conformity with models 

extracted from BP analysis. The NSGA-II algorithm is used to discover the process models, and 

the AdaBoost algorithm is used to check the conformity of the process models. The monitoring 

component also includes an optimization module to improve the BP model based on the BPI 

approach and KPIs. Overall, the ability of the optimization module to change the BP rules is 

another advantage of the proposed architecture over other BPMSs. 

In the control module, the NSGA-II algorithm is evaluated based on completeness and precision 

criteria. Regarding its significant advantages, such as non-penalty constraint handling, it 

outperforms other algorithms presented in Table 9. The AdaBoost algorithm was evaluated by 

examining the false positive rate, false negative rate, and accuracy criteria. Based on the results 

obtained in Table 10, this algorithm has high accuracy and a low error rate. The remarkable point 

in this regard is that the AdaBoost algorithm has adapted process models more accurately and 

quickly after using big data solutions. 

The process models are improved in the optimization module using the BPI technique. As 

mentioned, to increase flexibility, a BPMS must be able to change the BP rules. This requirement 

was met in the optimization module. The evaluation results of the module in Table 11 indicate 

the dynamics of the proposed system in different conditions. 

Based on the suggested solutions, the proposed architecture is suitable for implementing in a 

smart factory with IoT and big data technologies. In fact, the proposed architecture led to further 

aligning the business with IT. In addition, it will be possible for managers to achieve competitive 

conditions in the labor market, respond quickly to customers, and response to a wide range of 

changes. However, some constraints in this paper have not been considered. Given the uncertain 

nature of business conditions, considering the uncertainty of BPs is a challenging issue that has 

not been addressed in this study. In addition, due to the variable conditions of the smart factory, 

the management of the rules stored in the rules engine is essential for managers and supervisors. 

Therefore, changing the threshold values in the rules requires a method not mentioned in this 

study. 
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6- Conclusions and Future works 

This paper presented an extended BPMS architecture prototype to monitor a smart factory’s 

processes. As illustrated earlier, process characteristics in this type of factory are based on new 

IT technologies (e.g., big data, IoT, and cloud computing) and in a smart status. Also, due to the 

dynamic nature of the processes in smart factories, different systems and tools (e.g., BPMS) 

should be applied to control processes in dynamic conditions. In this regard, classic BPMSs 

have a limited ability to execute BPs in a dynamic environment such as smart factories. 

Therefore, based on the presented research questions, to answer the first research question 

(Rq1), this study developed a new architecture of a BPMS by combining existing architectures 

with functions provided by modern techniques such as process mining and big data analytics for 

smart factories. Also, the second research question (Rq2) has been answered in the way that in 

the proposed architecture, the integration of Apache Big Data Analysis tools and process mining 

techniques has been used for processes monitoring. This paper mainly attempted to propose a 

robust BPMS architecture related to the smart factory features. This prototype expands the 

current BPMS architectures by:  

o IoT-based dynamic processes modeler according to the environmental conditions; 

o A defined data analysis system for gathering event logs from big data; 

o Monitoring component that can control the behavior of processes using control and 

optimization modules inside powerful algorithms; and 

o The improvement in control of dynamic processes due to using process mining 

techniques. 

For future works, we envisaged several appropriate research directions as follows: 

o Employing a new component in the proposed architecture to investigate security issues 

and prevent possible attacks in cyber-physical environments; 

o Defining interoperability attribute inward proposed architecture to reuse the components 

of this architecture in other architectures; 

o Presenting the new proposed architecture through a user-friendly graphical user interface 

with usability for non-technical end users and appropriate software development 

standards. 
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Table 1- A review of BPMS architectures characteristics 

References Architecture Characteristics 

[43] The first reference architecture for scientific WFMS is presented using SOA features. 

[30] 
A defined reference architecture for the BPMS entitles BPMS-RA intending to integrate 

real-time analysis of BP inward the proposed architecture 

[44] 
A developed BPMS architecture based on blockchain technology for use in multi-chain 

environments. 

[45] 
A workflow that is defined by combining workflow and web service technologies. This 

workflow is designed based on SOA. 

[46] 
The architecture of the QoS-aware fault-tolerant workflow-based system is employed in the 

cloud computing environments. 

[47] 

 
A scalable BPMS architecture for deployment in the cloud computing environment 

[48] A new workflow architecture for distributed simulation on cloud. 

 [49] 
A presented architecture called BPMS-RPA based on the integration of robotic process 

automation technology in a BPMS 
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BPMS 

name 

Modeling 

language 

Design 

(supported 

programmi

ng 

language) 

Deployment 

metrics 

 

Monitoring & Control 

 

Analysis metrics 

Bonita BPMN2.0 Java 
Ability to 

integrate into 

Technical monitoring 

and control, changing 

Process verification 

and simulation 
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Table 2- A review of Commercial BPMSs [50] 

 

 

 

 

 

 

 

 

 

 

Table 3- An overview of some of BPMSs in smart factories  

other services 

and systems  

role, resource, and 

workload balance 

Activiti BPMN2.0 
Java and 

JavaScript 

Ability to 

integrate with 

other services 

and systems  

Changing role, resource, 

and workload balance 

Process verification 

and simulation 

jBPM BPMN2.0 Java 

Distributed 

execution and 

ability to 

integrate with 

other services 

and systems 

Changing role or 

resource  

Process verification 

and simulation; 

Using historical data 

for analysis 

Process 

Maker 
BPMN2.0 

JavaScript 

and PHP 

Ability to 

integrate with 

other services 

and systems 

Changing role, resource, 

and workload balance 

Using historical data 

for analysis through 

events log 

uEngine 

BPM 
XPDL Java 

Ability to 

integrate with 

other services 

and systems 

Business monitoring and 

control 

Using historical data 

for analysis 

YAWL YAWL Java 

Ability to 

integrate with 

other services 

and systems 

Changing role, resource, 

and workload balance 

Process verification 

and simulation; 

Using historical data 

for analysis 

Camunda BPMN2.0 
Java and 

JavaScript 

Ability to 

integrate with 

other services 

and systems 

Changing role, resource, 

and workload balance 

Process verification 

and Using historical 

data for analysis 

References Issue/challenges Proposed solution Results 
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Table 4- New extension elements of the BPMN language 

(adapted from [64]) 
 

[60] 

 

 

Delay in reaction time in terms 

of interaction between users and 

machinery cause low-

performance products 

Presenting an architecture 

to collect data of sensors 

and apply them in BPMS 

using IoT 

Production optimization, 

reducing reaction time to tasks 

execution, and increase tasks 

execution quality 

[61] 

Monitoring the status of running 

processes and reacting to 

conditions that occur during 

runtime 

Proposing an architecture 

by employing  MAPE-K 

(Monitor, Analyze, Plan, 

Execute, and Knowledge) 

control loops for adaptive 

WFMS in smart factories 

Identify failures and resolve 

them autonomously 

[62] 

 

The need to orchestrate devices' 

services to manage unpredictable 

conditions in the manufacturing 

system 

Providing an architecture 

to manage business 

processes based on  Asset 

Administration Shell 

(AAS) 

Orchestration of device 

services by business processes 

and AAS and as a result more 

interoperability between 

manufacturing systems 

[63] 

Using uncertain  processes to 

carry out smart productions in 

smart factories 

Presenting a developed 

uncertain BPMS 

architecture  to manage 

uncertain processes in the 

smart factory 

Orchestration of services 

provided by uncertain business 

processes in the field of smart 

productions 
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Table 5- Features of the log files 

 

 

 

 

Table 6- Selected parameters for the genetic algorithm 

Element Symbol Description 

Actuation Task 

 

Data or commands that are sent to an actuation 

device 

Sensing Task 

 

Data that is read or received by a sensor device 

Mobility 
 

A process, action, or activity performed by a 

mobile device 

Real World Data 

Object 

 

A data object used by an IoT device 

Real World Data 

Store 

 

Storage of data, such as a repository to collect 

sensor data 

IoT Device 
 

An IoT device includes its components, e.g., 

sensor and actuator. 

Event Log Name Description Size on Disk 
Number of 

Cases 

Number of 

Events 

Log1 of the Food 

Production 
Data about the Food Production 

System 
72.8 MB 20135 309036 

Log2 of the ERP Data of an ERP System 4.84 MB 34723 103469 

Log3 of the SCM 
Data of Supply Chains containing 

structured data 
91.1 MB 20652 180519 

Log4 of the SCM 
Data of Supply Chains containing 

unstructured data  
91 MB 3340 469977 
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Table 7- Selected parameters for the heuristic algorithm 

 

 

 

Table 8- Selected parameters for the NSGA-II algorithm 

 

 

 

 

Table 9- Comparison of the NSGA-II algorithm in the process discovery step with other algorithms 
(log1, log2, log3, and log4 are as the algorithm inputs) 

Algorithm Name 
Completeness 

(%) 

Precision (%) 

Alpha 
61.4 79.34 

overall: 70.37 

Genetic 
0.78 0.48 

overall: 0.63 

Heuristic 
25.42 52.99 

overall: 39.20 

Inductive Miner 
85.64 75.51 

overall: 80.57 

NSGA-II (This Paper) 
80.29 100 

overall: 90.14 

 

 

 

 

 

 

 

Population size Generation 
Extra behavior 

punishment 

Mutation 

Probability 
Crossover 

Probability 

10 100 0.025 0.2 0.8 

Long distance 
Length two 

loops 

Loops length 

one 
Dependency 

0.9 0.9 0.9 0.9 

Population size Generation 
Mutation 

Probability 
Crossover 

Probability 

10 100 0.2 0.8 
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Table 10- Validation results of the AdaBoost algorithm in process conformance step 
(log1, log2, log3, and log4 are as the algorithm inputs) 

Event Log Name 
True Positive Rate 

(%) 

False Positive Rate 

(%) 
Accuracy (%) Iteration 

Log1 100 10.94 98.26 64 

Log2 97.6 0 97.2 61 

Log3 99.99 20.8 0.99 65 

Log4 100 20.92 99.08 32 

 

 

Table 11- Results of implementing  the optimization module  

Process ID 

Total Execution 

Time (Executed 

Model) 

Total Execution 

Time (Log File 

Extracted Model) 

Need 

Optimization? 

Optimization 

Result (Executed 

Model) 

P#34 215 198  198 

P#42 155 155 - - 

P#59 94 115  115 
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Figure 1- Workflow management system [40] 
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Figure 2- The proposed BPMS architecture 
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Figure 3- Metamodel of the integration of BPMN 2.0 version and extended version 
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Figure 4- Data analysis method 

 

Figure 5- Description of process model controller 
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Figure 6- The flowchart of the NSGA-II for process model discovery  
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