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Abstract. In many real world applications, the performance of entities with undesirable 

outputs should be assessed while imprecise and vague information is presented. In this study, 

a fully fuzzy data envelopment analysis (FFDEA) approach is propounded to analyze the 

relative efficiency of decision making units (DMUs) in which the acceptance degree of 

decision maker that fuzzy constraints may be breached is incorporated. In order to achieve 

this purpose, the interval expectation of trapezoidal fuzzy numbers and the order relationship 

of trapezoidal fuzzy numbers are employed. Also, after converting the FFDEA model into an 

interval DEA model and then a bi-objective DEA model, parametric examination is applied 

to aggregate objectives. Therefore, input- and output-oriented FFDEA approaches with 

undesirable outputs are provided to estimate the relative efficiency of processes whilst the 

acceptance degree of the violated fuzzy constraints is considered.  A dataset from the existing 

studies is used to clarify the introduced technique and to describe its applicability. 

Keywords: Fuzzy data envelopment analysis, Acceptance degree, Trapezoidal fuzzy number, 

Efficiency, Undesirable outputs. 

 

1. Introduction 

Data envelopment analysis (DEA) is a popular technique used to assess the efficiency of 

decision making units (DMUs) that have multiple input-output measures. Standard DEA 

models treat all performance measures as precise and desirable, but in real-world studies, 

there are often variables that are undesirable and imprecise. Some DEA practitioners have 

investigated the uncertainty and undesirable outputs separately, but there have been few 

examinations that consider entities with both undesirable outputs and imprecise measures. 

Additionally, in certain cases, decision makers may not be able to meet specific fuzzy 

constraints, but they can accept them to a certain extent. Therefore, it is important to 

incorporate the approval degree of the decision maker in fuzzy problems. 

Dong and Wan [1] proposed a trapezoidal fuzzy linear programming problem that integrated 

the acceptance degree of fuzzy constraints violated. They examined fuzzy objective 

constraints, fuzzy technological coefficients and fuzzy resources, whereas decision variables 

were assumed to be certain. Stanojevic et al. [2] extended the methodology of Dong and Wan 

[1] and dealt with a fully fuzzy linear program with approval degree of fuzzy constraints 

dissatisfied. Dong and Wan [3] also provided an approach to compute fuzzy multi-objective 

linear programming problems while considered the acceptance degree of fuzzy constraints 

violated. 
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Some studies such as [4-7] made the reviews of the DEA literature related to vagueness and 

fuzziness. Emrouznejad and Tavana [5] furnished the requisite contextual information 

pertaining to the subject matter at hand. The extant fuzzy DEA models were utilized in [5] to 

develop and articulate six divisions, viz. the tolerance approach, the  -level-based approach, 

the fuzzy ranking technique, the possibility approach, the fuzzy arithmetic, and the fuzzy 

random/Type-2 fuzzy set. Despite the advantages and disadvantages of different existing 

fuzzy DEA methods, there is a deficiency in the inclusion of the acceptance degree of 

decision maker that fuzzy constraints may be breached while according to Dong and Wan [1] 

it is necessary to consider. In the fuzzy DEA literature, it can also be found many extensions 

of fuzzy DEA approaches. Kordrostami et al. [8] analyzed the efficiency of the units in the 

presence of fuzzy and integer measures. The performance of multi-period systems with fuzzy 

measures was also addressed in [9]. Hatami-Marbini et al. [10] propounded fully fuzzy DEA 

models whilst all input-output measures were deemed as desirable ones. Wardana et al. [11] 

rendered an alternative approach, called the fuzzy DEA credibility constrained and RC index, 

to tackle uncertainty. Peykani et al. [12] presented an adjustable DEA methodology to cater 

to the varying needs and preferences of managers across different attitudes, including 

desirable measures. Puri and Yadav [13] presented a fuzzy DEA model based on  -cut 

approach to evaluate the efficiency of DMUs with fuzzy undesirable outputs. Moreover, 

Kordrostami et al. [14] provided a fuzzy expected value approach to estimate the relative 

efficiency of processes when both undesirable and fuzzy measures are presented. Puri and 

Yadav [15] developed the approaches of fully fuzzy DEA (FFDEA) and multi-component 

fully fuzzy DEA to assess the fuzzy technical efficiency with undesirable outputs. 

Ebrahimnejad and Amani [16] introduced a fuzzy DEA approach considering ideal points to 

estimate the fuzzy efficiency values of DMUs with undesirable outputs while performance 

measures and the efficiency variables are only deemed as triangular fuzzy numbers. Nasseri 

et al. [17] provided a fuzzy stochastic DEA approach with undesirable outputs to investigate 

the efficiency of entities with fuzzy and random input-output data. Also, Nasseri and Ahmadi 

Khatir [18] proposed a DEA technique to analyze the performance of two-stage systems with 

undesirable outputs in a fuzzy random environment. Peykani et al. [19] presented a new fuzzy 

network DEA model that utilizes an additive efficiency decomposition approach. This was 

achieved through the application of adjustable possibilistic programming and chance-

constrained programming. Also, Peykani et al. [20] provided a comprehensive literature 

review of fuzzy chance-constrained DEA. Cinaroglu [21] employed a multi-stage fuzzy 

stochastic methodology to assess the efficiency of the Turkish healthcare system. Gholizadeh 

et al. [22] introduced a fuzzy data-driven scenario-based robust DEA technique to forecast 

and optimize the parameters of an electrical discharge machine. Izadikhah and Khoshroo [23] 

presented a modified enhanced Russell approach to measure the crisp efficiency of systems 

with undesirable outputs when there are fuzzy inputs and outputs. Chen et al. [24] proposed 

an integrated the best-worst method and DEA, including trapezoidal interval type-2 fuzzy for 

makeshift hospital selection. Nevertheless, the acceptance degree of decision maker that 

fuzzy constraints may be breached has not been included in the present fully fuzzy DEA 

approaches with undesirable outputs. 

In practice, undesirable outputs can be generated in many real world problems. To confront 

this issue, there are some approaches in the existing literature that take undesirable outputs 

into account, see [25-29] for more information. Kordrostami et al. [30] provided models to 

incorporate the predefined variations of performance measures where undesirable outputs 
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with strong and weak disposability are presented. In a prior study [31], the multi-period 

efficiency of processes with different perspectives of disposability, including strong and 

weak, for undesirable outputs has been investigated. Due to the popularity and acceptance of 

the weak disposable technology as mentioned in [32], the propounded FFDEA models are 

based upon considering weakly disposable undesirable outputs while incorporate the 

acceptance degree of the violated fuzzy constraints. As we know and Table 1 shows, the 

existing fully fuzzy DEA models with undesirable outputs have not incorporated the 

examination of the acceptance degrees of decision maker that fuzzy constraints may be 

dissatisfied. Selecting different acceptance degrees leads to disparate efficiency scores and 

increases the flexibility of decision making. 

 

Table 1. A comparative review of fuzzy DEA 

 

As can be found from Table 1, there is a scarcity of fully fuzzy DEA models with the 

acceptance degree of the violated fuzzy constraints and undesirable outputs. Considering 

fuzzy variables and data is preferable in modeling under uncertainty based on [1, 10, 45] 

while the majority of fuzzy DEA models are non-fully fuzzy approaches. Also, projection 

points have not been investigated in many fully fuzzy DEA approaches although they include 

beneficial information for making fuzzy decisions. Notice that none of existing DEA studies 

has incorporated the acceptance level of expert that the fuzzy constraints may be breached, 

except Chen et al. [24] that partially investigated it in the DEA multiplier form and did not 

addressed undesirable outputs and projection points. However, according to Dong and Wan 

[1, 3], incorporating the acceptance degree of decision maker is essential. Also, as shown in 

Table 1, there is a gap of investigating energy dependency of areas in the fully fuzzy 

environment while undesirable outputs and the acceptance degree of decision maker are 

considered. 

Therefore, this paper focuses on elaborating input- and output-oriented fully fuzzy DEA 

models, containing the acceptance degree of the dissatisfied fuzzy constraints and weakly 

disposable undesirable outputs. All variables that are the efficiency variable, input-output 

measures and intensity variables are deemed as trapezoidal fuzzy numbers. To undertake this 

issue, the interval expectation of trapezoidal fuzzy numbers is used to gain the order 

relationship and they are employed to transform FFDEA models into the interval DEA 

models. Then interval DEA models are converted into bi-objective DEA models using the 

order relation between intervals and the existing approach to address interval objective 

programs. Afterwards, the bi-objective DEA models are substituted with parametric linear 

DEA models to unify objective functions. Overall, the contribution of this research is 

fourfold: 

i. Proposing new envelopment fully fuzzy DEA models with the acceptance degree of 

the dissatisfied fuzzy constraints, 

ii. Analyzing the fuzzy efficiency values using input- and output-oriented FFDEA 

approaches with undesirable outputs where the acceptance degree of the violated 

fuzzy constraints is considered, 
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iii. Estimating fuzzy input and output targets to improve the performance of DMUs under 

uncertainty, 

iv. Applying a dataset from the literature to explain the introduced approach and to 

compare with some existing DEA approaches. 

The rest of this paper is designed as follows. Some preliminaries and related concepts are 

provided in Section 2 that they are essential to obtain the profound insight of the proposed 

technique. Fully fuzzy DEA models considering the acceptance degrees of fuzzy constraints 

violated are introduced in Section 3. An application is given in Section 4 to clarify and show 

the suitability of the approach presented in this study. In Section 5, conclusions and some 

further remarks are drawn. 

2. Preliminaries 

In this section, firstly some basic notions and expressions about fuzzy numbers, interval order 

relation and interval objective problems are reviewed that have been derived from [1, 46]. 

Then modeling in the presence of weakly disposable undesirable outputs is discussed. 

2.1. Concepts related to fuzzy numbers, interval order relation and interval objective 

problems 

Fuzzy numbers are normal convex fuzzy subsets of the set of real numbers that their 

membership functions are piecewise continuous. The fuzzy subset A  of a universal set Y  is 

characterized by the membership function : [0,1]
A

Y  . 

One of the most popular fuzzy numbers is the trapezoidal fuzzy number that is defined in the 

following way: 

A trapezoidal fuzzy number A is described with the value point 1 2 3 4( , , , )a a a a and the 

following the membership function: 

1 2 1 1 2

2 3

4 4 3 3 4

( ) / ( ), ,

1, ,
( )

( ) / ( ), ,

0, .

A

x a a a a x a

a x a
x

a x a a a x a

otherwise



   


 
 

   



                                      (1) 

The interval expectation of the trapezoidal fuzzy number A  denoted by ( )E A is defined as  

1 2 3 4

1 1
( ) [ ( ), ( )]

2 2
E A a a a a   . Also, by considering A and B as trapezoidal fuzzy 

numbers, we have 1 2 1 2( ) ( ) ( )E A B E A E B      , in which 1 and 2  are real values. 

According to [1, 47], the fuzzy partial order relation for intervals can be described as follows: 

Suppose [ , ]b b b and [ , ]c c c are intervals, that b b     , c c    . b c  

is a fuzzy set with the following membership function: 
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1, ,

1 , ; ( ) 0,
( )

( ) / (2( ( ) ( ))), ; ( ) ( ),

0.5, ( ) ( ); ,

b c

b c b c r b
b c

c b r c r b c b b c r c r b

r b r c b c





 


   
  

     


 

           (2) 

in which 1  is a fuzzy number less than one that means that the interval b is weakly not more 

than the interval c . ( )r b shows radius of the interval b  that is equal to ( ) ( ) / 2r b b b  . 

Similarly, ( )r c can be described. The membership function for b c can be analogously 

written that has been also represented in [1]. 

Interval inequality relationships can be transformed into the satisfactory crisp equivalent 

forms as presented in [1, 48]. To illustrate in more details, assume [0,1] shows the 

acceptance degree of the interval inequality constraint that may be dissatisfied. Therefore, 

bx c and ( )bx c   is a satisfactory crisp equal structure for relation bx c . In the 

same way, bx c and ( )bx c   is an acceptable crisp equal structure for relation bx c

. 

Considering A and B as trapezoidal fuzzy numbers, the order relation between them is 

stated in the following: 

i. A B iff ( ) ( )E A E B ;  ii. A B iff ( ) ( )E A E B ;  iii. A B iff ( ) ( )E A E B .  

Also, as stated in [1, 49], the below maximization and minimization problems with the 

interval functions 

1

1

{ | ( ,..., ) },
m

T

i i m

i

Max c x x x X


                                                  (3) 

and 

    1

1

{ | ( ,..., ) },
m

T

i i m

i

Min c x x x X


                                                   (4) 

in which [ , ]i i ic c c ( 1,..., )i m are intervals, can be substituted with the following bi-

objective problems, respectively. 

1

1 1

1
{( , ( ) ) | ( ,..., ) },

2

m m
T

i i i i i m

i i

Max c x c c x x x X
 

                       (5) 

and 

1

1 1

1
{( , ( ) ) | ( ,..., ) }.

2

m m
T

i i i i i m

i i

Min c x c c x x x X
 

                       (6) 

X is the feasible set of 1( ,..., )mx x . 
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2.2. Crisp DEA model with weakly disposable undesirable outputs 

Suppose there are n DMUs, denoted by ( 1,..., )jDMU j n , that their performance is expected 

to be evaluated. Also, each DMU uses m inputs ( 1,..., )ijx i m , produces s desirable outputs 

( 1,..., )rjy r s and emits K undesirable outputs ( 1,..., )kjz k K . Following Färe et al. [29], 

we have the below definition and model to deal with undesirable outputs.   

Definition 1. Weak disposability of outputs signifies that if the output vector ( , )v y z can be 

generated, ( , );0 1y z     can also be generated while the input vector x is specified. 

Färe et al. [29] also presented the following technology to address weakly disposable 

undesirable outputs: 

( ) {( , ) | , , , 0}.T x y z x X z Z y Y         

Accordingly, the below precise input-oriented DEA model under the constant returns to scale 

assumption can be formulated to tackle weakly disposable undesirable outputs: 

*

1

1

1

. . , 1,..., ,

, 1,..., ,

, 1,..., ,

0, 1,2,..., ,

n

j ij io

j

n

j rj ro

j

n

j kj ko

j

j

Min

s t x x i m

y y r s

z z k K

j n

 

 















 

 

 

 







                                        (7) 

that j is the intensity variable and *  is the efficiency value. 

Because of the presence of imprecise input-output data in many situations, FFDEA 

approaches considering the acceptance degree of decision maker to violate fuzzy constraints 

are rendered in the next section to address the performance of entities with weakly disposable 

undesirable outputs. 

3. A FFDEA approach with the acceptance degree of the violated fuzzy constraints 

Assuming the presence of n DMUs ( ; 1,...,jDMU j n ), each consists of m  inputs denoted 

by trapezoidal fuzzy values 1 2 3 4( , , , );( 1,..., )ij ij ij ij ijx x x x x i m  , s fuzzy desirable outputs 

1 2 3 4( , , , );rj rj rj rj rjy y y y y ( 1,..., )r s and K  fuzzy undesirable outputs 1 2 3 4( , , , );kj kj kj kj kjz z z z z  

( 1,..., )k K . Also, the maximum reduction of inputs is shown by the trapezoidal fuzzy 

number 1 2 3 4( , , , )     and 1 2 3 4( , , , )j j j j j     is the fuzzy intensity weights. Actually, 

all factors are deemed as trapezoidal fuzzy numbers. By regarding the constant returns to 

scale assumption and the weak disposability of undesirable outputs, the fully fuzzy DEA 

model (8) is provided to analyze the efficiency of DMUs.  
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As can be seen, the FFDEA model (8) is based on input orientation and the maximum input 

reduction. 

  

1

1

1

. . , 1,..., ,

, 1,..., ,

, 1,..., ,

0, 1,2,..., .

n

j ij io

j

n

j rj ro

j

n

j kj ko

j

j

Min

s t x x i m

y y r s

z z k K

j n



 













 

 

 

 







                                         (8) 

( , , )io ro kox y z in model (8) show components of the unit under evaluation, i.e. oDMU . Due to 

statements revealed in the prior section, model (8) is equal to the below interval problem. To 

illustrate in more details, trapezoidal fuzzy expressions
1

n

j ij

j

x


 , 
1

n

j rj

j

y


 , 
1

n

j kj

j

z


 ,  , iox , 

roy and koz  are substituted with their interval expectations. 

1

1

1

( )

. . ( ) ( ), 1,..., ,

( ) ( ) , 1,..., ,

( ) ( ), 1,..., ,

0, 1,2,..., .

n

j ij io

j

n

j rj ro

j

n

j kj ko

j

j

Min E

s t E x E x i m

E y E y r s

E z E z k K

j n



 













 

 

 

 







                            (9) 

In other words, according to the interval expectation definition and arithmetic operations on 

fuzzy numbers, we have: 

1 2 3 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1

1 1 2 2 3 3 4 4 1

1 1

1 1
[ ( ), ( )]
2 2

1 1 1 1
. . ( ), ( ) ( ), ( ) , 1,..., ,

2 2 2 2

1 1 1
( ), ( ) (

2 2 2

n n

j ij j ij j ij j ij io io io io

j j

n n

j rj j rj j rj j rj ro

j j

Min

s t x x x x x x x x i m

y y y y y

   

       

   

 

 

 

   
        

  

 
    

 

 

  2 3 4

1 1 2 2 3 3 4 4 1 2 3 4

1 1

1 2 3 4 1 2 3 4 4

1
), ( ) , 1,..., ,

2

1 1 1 1
( ), ( ) ( ), ( ) , 1,..., ,

2 2 2 2

0 , 1,2,..., , , 1, 0.

ro ro ro

n n

j kj j kj j kj j kj ko ko ko ko

j j

j j j j

y y y r s

z z z z z z z z k K

j n

   

          
 

 
  

 

   
        

  
          

 

 (10) 

 

Model (10) can be replaced by the following bi-objective DEA model using the order 

relations and details provided in [1, 2] that were partially explained in the preceding section. 
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3 4

1 2 3 4

3 3 4 4 3 3 4 4

1

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1

1 1

1

1
( )

2
1

( )
4

. . ( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

(

n

j ij j ij io io

j

n n

i j ij j ij i j ij j ij i io io i io io

j j

n

j rj

j

Min

Min

s t x x x x i m

x x x x x x x x i m

y

 

   

   

           





 





  

   

         



 

 2 2 1 2

3 3 4 4 1 1 2 2 3 4 1 2

1 1

3 3 4 4 3 4

1

1 1 2 2

1

) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) (

j rj ro ro

n n

r j rj j rj r j rj j rj r ro ro r ro ro

j j

n

j kj j kj ko ko

j

n

k j kj j kj

j

y y y r s

y y y y y y y y r s

z z z z k K

z z



       

 

  

 





   

         

   

 

 



 3 3 4 4 1 2 3 4

1

1 1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4 1 2

1 1

) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ),

n

k j kj j kj k ko ko k ko ko

j

n

j kj j kj ko ko

j

n n

k j kj j kj k j kj j kj k ko ko k ko ko

j j

z z z z z z k K

z z z z k K

z z z z z z z z

    

 

       





 

       

   

        





 

1 2 3 4 1 2 3 4 4

1,..., ,

0 , 1, 2,..., , , 1, 0,j j j j

k K

j n          



          

 (11) 

in which [0,1), ,i i   [0,1],r r   and [0,1],k k   and they show that acceptance degrees 

of decision maker for violating interval inequality constraints. Parameters within [0,0.5),

(0.5,1]  and 0.5  show the risk aversion of decision maker, the risk liking of decision maker 

and risk neutrality of decision maker, respectively. We consider the different acceptance 

degrees for constraints in modeling. Also, the first objective of model (11) is the right side of 

the objective interval of model (10) while the middle point of the objective interval of model 

(10) is presented as the second objective of model (11). 

To solve model (11), we use the weighted sum method because of its simplicity and 

popularity. To more illustrate, we employ an additional parameter [0,1] to compute bi-

objective problem (11) and to integrate the objectives by following [2]. Actually,  denotes a 

degree of importance to the objectives that is determined by managers and decision makers. 
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*

3 4 1 2 3 4

3 3 4 4 3 3 4 4

1

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1

1

1 1
( ) (1 ) ( )

2 4

. . ( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

(

I

n

j ij j ij io io

j

n n

i j ij j ij i j ij j ij i io io i io io

j j

j

j

E Min

s t x x x x i m

x x x x x x x x i m

       

   

           





 

      

   

         



 

1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4 1 2

1 1

3 3 4 4 3 4

1

1 1
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(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,
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rj j rj ro ro

n n

r j rj j rj r j rj j rj r ro ro r ro ro
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j
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k j kj
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y y y y r s

y y y y y y y y r s

z z z z k K
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       

 

 



 





   

         

   





 



 2 2 3 3 4 4 1 2 3 4

1

1 1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4

1 1

) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) (

n

j kj k j kj j kj k ko ko k ko ko

j

n

j kj j kj ko ko

j

n n

k j kj j kj k j kj j kj k ko ko k ko
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z z z z z z z k K

z z z z k K

z z z z z z z

     

 

       





 
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   

       





  1 2

1 2 3 4 1 2 3 4 4

), 1,..., ,

0 , 1,2,..., , , 1, 0.

ko

j j j j

z k K

j n          

 

          

 (12) 

Definition 2. The unit under consideration is called efficient in model (12) if and only if 
* 1IE   for given , ,i r k   and  . Otherwise, it is inefficient. 

Also, the fuzzy efficiency can be appended as the optimal value 
* * * *

1 2 3 4( , , , )    resulted from 

model (12) 

Theorem 1. The optimal value
* * * * * * * *

1 2 3 4 1 2 3 4( , , , , , , , )j j j j        obtained from solving model 

(12) is a weak Pareto solution of model (11). 

Proof. For specific values , ,i r k   and  , assume 
* * * * * * * *

1 2 3 4 1 2 3 4( , , , , , , , )j j j j         is the 

optimal solution of model (12) but not the weak Pareto solution of model (11). Accordingly, 

there is 1 2 3 4 1 2 3 4( , , , , , , , )j j j j               in model (11) that 
3 4 1 2 3 4

1 1
( ( ), ( ))
2 4
             

is less than   * * * * * *

3 4 1 2 3 4

1 1
( ( ), ( ))
2 4
         . As can be found from models (11) and (12), 

their constraints are similar. Therefore, 1 2 3 4 1 2 3 4( , , , , , , , )j j j j               is a feasible solution 

for model (12) that entails a contradiction due to the following statement: 

* * * * * *

3 4 1 2 3 4 3 4 1 2 3 4

1 1 1 1
( ), (1 ) ( )) ( ), (1 ) ( ).

2 4 2 4
                                  

 Actually, it indicates 
* * * * * * * *

1 2 3 4 1 2 3 4( , , , , , , , )j j j j        is not the optimal solution of model (12). 

Consequently, the optimal value achieved from model (12) is a weak Pareto solution of 

model (11).                                                                                                                              

In the next section, the aforementioned approach is rewritten to analyze the performance in 

output orientation. 
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3.1 Output-oriented FFDEA model with the acceptance degree of the violated fuzzy 

constraints 

By taking into consideration notations and symbols explained before and contemplating the 

trapezoidal fuzzy variable 1 2 3 4( , , , )      as the maximum expansion of desirable outputs, 

the next output-oriented FFDEA model with acceptance degrees of the violated fuzzy 

constraints is introduced: 

1

1

1

. . , 1,..., ,

, 1,..., ,

, 1,..., ,

0, 1,2,..., .

n

j ij io

j

n

j rj ro

j

n

j kj ko

j

j

Max

s t x x i m

y y r s

z z k K

j n





 











 

 

 

 







                                            (13) 

Model (13) equals to the interval DEA model (14) owing to before-mentioned concepts. 

1

1

1

( )

. . ( ) ( ), 1,..., ,

( ) ( ) , 1,..., ,

( ) ( ), 1,..., ,

0, 1,2,..., .

n

j ij io

j

n

j rj ro

j

n

j kj ko

j

j

Max E

s t E x E x i m

E y E y r s

E z E z k K

j n





 











 

 

 

 







                          (14) 

The equivalent form of model (14) is written as follows: 

1 2 3 4

1 1 2 2 3 3 4 4 1 2 3 4

1 1

1 1 2 2 3 3 4 4 1 1 2 2

1 1

1 1
[ ( ), ( )]
2 2

1 1 1 1
. . ( ), ( ) ( ), ( ) , 1,..., ,

2 2 2 2

1 1 1
( ), ( ) (

2 2 2

n n

j ij j ij j ij j ij io io io io

j j

n n

j rj j rj j rj j rj ro ro

j j

Max

s t x x x x x x x x i m

y y y y y y

   

   

     

 

 

 

   
        

  

 
    

 

 

  3 3 4 4

1 1 2 2 3 3 4 4 1 2 3 4

1 1

1 2 3 4 1 2 3 4 1

1
), ( ) , 1,..., ,

2

1 1 1 1
( ), ( ) ( ), ( ) , 1,..., ,

2 2 2 2

0 , 1,2,..., , , 1.

ro ro

n n

j kj j kj j kj j kj ko ko ko ko

j j

j j j j

y y r s

z z z z z z z z k K

j n

 

   

        
 

 
  

 

   
        

  
        

 

(15) 

Now, by using the order relationships and definitions briefly explained in this study that have 

also been presented in [1, 2], the interval DEA model (15) is substituted with the bi-objective 

DEA model (16). 
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1 2

1 2 3 4

3 3 4 4 3 4

1

1 1 2 2 3 3 4 4 1 2 3 4

1 1

1 1 2 2

1

1
( )

2
1

( )
4

. . ( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

( ) (

n

j ij j ij io io

j

n n

i j ij j ij i j ij j ij i io io i io io

j j

n

j rj j rj

j

Max

Max

s t x x x x i m

x x x x x x x x i m

y y

 

   

 

       

  



 





  

   

         

 



 

 1 1 2 2

3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2

1 1

3 3 4 4 3 4

1

1 1 2 2

1

), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) (

ro ro

n n

r j rj j rj r j rj j rj r ro ro r ro ro

j j

n

j kj j kj ko ko

j

n

k j kj j kj

j

y y r s

y y y y y y y y r s

z z z z k K

z z



           

 

  

 





 

         

   

 

 



 3 3 4 4 1 2 3 4

1

1 1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4 1 2

1 1

) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ),

n

k j kj j kj k ko ko k ko ko

j

n

j kj j kj ko ko

j

n n

k j kj j kj k j kj j kj k ko ko k ko ko

j j

z z z z z z k K

z z z z k K

z z z z z z z z

    

 

       





 

       

   

        





 

1 2 3 4 1 2 3 4 1

1,..., ,

0 , 1, 2,..., , , 1.j j j j

k K

j n        



        

 (16) 

Similar to input-oriented FFDEA model, [0,1], ,i i   [0,1),r r   and [0,1],k k   denote 

the acceptance degrees of constraints violated by the decision maker. 

Model (16) can also be transformed into the following parametric linear DEA model by 

aggregation two objectives and using the parameter [0,1]  in which   shows the 

weighting factor of objectives. 

*
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 (17) 
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In this case, the crisp efficiency is defined as 
*

*

1
oE


 . 

Definition 3. The entity under investigation in model (17) is called efficient if and only if 
* 1oE   for given , ,i r k   and  . Otherwise, it is inefficient. 

Moreover, the fuzzy efficiency can be defined as the optimal value 
* * * *

4 3 2 1

1 1 1 1
( , , , )
   

achieved from model (17). 

Theorem 2. The optimal value
* * * * * * * *

1 2 3 4 1 2 3 4( , , , , , , , )j j j j        obtained from solving model 

(17) is a weak Pareto solution of model (16). 

Proof. The same vein of Theorem 1 can be proved.                                                                 

It is clear that by changing , ,i r k   and , on the basis of results, managers can be better 

apprised about the essence of the performance.   

Furthermore, the projection points can be obtained in models (12) and (17) as follows: 

* * * *

1 2 3 4 1 1 2 2 3 3 4 4

1 1 1 1

* * * *

1 2 3 4 1 1 2 2 3 3 4 4

1 1 1 1

* *

1 2 3 4 1 1 2 2

1 1

( , , , ) ( , , , ),

( , , , ) ( , , , ),

( , , , ) ( , ,

n n n n

i i i i j ij j ij j ij j ij

j j j j

n n n n

r r r r j rj j rj j rj j rj

j j j j

n n

k k k k j kj j kj

j j

x x x x x x x x

y y y y y y y y

z z z z z z

   

   

  

   

   

 







   

   

  * *

3 3 4 4

1 1

, ),
n n

j kj j kj

j j

z z
 

 

                     (18) 

in which 
* * * *

1 2 3 4( , , , )j j j j    show the optimal values obtained from models (12) and (17). 

Notice that fuzzy constraints are not always satisfied because of their uncertainty nature. But 

decision makers can admit them among some degree of acceptance. Therefore, parameters 

,i r  and k are provided to address this issue. Accordingly, incorporating the acceptance 

degrees of breached fuzzy constraints in fuzzy decision-making problems such as fuzzy DEA 

models is rational and essential. A graphical design of the procedure is shown in Figure 1. 

 

Fig.1. A graphical design of the approach 

 

Note that the presented models can also be extended under the variable returns to scale (VRS) 

technology as illustrated in Appendix. 

In the following, an example is provided to clarify the methods proposed in this research. 

4. An application 

In this section, an application dealt with in [50] is exposed to demonstrate the efficacy of the 

provided approach. Actually, the performance of 23 countries from the energy dependency 
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case is addressed while all data, except substituted fuel that considered as real values, are 

deemed as triangular fuzzy numbers. As shown in Table 2, it has been considered one input, 

quantity of energy 1( )x , three desirable outputs, gross electricity 1( )y , average annual 

emissions 2( )y  and substituted fuel 3( )y and one undesirable output, 2CO equivalent 1( )z . 

 

Table 2. Dataset on energy dependency 

 

To estimate the relative efficiency of these countries, model (12) is computed for different 

situations. Columns 2-8 of Table 3 show the findings for 
1

2
i r k      (decision maker is 

the risk neutral) and various rates of  denoted as follows: 

-Case 1: 
1 1 1

, , , 0
2 2 2

i r k      
 

-Case 2: 
1 1 1 1

, , ,
2 2 2 10

i r k      
 

-Case 3: 
1 1 1 3

, , ,
2 2 2 10

i r k      
 

-Case 4: 
1 1 1 1

, , ,
2 2 2 2

i r k      
 

-Case 5: 
1 1 1 7

, , ,
2 2 2 10

i r k        

-Case 6: 
1 1 1 9

, , ,
2 2 2 10

i r k      
 

-Case 7: 
1 1 1

, , , 1.
2 2 2

i r k      
 

 
 

Table 3. Results for different values   

 

As can be seen, by increasing the value  , the efficiency scores raise or are without change. 

For instance, these changes are depicted in Figure 2 specifically for Lithuania. As evidenced 

in this country, more values  result more efficiency scores. 

At this stage, we assess the efficiency scores using the provided approach and taking 
1

2
r k      and different values for i  as follows:

 

-Case 8: 
1 1 1

0, , ,
2 2 2

i r k      
 

-Case 9: 
1 1 1 1

, , ,
10 2 2 2

i r k      
 

-Case 10: 
2 1 1 1

, , ,
10 2 2 2

i r k      
 

-Case 11: 
3 1 1 1

, , ,
10 2 2 2

i r k      
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-Case 12: 
1 1 1 1

, , ,
2 2 2 2

i r k      
 

-Case 13: 
7 1 1 1

, , ,
10 2 2 2

i r k        

-Case 14: 
8 1 1 1

, , ,
10 2 2 2

i r k      
 

-Case 15: 
9 1 1 1

, , , .
10 2 2 2

i r k      
 

Outcomes are displayed in Table 4. As can be found from Table 4, the performance reduces 

or is without variation by expanding i . For more clarity, the efficiency variations for five 

countries as samples are depicted in Figure 3. Actually, by increasing the risk level ,i  the 

efficiency scores reduce or will be without change. Therefore, the efficiency findings may 

change with the level variation of parameters. As presented in Tables 3 and 4, for different 

levels  and i , ten countries, Austria, Estonia, Germany, Greece, Italy, Latvia, Poland, 

Slovakia, Sweden and United Kingdom were determined as efficient by the score one. Also, 

Belgium gained the least efficiency score in all cases investigated. It is evident that by using 

the designed approach, experts and managers can attain the substantial and flexible results in 

order to decision-making to enhance the performance.  
 

 
 

Fig. 2. Efficiency scores for Lithuania 

 

Expressions (18) are also applied to estimate the projection points of fuzzy input and output 

data. Results are revealed in Table 5 for
1 1 1

, ,
2 2 2

i r k     and
1

2
  . As can be seen the 

projection points of efficient countries are equal to themselves, but variations are visible in 

input-output values for inefficient countries. For instance, consider Spain in which its input 

changes from (3.230, 3.260, 3.356) into (3.102, 3.137, 3.188). It should be mentioned that 

there are also some changes for other inefficient countries that can be seen by comparing two 

Tables 2 and 5. 

 

Table 4. Results for different values   

 

 
 

Fig. 3. Efficiency scores for five sample countries at different levels i  
 

 

In this stage, model (7) is computed for midpoints of factors presented in Table 2 in order to 

compare the consequences gained from model (12) with the existing models. Achievements 

appear in the last column of Table 3. As shown, five countries, Estonia, Germany, Latvia, 

Poland and Sweden, are identified as efficient in model (7) whilst 10 countries were 

identified as efficient in the proposed method. Moreover, there are differences between the 

efficiency scores found for inefficient countries. Certainly, by using the proposed approach, 

managers will be more informed about the performance of countries and its changes when 

there are uncertainty in data and fuzzy constraint violations accepted with some degrees.  
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For investigation the performance of countries from the aspect of maximum expansion of the 

desirable outputs, model (17) is computed. Columns 9 and 10 of Table 3 show findings for 

two cases, 
1 1 1

, , , 0
2 2 2

i r k       and 
1 1 1 9

, , ,
2 2 2 10

i r k       . Similar to results 

of model (12), 10 countries are efficient in this case and Belgium is the most inefficient 

country. However, there are dissimilarities in efficiency values specified by cases and 

models. 

 
 

Table 5. Projection points of input-output measures 

 

For further investigation, the consequences obtained from the approaches presented in [50, 

51] are given in Table 6. Wang and Chen [51] provided the fuzzy expected value approach to 

analyze the efficiency of entities from different aspects when fuzzy inputs-outputs measures 

are presented. Ghasemi et al. [50] applied the expected value approach in generalized DEA 

model to integrate three approaches, including CCR (Charnes, Cooper and Rhodes), BCC 

(Banker, Charnes and Cooper) and FDH (Free Disposal Hull) under uncertainty. 

 

Table 6. The efficiency values obtained from fuzzy approaches provided in [50, 51] 

 

As can be seen in Table 6, three countries, including Germany, Latvia and Sweden were 

determined as efficient using the approach proposed by Wang and Chen [51] from optimistic 

point of view and also Ghasemi et al.’s approach [50]. These countries are also ascertained as 

efficient applying the introduced approaches of this study in all cases considered. 

Nevertheless, disparities can be seen among the efficiency scores obtained from approaches 

provided in [50, 51] with the introduced model under the investigated cases. It should be 

noted in models presented in [50, 51], undesirable outputs were not included and 2CO

equivalent was treated as an input. Also, projection points were not obtained. However, 

weakly disposable undesirable outputs have been incorporated in the presented models and 

fuzzy targets are achieved using the proposed models. Furthermore, in this research, the 

acceptance degree of the violated fuzzy constraints has been considered that leads to more 

flexibility.  

Note that in this example, the findings of both models (12) and (17) have been given to more 

clarify and demonstrate the approaches. Nevertheless, decision makers can choice input- or 

output-oriented FFDEA models due to their ability to control the input and output measures 

and their purposes. 

Also, it is apparent that in comparison with the performance analysis of DMUs taking precise 

data into account and also utilizing some existing fuzzy DEA approaches, the results of our 

proposed approach are more robust and rational when imprecise data and the approval degree 

of the contrary fuzzy constraints are detected.  

Actually, the evaluation of organizational performance has long been a pivotal area of focus 

for managerial professionals. The rationale behind this pertains to identifying DMUs that 

exhibit desirable performance as a standard for inefficient DMUs. Furthermore, estimating 
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targets for individual entities bears significant importance. DEA is an indisputably potent and 

efficacious methodology that can be applied for performance evaluation, prioritization, and 

comparison in a diverse range of scenarios. It is important to acknowledge that a number of 

real-world issues involve uncertain data and undesirable measures. Therefore, addressing the 

fuzzy performance and fuzzy targets of entities with undesirable outputs in a fuzzy 

environment is essential to obtain rational consequences. Also, in accordance with Dong and 

Wan [1], the incorporation of the decision maker's acceptance level regarding the potential 

violation of fuzzy constraints is a crucial aspect to contemplate. Accordingly, the present 

research suggests fully fuzzy DEA models in the envelopment form to analyze the 

performance of entities with fuzzy data and undesirable outputs while the decision maker's 

acceptance level has been included. Fuzzy targets related to inputs, desirable outputs and 

undesirable outputs are, moreover, estimated. To illustrate more, all data and variables were 

considered as fuzzy measures in the proposed technique and the weak disposability 

assumption was deemed for undesirable outputs. The present investigation has yielded a 

novel fully fuzzy DEA approach which exhibits the ability to be employed for all categories 

of decision makers and managers. Based on the application of the suggested framework in the 

preceding section's illustrative analysis, noteworthy outcomes can be discerned, which could 

offer useful insights for organizational decision-makers. As shown in the previous section, 

the proposed approach can be used to assess the energy efficiency of countries. By increasing 

the risk level, the efficiency values decreased or were without change. The variability in 

levels of parameters significantly impacted the efficiency outcomes. Furthermore, this 

methodology has the potential to be implemented in various applications where data is 

characterized by ambiguity and vagueness, and weakly disposable undesirable outputs are 

presented. Furthermore, managers will have the capacity to acquire pertinent information of 

fuzzy target points for making better decisions.  

5. Conclusions 

Due to the existence of imprecise information in many real world situations, a fully fuzzy 

DEA technique incorporating the acceptance degree of the violated fuzzy constraints was 

proposed in this paper to estimate the efficiency of entities. Weakly disposable undesirable 

outputs were taken into account owing to the presence of them in many real applications. 

Actually, input- and output-oriented methods were provided to analyze the performance when 

the acceptance degree of the violated fuzzy constraints is included. The planned FFDEA 

approach was transformed into the parametric linear DEA problem using the interval 

expectation of trapezoidal fuzzy numbers and the order relationship of trapezoidal fuzzy 

numbers. An example was also applied to clarify and demonstrate the utility of the disclosed 

plan in this study.  

The present investigation is subject to several limitations which restrict its scope and 

generalizability. The outcomes of the models are contingent upon the selection of 

performance measures. Consequently, an alternative collection of outcomes and evaluations 

may be produced by utilizing a distinct array of indicators. The small number of DMUs is 

another limitation of this research. As alterations occur in the number of DMUs, there is a 

consequential modification in the corresponding levels of performance and targets. Therefore, 

it follows that an augmentation in the number of DMUs may potentially yield divergent 

outcomes and analyses. Actually, the energy dependency consideration of more countries 

with more indicators is essential to address. 
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This research renders a series of ideas to appraise the fuzzy energy efficiency of countries, 

encompassing the optimization of models, the definition of fuzzy targets, and the all-

embracing evaluation. These concepts have the potential for broad applicability areas. The 

results show that the efficiency values might change when parameters, which are the weights 

of the objectives and acceptance degrees of violated fuzzy constraints, alter. This study is 

among primary works to analyze the relative efficiency of firms in a fully fuzzy environment 

that includes the acceptance degree of decision makers to violate the fuzzy constraints. It is 

clear that the acceptance degree of the decision maker can evince the preference of the 

manager and the risk standpoint and by incorporating it; the findings of the performance 

assessment more correspond with reality. The models proposed in this research were radial; 

therefore, they can be extended to non-radial and non-oriented fuzzy DEA models. An 

alternative interesting topic for future study is performance analysis of processes with fuzzy 

data in multiple periods of time and considering the acceptance degree of the violated fuzzy 

constraints. Also, the extension of the suggested approach to assess the efficiency of multi-

stage systems can be undertaken as further research.  

Appendix A. 

To reformulate model (7) under the VRS, 
1

1
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j
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 is added to it. Also, the FFDEA model (8) 

is redefined as follows: 
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In which 1 (1,1,1,1) . Furthermore, model (A.1) is equal to the subsequent interval problem: 
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                            (A.2) 

Also, model (10) can be substituted with the following model under the VRS according to the 

interval expectation definition and arithmetic operations on fuzzy numbers: 
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Similarly, model (A.3) can be replaced by the following bi-objective DEA model:  
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(A.4) 

That [0,1]  indicates the acceptance degrees of decision maker for violating interval 

inequality constraints. Its interpretation is similar to the aforementioned parameters, i.e. 

within [0,0.5), (0.5,1]  and 0.5  denote the risk aversion of expert, the risk liking of expert and 

risk neutrality of expert, individually.  

In the same way, an additional parameter [0,1]  is used to compute bi-objective problem 

(A.4) and to integrate the objectives as follows: 



 
 

19 
 

*

3 4 1 2 3 4

3 3 4 4 3 3 4 4

1

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1

1

1 1
( ) (1 ) ( )

2 4

. . ( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

(

II

n

j ij j ij io io

j

n n

i j ij j ij i j ij j ij i io io i io io

j j

j

E Min

s t x x x x i m

x x x x x x x x i m

       

   

           





 

      

   

         



 

1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4 1 2

1 1

3 3 4 4 3 4

1

1

1

) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) (

n

rj j rj ro ro

j

n n

r j rj j rj r j rj j rj r ro ro r ro ro

j j

n

j kj j kj ko ko

j

n

k j kj

j

y y y y r s

y y y y y y y y r s

z z z z k K

z



       

 

 



 





   

         

   





 



 1 2 2 3 3 4 4 1 2 3 4

1

1 1 2 2 1 2

1

3 3 4 4 1 1 2 2 3 4

1 1

) ( ) (1 )( ) ( ), 1,..., ,

( ) ( ), 1,..., ,

(1 ) ( ) ( ) (1 )( ) (

n

j kj k j kj j kj k ko ko k ko ko

j

n

j kj j kj ko ko

j

n n

k j kj j kj k j kj j kj k ko ko k k

j j

z z z z z z z k K

z z z z k K

z z z z z z z

     

 

       





 

        

   

       





  1 2

3 4

1

1 2 3 4

1 1

1 2

1

3 4 1 2

1 1

1 2 3 4 1 2 3 4 4

), 1,..., ,

( ) 2,

(1 ) ( ) ( ) 2,

( ) 2,

(1 ) ( ) ( ) 2,

0 , 1, 2,..., , , 1, 0.

o ko

n

j j

j

n n

j j j j

j j

n

j j

j

n n

j j j j

j j

j j j j

z k K

j n

 

     

 

     

          



 



 

 

 

    

 

    

          



 



 

 (A.5) 

Definition 4. The unit under consideration is called efficient in model (A.5) if and only if 
* 1IIE   for given , ,i r k   ,  and  . Otherwise, it is inefficient. 

Furthermore, the fuzzy efficiency can be defined as the optimal value 
* * * *

1 2 3 4( , , , )    obtained 

from model (A.5). 

Theorem 3. The optimal value
* * * * * * * *

1 2 3 4 1 2 3 4( , , , , , , , )j j j j        obtained from solving model 

(A.5) is a weak Pareto solution of model (A.4). 

Proof. Similar to Theorem 1, it can be conveniently proved.                                                 

Notice that model (A.5) is input-oriented FFDEA under VRS with the acceptance degree of 

the violated fuzzy constraints. Analogously, under VRS, the output-oriented FFDEA model 

with the acceptance degree of the violated fuzzy constraints can be provided by extending 

models (13)-(17). 
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Table 1. A comparative review of fuzzy DEA 

Study 
Undesirable 

outputs 

Determining 

projection 

points 

Fully 

fuzzy 

DEA 

ADDM 
Envelopment 

form 

Application 

Area 

Puri and Yadav 

[13] 
Y N N N N 

Banking 

sector 

Puri and Yadav 

[33] 
Y N Y N N 

- 

Wu et al. [34] Y N N N Y 
Thermal 

power firms  

Kordrostami et al. 

[14] 
Y N N N N 

Banking 

sector 

Khalili-Damghani 

et al. [35] 
Y N N N Y 

Emerging 

markets for 

international 

banking 

Ignatius et al. [36] Y N N N N 

Energy 

dependency 

case of 

European 

union 

member 

countries 

Arya and Yadav 

[37] 
N N Y N N 

Health sector 

Izadikhah and 

Khoshroo [23] 
Y Y N N Y 

Barley 

production 

farms 

Hatami-Marbini et 

al. [10] 
N Y Y N Y 

Suppliers of 

raw materials 

Zhou et al. [38] Y N N N Y 

Sustainable 

supply 

chains 

Heydari et al. [39] N N Y N Y 
Airline 

industry 

Arana-Jiménez et 

al. [40] 
N Y Y N Y 

Suppliers of 

raw materials 

Ren et al. [41] Y Y N N Y 
Pallet rental 

industry 

Mozaffari et al. 

[42] 
Y N Y N N 

Petrochemica

l sector 

Jahani Sayyad 

Noveiri and 

Kordrostami [43] 

Y N Y N Y 

 

Health sector 

Ebrahimnejad and 

Amani [16] 
Y N N N N 

- 

Chen et al. [24] N N Y Y N Health sector 

Arana-Jiménez et 

al. [44] 
N Y N N Y 

- 

This research Y Y Y Y Y 
Energy 

dependency 
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case of 

European 

union 

member 

countries 

      ADDM: Acceptance degrees of decision maker, Y: Yes and N: No  

 

Table 2. Dataset on energy dependency 
 Input 

 

Desirable outputs 

 

Undesirable output 

Country  
       1x  

        1y  
          2y  3y  1z  

Austria (4.105,4.130,4.143) 
 

(59.038,61.363,64.980) (0.3043,0.3088,0.3426) 29.7  (3.853,3.859,4.088) 

Belgium (5.501,5.567,5.719) 
 

(3.960,4.359,5.391) (0.5091,0.5231,0.5885) 4.6  (5.482,5.570,5.931) 

Cyprus (2.503,2.544,2.615) 
 

(0.080,0.105,0.241) (0.0530,0,0540,0.0555) 4.6  (5.129,5.168,5.931) 

Czech 

Republic 
(4.384,4.445,4.545) 

 
(5.278,5.400,6.535) (0.7843,0.8141,0.8609) 8.5  (9.118,9.143,9.958) 

Denmark (3.575,3.742,3.828) 
 

(24.109,26.276,26.757) (0.2551,0.2890,0.2967) 9.9  (4.127,5.369,5.892) 

Estonia (4.195,4.263,4.361) 
 

(2.744,2.770,5.642) (0.1054,0.1282,0.1510) 22.8  (11.869,12.645,17.731) 

Finland (6.531,6.934,7.151) 
 

(25.214,26.613,30.189) (0.3793,0.3940,0.4073) 30.3  (8.043,8.074,9.179) 

France (4.396,4.450,4.468) 
 

(12.655,13.210,13.641) (1.2194,1.2219,1.3136) 12.3  (2.339,2.355,2.595) 

Germany (4.148,4.173,4.201) 
 

(12.144,14.079,15.187) (4.6013,4.6655,4.9795) 9.8  (5.663,5.681,6.609) 

Greece (2.807,2.812,2.821) 
 

(6.221,9.788,12.606) (0.6710,0.6905,0.7343) 8.2  (6.153,6.167,6.650) 

Hungary (2.698,2.709,2.716) 
 

(4.447,5.026,6.174) (0.2480,0.2552,0.2895) 7.7  (2.867,2.872,3.226) 

Ireland (3.664,3.671,3.719) 
 

(10.202,10.817,12.493) (0.1981,0.2014,0.2238) 5.0  (4.510,4.562,4.636) 

Italy (3.082,3.114,3.162) 
 

(15.417,16.020,19.090) (2.1412,2.1485,2.4016) 8.9  (3.377,3.528,3.618) 

Latvia (1.967,2.018,2.063) 
 

(40.230,41.122,46.793) (0.0269,0.0276,0.0293) 34.3  (1.646,1.649,1.985) 

Lithuania (2.594,2.622,2.635) 
 

(3.890,4.590,5.196) (0.0574,0.0610,0.0633) 17.0  (2.495,3.088,3.667) 

Netherlands (4.949,5.065,5.164) 
 

(7.060,7.440,8.455) (0.7804,0.8028,0.8203) 4.1  (5.102,5.122,5.552) 

Poland (2.449,2.534,2.564) 
 

(3.632,4.112,5.195) (2.0363,2.0363,2.1277) 8.9  (5.981,5.982,6.661) 

Portugal (2.349,2.469,2.544) 
 

(28.999,29.543,34.383) (0.2931,0.3063,0.3181) 24.5  (3.326,3.334,3.766) 

Slovakia (3.399,3.424,3.485) 
 

(16.570,16.609,18.308) (0.2352,0.2425,0.2689) 10.3  (5.691,5.694,5.904) 

Slovenia 
(3.693,3.697, 

3.836)  
(26.492,28.110,33.534) (0.0856,0.0870,0.0927) 16.9  (4.101,4.266,4.285) 

Spain (3.230,3.260,3.356) 
 

(19.523,20.841,24.492) (1.6183,1.6667,1.8543) 13.3  (3.548,3.683,3.805) 

Sweden (5.417,5.544,5.597) 
 

(49.794,52.610,53.601) (0.1852,0.1912,0.2095) 47.3  (2.418,2.421,2.594) 

United 

Kingdom (3.671,3.724,3.764) 
 

(5.063,5.356,6.250) (2.4735,2.5119,2.7460) 2.9  (3.453,3.467,3.501) 

 

Table 3. Results for different values   

Countries 
Input-oriented efficiency 

Output-oriented 

efficiency 
Model 

(7) 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 1 Case 6 

Austria 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8536 

Belgium 0.4422 0.4509 0.4509 0.4509 0.4509 0.4509 0.4509 0.1647 0.1647 0.3752 

Cyprus 0.8300 0.8332 0.8333 0.8333 0.8334 0.8334 0.8334 0.2580 0.2580 0.6850 

Czech 

Republic 
0.9097 0.9111 0.9111 0.9111 0.9111 0.9111 0.9111 0.4470 0.4470 0.7551 

Denmark 0.6743 0.6872 0.6872 0.6872 0.6872 0.6872 0.6872 0.4497 0.4559 0.7372 

Estonia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Finland 0.5768 0.5987 0.5987 0.5987 0.5987 0.5987 0.5987 0.3450 0.3450 0.5304 

France 0.4589 0.4645 0.4648 0.4651 0.4655 0.4658 0.4660 0.8562 0.8582 0.3853 

Germany 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Greece 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8939 

Hungary 0.4957 0.4981 0.4990 0.5000 0.5010 0.5020 0.5024 0.2863 0.2863 0.4332 

Ireland 0.9838 0.9841 0.9846 0.9851 0.9856 0.9861 0.9863 0.9469 0.9469 0.5237 

Italy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8049 

Latvia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Lithuania 0.5796 0.5839 0.5847 0.5855 0.5863 0.5871 0.5875 0.4329 0.4329 0.6035 

Netherlands 0.4510 0.4632 0.4632 0.4632 0.4632 0.4632 0.4632 0.2470 0.2492 0.4169 

Poland 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Portugal 0.9422 0.9448 0.9448 0.9448 0.9448 0.9448 0.9448 0.8593 0.8624 0.8965 

Slovakia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7327 

Slovenia 0.9082 0.9091 0.9091 0.9091 0.9091 0.9091 0.9091 0.8898 0.8898 0.6548 

Spain 0.9580 0.9586 0.9586 0.9586 0.9586 0.9586 0.9586 0.9375 0.9375 0.7645 

Sweden 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

United 

Kingdom 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6256 

 

Table 4. Results for different values   

Countries 
 Input-oriented efficiency 

Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 

Austria 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Belgium   0.4547 0.4540   0.4532   0.4525 0.4509   0.4494   0.4145   0.3676 

Cyprus   0.8333 0.8333   0.8333   0.8333 0.8333   0.8333   0.7877   0.6922 

Czech Republic   0.9153 0.9144   0.9136   0.9128 0.9111   0.9095   0.8834   0.7659 

Denmark   0.6912 0.6904   0.6896   0.6888 0.6872   0.6855   0.6363   0.5659 

Estonia   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Finland   0.6054 0.6040   0.6027   0.6013 0.5987   0.5960   0.5496   0.4884 

France   0.4651 0.4651   0.4651   0.4651 0.4651   0.4651   0.4349   0.3870 

Germany   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Greece   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Hungary   0.5000 0.5000   0.5000   0.5000 0.5000   0.5000   0.4686   0.4174 

Ireland   0.9851 0.9851   0.9851   0.9851 0.9851   0.9851   0.9816   0.9644 

Italy   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Latvia   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Lithuania   0.5855 0.5855   0.5855   0.5855 0.5855   0.5855   0.5480   0.4879 

Netherlands   0.4666 0.4659   0.4652   0.4645 0.4632   0.4618   0.4274   0.3793 

Poland   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Portugal   0.9559 0.9536   0.9514   0.9492 0.9448   0.9405   0.9182   0.8324 

Slovakia   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

Slovenia   0.9131 0.9123   0.9115   0.9107 0.9091   0.9076   0.8816   0.7609 

Spain   0.9613 0.9607   0.9602   0.9596 0.9586   0.9575   0.9452   0.8888 

Sweden   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

United Kingdom   1.0000 1.0000   1.0000   1.0000 1.0000   1.0000   1.0000   1.0000 

 

 
Table 5. Projection points of input-output measures 

 Input 

 

Desirable outputs 

 

Undesirable output 

  Country 
    1x  

        1y  
          2y  3y  1z  

Austria (4.105, 4.130, 4.143) 
 

(59.038,61.363, 64.980) (0.3043, 0.3088, 0.3426) 29.7  (3.853, 3.859, 4.088) 

Belgium (2.514, 2.519, 2.528) 
 

(5.542, 8.694, 11.196) (0.6241, 0.6412, 0.6813) 7.4  (5.520, 5.532, 5.969) 

Cyprus (2.068, 2.136, 2.164) 
 

(2.898, 3.265, 4.229) (1.5555, 1.5566, 1.6273) 7.9  (5.129, 5.168, 5.931) 

Czech 

Republic 
(4.016, 4.065, 4.090) 

 
(7.960, 11.685, 14.997) (1.7194, 1.7384, 1.8289) 12.6  (9.123, 9.138, 9.963) 

Denmark (2.500, 2.557, 2.612) 
 

(24.901, 25.484, 29.686) (0.2735, 0.2797, 0.2968) 27.1  (4.649, 4.847, 6.407) 

Estonia (4.195, 4.263, 4.361) 
 

(2.744, 2.770, 5.642) (0.1054, 0.1282, 0.1510) 22.8  (11.869, 12.645, 17.731) 

Finland (4.012, 4.139, 4.202) 
 

(27.143, 28.190, 32.734) (2.3173, 2.3184, 2.4233) 30.3  (8.046, 8.071, 9.182) 

France (2.032, 2.061, 2.094) 
 

(16.194, 16.765, 19.404) (1.2173, 1.2240, 1.3485) 12.3  (2.315, 2.379, 2.571) 

Germany (4.148, 4.173,4.201) 
 

(12.144,14.079, 15.187) 
(4.6013, 4.6655,  

4.9795) 
9.8  (5.663, 5.681, 6.609) 

Greece (2.807, 2.812, 2.821) 
 

(6.221, 9.788, 12.606) (0.6710, 0.6905, 0.7343) 8.2  (6.153, 6.167, 6.650) 

Hungary (1.310, 1.354, 1.372) 
 

(5.931, 6.238,7.336) (0.9046, 0.9048, 0.9455) 7.7  (2.868, 2.871, 3.227) 

Ireland (3.579, 3.620, 3.670) 
 

(10.624, 10.806, 12.092) (1.4454, 1.4695, 1.6083) 6.5  (4.532, 4.540, 4.658) 

Italy (3.082, 3.114, 3.162) 
 

(15.417, 16.020, 19.090) (2.1412, 2.1485, 2.4016) 8.9  (3.377, 3.528, 3.618) 
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Latvia (1.967, 2.018, 2.063) 
 

(40.239, 41.122, 46.793) (0.0269, 0.0276, 0.0293) 34.3  (1.646, 1.649, 1.985) 

Lithuania (1.495, 1.527, 1.561) 
 

(15.751,16.097, 18.749) (0.0571, 0.0613, 0.0671) 17.0  (2.733, 2.867, 3.871) 

Netherlands (2.327, 2.346, 2.358) 
 

(6.021, 8.479, 10.668) (0.7852, 0.7980, 0.8424) 7.9  (5.107, 5.117, 5.557) 

Poland (2.449, 2.534, 2.564) 
 

(3.632, 4.112, 5.195) (2.0363, 2.0363, 2.1277) 8.9  (5.981, 5.982, 6.661) 

Portugal (2.278, 2.328, 2.364) 
 

(28.590, 29.952, 34.457) (0.5021, 0.5063, 0.5319) 25.9  (3.328, 3.332, 3.768) 

Slovakia (3.399, 3.424, 3.485) 
 

(16.570,16.609, 18.308) (0.2352, 0.2425, 0.2689) 10.3  (5.691, 5.694, 5.904) 

Slovenia (3.358, 3.390, 3.429) 
 

(27.934,28.802, 30.707) (0.3080, 0.3148, 0.3474) 16.9  (4.182, 4.185,  4.366) 

Spain (3.102, 3.137, 3.188) 
 

(20.130, 20.738, 24.092) (1.6478,1.6550, 1.8482) 13.3  (3.560, 3.671, 3.817) 

Sweden (5.417, 5.544, 5.597) 
 

(49.794, 52.610, 53.601) (0.1852, 0.1912, 0.2095) 47.3  (2.418, 2.421, 2.594) 

United 

Kingdom 
(3.671, 3.724, 3.764) 

 
(5.063, 5.356,6.250) (2.4735, 2.5119, 2.7460) 2.9  (3.453, 3.467, 3.501) 

 

Table 6. The efficiency values obtained from fuzzy approaches provided in [50, 51]  

DMU 
Efficiency values achieved from [51] The efficiency derived from [50]  

Optimistic Pessimistic Geometric Average The CCR form ( 10)   

Austria 0.761 3.557 1.646 -2.599 

Belgium 0.147 1 0.383 -36.432 

Cyprus 0.121 1 0.349 -35.254 

Czech Republic 0.251 1.096 0.525 -26.644 

Denmark 0.385 3.050 1.083 -14.651 

Estonia 0.333 1 0.577 -15.871 

Finland 0.300 2.474 0.861 -17.910 

France 0.833 3.118 1.613 -2.770 

Germany 1 2.073 1.440 0 

Greece 0.359 1.576 0.752 -18.530 

Hungary 0.238 1.971 0.685 -24.482 

Ireland 0.183 1.005 0.429 -32.364 

Italy 0.894 3.228 1.698 -1.971 

Latvia 1 1 1 0 

Lithuania 0.395 1.118 0.665 -13,042 

Netherlands 0.234 1 0.484 -31.274 

Poland 0.832 1.725 1.198 -3.022 

Portugal 0.681 5.574 1.948 -5.026 

Slovakia 0.287 1.893 0.737 -22.030 

Slovenia 0.385 1.160 0.668 -14.964 

Spain 0.752 4.455 1.830 -4.690 

Sweden 1 1.756 1.325 0 

United Kingdom 0.916 1 0.957 -1.096 
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Fig.1. A graphical design of the approach 

 

 

 

 

  

Fig. 2. Efficiency scores for Lithuania 
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Fig. 3. Efficiency scores for five sample countries at different levels i  
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