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Abstract

The Heisenberg ferromagnetic spin chain (HFSC) equation has substantial relevance in
the fields of optics and electronics, particularly in the advancement of high-density electronic
components and faster storage devices. This integrable nonlinear Schrödinger equation char-
acterizes the propagation of nonlinear waves in ferromagnetic spin chain systems. In a recent
research paper, two powerful analytical methods, the ( G′

KG′+G+r
)-expansion method and the ex-

tended hyperbolic function method (EHFM), were implemented to solve the (2+1)-dimensional
HFSC equation. Most of the results obtained from the study are presented graphically, which
can aid in the visualization and interpretation of the gained results. These findings will be
useful in the development and optimization of spintronic devices and other electronic compo-
nents that rely on the behavior of spin systems. The analytical solutions of the HFSC equation
yield important insights that enhance our understanding and facilitate the application of mag-
netism, thermal properties, and topological phenomena across diverse fields such as materials
science, condensed matter physics, and quantum technologies. These findings play a crucial
role in advancing our knowledge and practical utilization of these phenomena in real-world
applications.
Keywords: Heisenberg equation; Solitons; ( G′

KG′+G+r
) method; Extended hyperbolic function

method.

1 Introduction

In the last decades, the Heisenberg ferromagnetic spin chain equation [1–3] has great applications
in soliton theory and condensed matter physics. The study of this non-linear partial differential
equation attracts researchers due to its wide applications in different fields, including mathematical
physics [4, 5], fluid mechanics [6], the shock wave phenomena in plasma [7], nonlinear electrical
transmission lattice occurring in science and engineering [8, 9], optics and quantum information
[10, 11], nonlinear optics [12, 13], condensed matter physics [14], geophysical fluid dynamics [15],
coastal engineering, wave energy conversion, and fluid dynamics studies [16], plasma physics [17],
optical fibers [18], hydrodynamics and solid-state physicss [19], electromagnetic signals [20], chaos
theory [21], and others. Many researchers execute different techniques to get the soliton solutions
of the non-linear partial differential equations. The present literature concern with the (2+1)-
dimensional Heisenberg ferromagnetic spin chain (HFSC) equation

iut + α1uxx + α2uyy + α3uxy − α4 | u |2 u = 0, (1)

α1 = γ4(Θ + Θ2), α2 = γ4(Θ1 +Θ2), α3 = 2γ4Θ2, α3 = 2γ4B. (2)
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where:u = u(x, y, t), γ is the grid parameter, Θ and Θ2 are the coefficients of bilinear exchange
interactions in the xy-plane, Θ2 is the neighboring interaction on the diagonal, B is the uni-
axial crystal field anisotropy parameter. The Heisenberg ferromagnetic spin chain equation has
important applications in modern magnet theory. It provides a description for the non-linear char-
acteristics of magnets. The field equivalent to the anisotropic and constant external field is formed,
when the electromagnetic waves transfer in an isotropic ferromagnetic medium and also dissect the
mathematical phenomenon [22, 23]. Many authors gives a traveling wave solutions to the HFSC
equation using miscellaneous techniques: Bashar et al. applied the improved F-expansion method
and modified simple equation (MSE) [24], the exp(φ(ξ))-expansion and the extended tanh-function
methods are used by Bashar et al. [25], Osman et al. exerted the new extended FAN sub-equation
method [26], Nisar et al. apply the extended (G′/G2)-expansion method [27], By applying projec-
tive Riccati equation and modified F-Expansion methods Aliyu et al. present their solutions [28],
Yu-Lan Ma solved by using the bilinear method [29], Bulut et al. used extended sinh-Gordon equa-
tion method [30], the complete discrimination system method [31] applied by Han et al., Seadawy
et al. applied generalized Riccati mapping and improved auxiliary equation methods [32], Abdul Al
Woadud et al. used the modified Kudryashov method [33], Sahooa et al. studied by the modified
Khater method [34], Islam et al. applied the unified method [35], Mohammed et al. applied the
Jacobi elliptic function method [36], Zahran et al. applied the solitary wave ansatz and the Paul-
Painleve approach methods [37], Wang et al. employed the variational method and subequation

method [38], Farah M. Al-Askar utilized the G′

G -expansion method and the mapping method [39]
and others.
The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation has been applied to a wide
variety of problems in optics, including the study of nonlinear optical fibers, the dynamics of liquid
crystals, and the propagation of light in photonic crystals. The schedule of the paper is: Section 2
presents the algorithm of the suggested methods [40–46]. In Section 3, we exhibit the application
of the methods. Most of the solutions are illustrated by graphs in section 4. The discussion of our
results is introduced in Section 5. At the end, Section 6 offers a succinct conclusion.

2 The Strategies of the proposed Techniques

2.1 The ( G′

KG′+G+r
)-expansion method [40]

We give the main steps of the ( G′

KG′+G+r )-expansion method. Consider the nonlinear partial dif-
ferential equation

F (u, ut, ux, uy, uxx, uyy, uxy, ...) = 0, (3)

where u = u(x, y, t) represents the complex function to be calculated, while F denotes a polynomial
involving both u and its associated partial derivatives.

Step 1: Insert the next wave transformation,

u(x, y, t) = eiξv(η), ξ = a1x+ b1y − c1t, η = a2x+ b2y − c2t. (4)

where ξ is the envelope phase, a2 is the wave number in the x-direction, b2 is the wave
numbers in the y-direction, c2 represents the wave velocity, c1 denotes the frequency of the
pulse and a1, b1 are constants. Inserting Equation (4) into Equation (1), then Equation (1)
transformed to an ordinary differential equation:

H(v′, v′′, v′′′, ...) = 0, (5)

where H represents a polynomial involving v(η) and its corresponding derivatives.
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Step 2: Assume that the following represents the solution to Equation (5):

v(η) =

N∑
i=0

miF(η)
i, (6)

where F(η) = ( G′

KG′+G+r ), G(η) fulfill the next ODE,

G′′(η) = −λ

K
G′(η)− µ

K2
G(η)− µ

K2
r, (7)

where:mi are unknown constants, K, µ, λ, and r are constants to be determined later.
F = F(η) is the solution of the ODE

F′(η) = (λ− µ− 1)F(η)2 +
(2µ− λ)

K
F(η)− µ

K2
(8)

Step 3: Finding the positive integer N in Equation (5) requires balancing the highest power nonlinear
term with the highest order derivative term.

Step 4: Two families of solutions to Equation (8) are presented:

Class 1: When ∆ = λ2 − 4µ > 0,

G = −r+ p1e
1
2K (−λ−

√
∆)η + p2e

1
2K (−λ+

√
∆)η, (9)

p1 and p2 represent arbitrary constants, and they must satisfy the following relation:
r2 + p21 + p22 ̸= 0,then

F(η) =
p1(λ+

√
∆) + p2(λ−∆)e

√
∆η
K

Kp1(λ− 2 +
√
∆) + Kp2(λ− 2−∆)e

√
∆η
K

,

F(η) =

[λ(p2 − p1)−
√
∆(p2 + p1)] sinh(

√
∆η
2K ) + [λ(p2 + p1)−

√
∆(p2 − p1)] cosh(

√
∆η
2K )

K[(λ− 2)(p2 − p1)−
√
∆(p2 + p1)] sinh(

√
∆η
2k ) + K[(λ− 2)(p2 + p1)−

√
∆(p2 − p1)] cosh(

√
∆η
2K )

(10)

F(η) =

{
λ−2µ

2K(λ−µ−1) −
√
∆

2k(λ−µ−1) tanh(
√
∆η
2K ), (λ− 2)(p2 − p1)−

√
∆(p2 + p1) = 0,

λ−2µ
2K(λ−µ−1) −

√
∆

2K(λ−µ−1) coth(
√
∆η
2K ), (λ− 2)(p2 + p1)−

√
∆(p2 − p1) = 0.

(11)

Class 2: When ∆ = λ2 − 4µ < 0,

G = −r+ e
−λη
2K (p1 cos(

√
−∆η

2k
) + p2 sin(

√
−∆η

2K
)), (12)

F(η) =
(λp1 −

√
−∆p2) cos(

√
−∆η
2K ) + (λp2 +

√
−∆p1) sin(

√
−∆η
2K )

K((λ− 2)p1 −
√
−∆p2) cos(

√
−∆η
2k ) + K((λ− 2)p2 +

√
−∆p1) sin(

√
−∆η
2K )

(13)

F(η) =

{
λ−2µ

2K(λ−µ−1) +
√
−∆

2K(λ−µ−1) tan(
√
−∆η
2K ), (λ− 2)p2 +

√
−∆p1 = 0,

λ−2µ
2K(λ−µ−1) −

√
−∆

2K(λ−µ−1) cot(
√
−∆η
2K ), (λ− 2)p1 −

√
−∆p2 = 0.

(14)
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Step 4: After substituting Equation (6) and Equation (8) into Equation (5), the next step involves
grouping all coefficients of F(η) with identical powers and equating them to zero. Solving
the resultant system of algebraic equations with the aid of Mathematica program to get the
solution of Equation (1).

2.2 The extended hyperbolic function method (EHFM) [41–46]

Herein, we give the essential steps of the extended hyperbolic function method in the next:

Step 1: consider the solution to equation Equation (5) as follows:

v(η) =

N∑
j=0

fj(G(η))j , (15)

where G(η) satisfies two ODE, the next ODE is the first one:

G′(η) = G(η)
√

µG(η)2 + β, (16)

where fN ̸= 0, fj(j = 0, 1, 2, ..., N), β, µ ∈ R, are constants to be determined later.

Step 2: From Equation (5), elaborating the homogeneous balance principle as previously discussed
to obtain the value of N .

Step 3: substituting Equation (15) and Equation (16) in Equation (5), after aggregating all the
coefficients of the G(η) with the same power, putting them equal to zero, then solve the
gained system of equations using the Mathematica program.

Step 4: The solutions of Equation (17) are eight families given in the next:
Family 1: When β > 0 and µ > 0,

G(η) = −

√
β

µ
csch(

√
β(η + η0)). (17)

Family 2: When β < 0 and µ > 0,

G(η) =

√
−β

µ
sec(

√
−β(η + η0)). (18)

Family 3: Whenβ > 0 and µ < 0,

G(η) =

√
−β

µ
sech(

√
β(η + η0)). (19)

Family 4: When β < 0 and µ < 0,

G(η) =

√
−β

µ
csc(

√
−β(η + η0)). (20)

Family 5: When β > 0 and µ = 0,

G(η) = exp(
√

β(η + η0)). (21)
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Family 6: When β < 0 and µ = 0,

G(η) = cos(
√
−β(η + η0)) + i sin(

√
−β(η + η0)). (22)

Family 7: When β = 0 and µ > 0,

G(η) = ± 1

(
√
µ(η + η0))

. (23)

Family 8: When β = 0 and µ < 0,

G(η) = ± i

(
√
−µ(η + η0))

. (24)

Secondly, the G(η) satisfies another ODE, given by:

G′(η) = µG(η)2 + β, (25)

then, there are six distinct solution families presented for Equation (25):
Family 1: When βµ > 0,

G(η) = sgn(β)

√
β

µ
tan(

√
βµ(η + η0)). (26)

Family 2: When βµ > 0,

G(η) = −sgn(β)

√
β

µ
cot(

√
βµ(η + η0)). (27)

Family 3: When βµ < 0,

G(η) = sgn(β)

√
−β

µ
tanh(

√
−βµ(η + η0)). (28)

Family 4: When βµ < 0,

G(η) = sgn(β)

√
−β

µ
coth(

√
−βµ(η + η0)). (29)

Family 5: When β = 0 and µ > 0,

G(η) = − 1

µ(η + η0)
. (30)

Family 6: When β < 0 and µ = 0,

G(η) = β(η + η0). (31)

Where: sgn is the known sign function.
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3 Applications

Substituting by the wave transformation Equation (4) in Equation (1), we acquire the real part
equation:

c1v(η)− v(η)(a21α1 + b21α2 + a1b1α3 + α4v(η)
2) + (a22α1 + b22α2 + a2b2α3)v

′′(η) = 0. (32)

Balancing v′′ with v3 in Equation (32), we get 3N = N + 2, then N = 1,
and the imaginary part equation is given by:

(−c2 + 2a1a2α1 + 2b1b2α2 + a2b1α3 + a1b2α3)v
′(η) = 0. (33)

We get:
c2 = 2a1a2α1 + 2b1b2α2 + a2b1α3 + a1b2α3. (34)

3.1 The ( G′

KG′+G+r
)-expansion method

Utilizing Equation (6), we express the solution to Equation (32) as:

v(η) = m0 +m1F(η). (35)

Substituting Equation (35) in Equation (32), then equating to zero all the coefficients with the
same powers of F(η), we acquire the following system of equations:

a2α3b2λµm1 − 2a2α3b2µ
2m1 − a1α3b1m0K

3 + a22α1λµm1 − 2a22α1µ
2m1 − a21α1m0K

3

+α2b
2
2λµm1 − 2α2b

2
2µ

2m1 −m0K
3
(
α2b

2
1 + α4m

2
0

)
+ c1m0K

3 = 0,

−a1α3b1m1K
3 + a2α3b2λ

2m1K− 4a2α3b2λµm1K− 2a2α3b2µm1K(λ− µ− 1)

+4a2α3b2µ
2m1K− a21α1m1K

3 + a22α1λ
2m1K− 4a22α1λµm1K− 2a22α1µm1K(λ− µ− 1)

+4a22α1µ
2m1K− α2b

2
1m1K

3 + α2b
2
2λ

2m1K− 4α2b
2
2λµm1K

−2α2b
2
2µm1K(λ− µ− 1) + 4α2b

2
2µ

2m1K+ c1m1K
3 − 3α4m

2
0m1K

3 = 0,

−3a2α3b2λm1K
2(λ− µ− 1) + 6a2α3b2µm1K

2(λ− µ− 1)− 3a22α1λm1K
2(λ− µ− 1) + 6a22α1

µm1K
2(λ− µ− 1)− 3α2b

2
2λm1K

2(λ− µ− 1) + 6α2b
2
2µm1K

2(λ− µ− 1)− 3α4m0m
2
1K

3 = 0,

2a2α3b2m1K
3(λ− µ− 1)2 + 2a22α1m1K

3(λ− µ− 1)2 + 2α2b
2
2m1K

3(λ− µ− 1)2 − α4m
3
1K

3 = 0.

We acheive two sets of solutions:
Set 1:

m0 = − (λ− 2µ)
√
α1a22 + α3a2b2 + α2b22√

2
√
α4K

, m1 =

√
2(λ− µ− 1)

√
α1a22 + α3a2b2 + α2b22√
α4

,

c1 = α1a
2
1 + α3a1b1 +

(
λ2 − 4µ

) (
α1a

2
2 + α3a2b2 + α2b

2
2

)
2K2

+ α2b
2
1

(36)

Set 2:

m0 =
(λ− 2µ)

√
α1a22 + α3a2b2 + α2b22√

2
√
α4K

, m1 =

√
2(−λ+ µ+ 1)

√
α1a22 + α3a2b2 + α2b22√
α4

,

c1 = α1a
2
1 + α3a1b1 +

(
λ2 − 4µ

) (
α1a

2
2 + α3a2b2 + α2b

2
2

)
2K2

+ α2b
2
1

(37)
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We obtain the subsequent sets of solution families:
Family 1: When ∆ = λ2 − 4µ > 0,

u(x, y, t) = ei(a1x+b1y−c1t)×(
m0 +m1

(
λ− 2µ

2K(λ− µ− 1)
−

√
∆

2K(λ− µ− 1)
tanh

(√
∆(a2x+ b2y − c2t)

2K

)))
,

(38)

Subject to the constraint: (λ− 2)(p2 − p1)−
√
∆(p2 + p1) = 0,

u(x, y, t) = ei(a1x+b1y−c1t)×(
m0 +m1

(
λ− 2µ

2K(λ− µ− 1)
−

√
∆

2K(λ− µ− 1)
coth

(√
∆(a2x+ b2y − c2t)

2K

)))
,

(39)

Subject to the constraint: (λ− 2)(p2 + p1)−
√
∆(p2 − p1) = 0.

Family 2: When ∆ = λ2 − 4µ < 0,

u(x, y, t) = ei(a1x+b1y−c1t)×(
m0 +m1

(
λ− 2µ

2K(λ− µ− 1)
+

√
−∆

2K(λ− µ− 1)
tan

(√
−∆(a2x+ b2y − c2t)

2K

)))
,

(40)

Subject to the constraint: (λ− 2)p2 +
√
−∆p1 = 0,

u(x, y, t) = ei(a1x+b1y−c1t)×(
m0 +m1

(
λ− 2µ

2K(λ− µ− 1)
+

√
−∆

2K(λ− µ− 1)
cot

(√
−∆(a2x+ b2y − c2t)

2K

)))
,

(41)

Subject to the constraint: (λ− 2)p1 −
√
−∆p2 = 0.

3.2 The extended hyperbolic function method

Equation (15) introduce the solution as follows:

v(η) = f0 + f1G(η). (42)

The first form
Substituting Equation (42) and Equation (16) in Equation (32), then grouping terms of like powers
and setting all coefficients to zero leads to the following set of equations:

c1f0 − a21f0α1 − b21f0α2 − a1b1f0α3 − f3
0α4 = 0,

c1f1 − a21f1α1 + βa22f1α1 − b21f1α2 + βb22f1α2 − a1b1f1α3 + βa2b2f1α3

− 3f2
0 f1α4 = 0, −3f0f

2
1α4 = 0,

2µa22f1α1 + 2µb22f1α2 + 2µa2b2f1α3 − f3
1α4 = 0.

(43)

Solving this system yields two sets of solutions:
Set 1:

f0 = 0, f1 = −
√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

,

c1 = a21α1 − βa22α1 + b21α2 − βb22α2 + a1b1α3 − βa2b2α3.

(44)
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Set 2:

f0 = 0, f1 =

√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

,

c1 = a21α1 − βa22α1 + b21α2 − βb22α2 + a1b1α3 − βa2b2α3.

(45)

Therefore, we derive the subsequent sets of solution families as follows:

Family 1: When β > 0 and µ > 0,

u1(x, y, t) = ei(a1x+b1y−c1t)

(
±

(√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

)
(√

β

µ
csch(

√
β((a2x+ b2y − c2t) + η0))

))
.

(46)

Family 2: When β < 0 and µ > 0,

u2(x, y, t) = ei(a1x+b1y−c1t)

(
∓

(√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

)
(√

−β

µ
sec(

√
−β((a2x+ b2y − c2t) + η0))

))
.

(47)

Family 3: When β > 0 and µ < 0,

u3(x, y, t) = ei(a1x+b1y−c1t)

(
∓±

(√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

)
(√

−β

µ
sech(

√
β((a2x+ b2y − c2t) + η0))

))
.

(48)

Family 4: When β < 0 and µ < 0,

u4(x, y, t) = ei(a1x+b1y−c1t)

(
∓±

(√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

)(√
−β

µ
csc(

√
−β(η + η0))

))
.

(49)
Family 7: When β = 0 and µ > 0,

u7(x, y, t) = ei(a1x+b1y−c1t)

(
∓±

(√
2µ(a22α1 + b22α2 + a2b2α3)√

α
4

)(
1

(
√
µ((a2x+ b2y − c2t) + η0))

))
.

(50)
The Second form

Substituting Equation (42) and Equation (25) in Equation (32), then collecting terms of like
powers and setting all the coefficients equal to zero, we acquire the following set of equations:

c1f0 − a21f0α1 − b21f0α2 − a1b1f0α3 − f3
0α4 = 0,

c1f1 − a21f1α1 + 2βµa22f1α1 − b21f1α2 + 2βµb22f1α2 − a1b1f1α3 + 2βµa2b2f1α3

− 3f2
0 f1α4 = 0, 3f0f

2
1α4 = 0,

2µ2a22f1α1 + 2µ2b22f1α2 + 2µ2a2b2f1α3 − f3
1α4 = 0.

(51)
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Solving this system yields two sets of solutions:
Set 1:

f0 = 0, f1 = −µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

,

c1 = a21α1 − 2βµa22α1 + b21α2 − 2βµb22α2 + a1b1α3 − 2βµa2b2α3.

(52)

Set 2:

f0 = 0, f1 =
µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

,

c1 = a21α1 − 2βµa22α1 + b21α2 − 2βµb22α2 + a1b1α3 − 2βµa2b2α3.

(53)

Therefore, the solitary wave solutions of Equation (1) are given by the next formulas:

Family 1: When βµ > 0,

u1(x, y, t) = ei(a1x+b1y−c1t)

(
∓

(
µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

)
(
sgn(β)

√
β

µ
tan(

√
βµ((a2x+ b2y − c2t) + η0))

))
.

(54)

Family 2: When βµ > 0,

u2(x, y, t) = ei(a1x+b1y−c1t)

(
∓

(
µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

)
(
sgn(β)

√
β

µ
cot(

√
βµ((a2x+ b2y − c2t) + η0))

))
.

(55)

Family 3:When βµ < 0,

u3(x, y, t) = ei(a1x+b1y−c1t)

(
∓

(
µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

)
(
sgn(β)

√
−β

µ
tanh(

√
−βµ((a2x+ b2y − c2t) + η0))

))
.

(56)

Family 4: When βµ < 0,

u4(x, y, t) = ei(a1x+b1y−c1t)

(
∓
(
µ
√

2(a22α1 + b22α2 + a2b2α3)√
α

4

)
(
sgn(β)

√
−β

µ
coth(

√
−βµ((a2x+ b2y − c2t) + η0))

))
.

(57)

Family 5: Whenβ = 0 and µ > 0,

u5(x, y, t) = ei(a1x+b1y−c1t)

(
±

(
µ
√
2(a22α1 + b22α2 + a2b2α3)√

α
4

)(
1

µ(η + η0)

))
. (58)
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4 Graphical illustrations

In the present section, we exhibit our solutions graphically. The graphs are presented as follows:
The graph of Equation (38) for u(x, y, t) Equation (38) with set 1 (36) applying the ( G′

KG′+G+r )-

expansion method is shown in Figure 1 at K = 2, λ =
√
6, µ = 1.3, a1 = 1, a2 = 1, b1 = 1, b2 =

0.1, α1 = 0.1, α2 = 0.005, α3 = 0.005, α4 = 0.004, p2 = −3.02046p1. Equation (38) for u(x, y, t)

with set 2 Equation (37) are plotted in Figure 2 using the ( G′

KG′+G+r )-expansion method at K =

2, λ =
√
6, µ = 1.3, a1 = 1, a2 = 1, b1 = 1, b2 = 1, α1 = 0.1, α2 = 0.1, α3 = 0.005, α4 = 0.004, p2 =

−3.02046p1. Figure 3 presents the graph of Equation (40) for u(x, y, t) with set 1 Equation (36)

employing the ( G′

KG′+G+r )-expansion method at K = 2, λ = 0.01, µ = 0.3, a1 = 0.1, a2 = 0.1, b1 =
0.1, b2 = 0.01, α1 = 0.3, α2 = 0.02, α3 = 0.4, α4 = 0.5, p2 = 0.550452p1. Figure 4 shows the graph
of Equation (40) for u(x, y, t) with set 2 Equation (37) using the ( G′

KG′+G+r )-expansion method
at K = 2, λ = 0.01, µ = 0.3, a1 = 0.1, a2 = 0.1, b1 = 0.1, b2 = 0.01, α1 = 0.3, α2 = 0.02, α3 =
0.4, α4 = 0.1, p2 = 0.550452p1. Figure 5 shows the graph of (48) for u3(x, y, t) with set 1 Equation
(44) applying the extended hyperbolic function method at α2 = 0.3, β = 0.1, α3 = 0.005, µ =
−0.4, α1 = 0.005, a1 = 1, b1 = 1, α4 = 0.05, b2 = 1, η0 = 0.3, a2 = 1. Figure 6 presents the graph
of Equation (48) for u3(x, y, t) with set 2 Equation (45) using the extended hyperbolic function
method at β = 0.1, α3 = 0.005, µ = −0.6, α1 = 0.005, a1 = 1, α2 = 0.3, a2 = 1, b1 = 1, b2 = 1, η0 =
0.3, α4 = 0.05. Figure 7 shows the graph of Equation (56) for u3(x, y, t) with set 1 Equation (52)
applying the extended hyperbolic function method at β = −0.1, α2 = 0.5, µ = 0.4, α1 = 0.1, a2 =
1, α3 = 0.3, b1 = 1, α4 = 0.6, b2 = 1, η0 = 0.8, a1 = 1. Finally, Figure 8 presents the graph of
(56) for u3(x, y, t) with set 2 Equation (53) using the extended hyperbolic function method at
α2 = 0.5, β = −0.1, µ = 0.4, α1 = 0.1, a2 = 1, α3 = 0.3, b1 = 1, α4 = 0.6, b2 = 1, η0 = 0.8, a1 = 1.

Figure 1: Solution Equation (38) for u(x, y, t)(Set 1, Equation (36)) obtained using the ( G′

KG′+G+r )-

expansion method with parameters: K = 2, λ =
√
6, µ = 1.3, a1 = 1, a2 = 1, b1 = 1, b2 = 0.1, α1 =

0.1, α2 = 0.005, α3 = 0.005, α4 = 0.004, p2 = −3.02046p1.
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Figure 2: Solution Equation (38) for u(x, y, t)(Set 2, Equation (37)) obtained using the ( G′

KG′+G+r )-

expansion method with parameters: K = 2, λ =
√
6, µ = 1.3, a1 = 1, a2 = 1, b1 = 1, b2 = 1, α1 =

0.1, α2 = 0.1, α3 = 0.005, α4 = 0.004, p2 = −3.02046p1.

Figure 3: Solution Equation (40) for u(x, y, t)(Set 1, Equation (36)) obtained using the ( G′

KG′+G+r )-
expansion method with parameters: K = 2, λ = 0.01, µ = 0.3, a1 = 0.1, a2 = 0.1, b1 = 0.1, b2 =
0.01, α1 = 0.3, α2 = 0.02, α3 = 0.4, α4 = 0.5, p2 = 0.550452p1.
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Figure 4: Solution Equation (39) for u(x, y, t)(Set 2, Equation (37)) obtained using the ( G′

KG′+G+r )-
expansion method with parameters: K = 2, λ = 0.01, µ = 0.3, a1 = 0.1, a2 = 0.1, b1 = 0.1, b2 =
0.01, α1 = 0.3, α2 = 0.02, α3 = 0.4, α4 = 0.1, p2 = 0.550452p1.

Figure 5: Solution Equation (48) for u3(x, y, t) (Set 1, Equation (44)) obtained using the Extended
Hyperbolic Function method with parameters: α2 = 0.3, β = 0.1, α3 = 0.005, µ = −0.4, α1 =
0.005, a1 = 1, b1 = 1, α4 = 0.05, b2 = 1, and η0 = 0.3, a2 = 1.
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Figure 6: Solution Equation (48) for u3(x, y, t) (Set 2, Equation (45)) obtained using the extended
hyperbolic function method with parameters: β = 0.1, α3 = 0.005, µ = −0.6, α1 = 0.005, a1 =
1, α2 = 0.3, a2 = 1, b1 = 1, b2 = 1, η0 = 0.3, α4 = 0.05.

Figure 7: Solution Equation (56) for u3(x, y, t)(Set 1, Equation (52)) obtained using the extended
hyperbolic function method with parameters: β = −0.1, α2 = 0.5, µ = 0.4, α1 = 0.1, a2 = 1, α3 =
0.3, b1 = 1, α4 = 0.6, b2 = 1, η0 = 0.8, a1 = 1.

Figure 8: Solution Equation (56) for u3(x, y, t)(Set 2, Equation (53)) obtained using the extended
hyperbolic function method with parameters: α2 = 0.5, β = −0.1, µ = 0.4, α1 = 0.1, a2 = 1, α3 =
0.3, b1 = 1, α4 = 0.6, b2 = 1, η0 = 0.8, a1 = 1.
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5 Discussion

The (2+1)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation is an important
nonlinear Schrödinger equation that can be used to model the dynamics of spin systems in magnetic
materials. Analytical solutions of this equation can provide insights into the fundamental physics
of spin systems and their interactions with light, which can be useful in the design and optimization
of various devices in optics and related fields.
The ( G′

KG′+G+r )-expansion method is a versatile and systematic approach for solving a wide range
of nonlinear partial differential equations. This method is applicable to diverse problems, with the
flexibility to determine key parameters, providing insights into the system’s behavior. It categorizes
solutions into distinct classes based on the discriminant, making it a valuable tool for understanding
complex physical and mathematical phenomena. The extended hyperbolic function method excels
in solving nonlinear partial differential equations, its capability to handle diverse nonlinearities
makes it a valuable tool for obtaining precise mathematical solutions. These solutions can be used
to design and optimize various devices in optics and related fields.
Graphs are formidable tools for illustrating and clarifying solution representations. With the
specified parameter values indicated alongside each graph, the profiles of the two-dimensional
graphs exhibit a characteristic bell-shaped form and the wave moves to the right as time increases
in Figures 5 and 6. In Figures 1,2,3,4, 7 and 8 the reverse wave moves to the right as time
progresses.

6 Conclusion

The Heisenberg ferromagnetic spin chain equation has important applications in optics and related
fields, including spintronics, quantum dots, and quantum optics. The model can aid in the design
and optimization of various devices and can provide insights into the fundamental physics of spin
systems and their interactions with light. In this study, We have scrutinized the (2+1)-dimensional
Heisenberg ferromagnetic spin chain equation by using two strong analytical methods, the first one
is the ( G′

KG′+G+r )-expansion method and the second one is the extended hyperbolic function method
(EHFM). Our methods carry new soliton solutions with various types as: bright soliton solutions,
dark soliton solutions, periodic solutions, Singular solutions, and others. Choosing appropriate
values for the parameters we present most of our solutions graphically to show the power of the
proposed methods.
The obtained solutions in this research have many forms: hyperbolic, trigonometric, power, expo-
nential, and rational functions, and the solutions presented analytically in other researches have
also many forms, and therefore it is difficult to make a comparison in tables. However, a compar-
ison with recent references [30, 32] was made during the solution through graphics, which proved
the compatibility of our results with others.
In future research we can applying the ( G′

KG′+G+r )-expansion method and the extended hyperbolic
function technique (EHFM) to:
1-Extending the equation to higher dimensions, including (3+1) or beyond. This expansion would
significantly enhance our understanding of the equation’s behavior in more complex systems, shed-
ding light on emergent phenomena and collective interactions within the spin chain. 2-Solve the
nonlinear modified Gardner (mG) equation, which holds particular importance in comprehending
the intricate dynamics of quantum electron-positron ion magneto plasmas [47].
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