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Abstract. Chatter is a type of self-induced vibration that reects uctuations in
both frequency and energy dispersion during the milling process, inevitably resulting in
substandard part quality and diminished Material Removal Rates (MRR). It is essential
to employ a robust chatter detection method to anticipate its emergence in the early
stages. This study introduces an e�cient Product Function (PF) based multi-mode signal
processing technique, speci�cally the Spline-Based Local Mean Decomposition (SBLMD).
This method is applied to decompose sound signals acquired through experimentation into
a series of e�ective PF's. Subsequently, selected PFs are employed to reconstruct a new
chatter signal that is information-rich. Additionally, prediction models based on Arti�cial
Neural Networks (ANN) are established to predict Chatter Indicator (CI) and MRR using
three di�erent activation algorithms: Tan Sigmoid (TANSIG), Log Sigmoid (LOGSIG),
and Purely Linear (PURELIN). Statistical comparisons have been conducted in order to
obtain the optimal activation algorithm and found out that data set trained with LOGSIG
gives minimal error. Moreover, an optimal range of input parameters has been selected
pertaining to minimum chatter and maximum MRR. Con�rmation tests on the obtained
set of parameters have been carried out in order to analyse and authenticate the proposed
technique.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Chatter has always been a serious obstacle to man-
ufacturing industries. Chatter may lead to many
detrimental consequences such as; poor surface �n-
ish, less tolerance, tool wear and breakage, material
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wastage and many more. From the aforementioned
negative consequences of chatter, it can be inferred
that the chatter directly a�ects stability and produc-
tivity of the machining system [1]. The identi�cation
and mitigation of chatter represent ongoing priorities
for machinists. E�ectively managing chatter at its
incipient stage is crucial to preventing damage to both
part quality and Material Removal Rate (MRR). In
recent years, researchers have introduced numerous
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process-based approaches aimed at early detection and
recognition of chatter. These approaches not only
enhance machining e�ciency but also contribute to
advancements in manufacturing precision and produc-
tivity. Ongoing research in this area is essential for
the continual improvement of machining technology in
alignment with evolving industry standards.

A schematic of the online chatter detection pro-
cess based on sensors is depicted in Figure 1. In
the initial phase, raw signals are gathered utilizing a
signal acquisition system. Following this, the second
phase involves three operations: signal processing,
signal transformation, and feature extraction. The
concluding step employs a soft computing method to
create a classi�er for the prediction of chatter.

In sensor based online chatter detection methods,
data acquisition (which represents the dynamics of the
cutting system) is the �rst stage. In order to acquire
the data from the cutting system, sensors which are
primarily used are accelerometers (acceleration signal)
[2], dynamometers (force signal) [3] and microphones
(sound signal) [4,5]. Cuka and Kim [4] utilized a
multi-sensor approach to construct a tool condition
monitoring system, incorporating a dynamometer, an
accelerometer, a microphone, and a current sensor.
Their investigation revealed challenges in �ltering the
accelerometer signal, leading to potential errors. The
study also concluded that sound signals obtained
through a microphone produced superior and more
reliable results, attributed to their low error ratio,
minimal overlapping e�ects, and higher sampling rates.

The second step i.e., signal processing, involves
the manipulation and analysis of signals generated
during milling processes to detect and address un-
stable vibrations. Signal processing techniques, such

as �ltering, transformation, and feature extraction,
play a crucial role in identifying and isolating chatter
signals from the overall machining noise. By imple-
menting advanced signal processing methods, such as
Short-Time Fourier Transform (STFT) [6], Contin-
uous Wavelet Transform (CWT) [7,8], Synchronous
Compression Wavelet (SCWT) [9], Wigner-Ville Dis-
tribution (WVD) [10], Empirical Mode Decomposition
(EMD) [11], Empirical Wavelet Transform (EWT) [12],
Variational Mode Decomposition (VMD) [13,14], and
many others, machinists can gain insights into the
incipient stages of chatter, allowing for timely inter-
vention and mitigation strategies to ensure smoother
and more precise machining operations [15].

However, all the above stated signal processing
methods have its own set of drawbacks, such as the
end e�ect, mode aliasing, noise sensitivity, and sam-
pling issues with EMD [16]. Mode numbers must be
speci�ed in advance for the VMD approach. Because
establishing the mode numbers needs the operator's ex-
perience and expertise, VMD's adaptability is severely
constrained [17]. EWT has their own limitation such as
leading to an improper segmentation in the frequency
domain, which is reported by researchers in their work
[17]. Smith [18] suggested a novel self-adaptive signal
processing technology called Local Mean Decomposi-
tion (LMD) to meet the challenge of EMD. In order
to obtain the local envelope estimate and local mean
functions, Moving average method has been invoked
in LMD. Recently, Mishra and Singh used the LMD
based on cubic spline function technique to detect
tool chatter in the milling process using statistical
indicators [19]. By using Spline-Based Local Mean
Decomposition (SBLMD), any non-linear and non-
stationary signal (chatter signal) can be decomposed

Figure 1. Steps in chatter diagnosis.
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in the Product Functions (PF's). PF's are the set of
functions of any chatter signal, which are obtained by
the product of Amplitude Modulated (AM) signal and
a Frequency Modulated (FM) signal.

Following the extraction of chatter features, di-
verse models for predicting chatter was developed
using various techniques, including Arti�cial Neural
Networks (ANN) [20,21], fuzzy logic [22], Support
Vector Machines (SVM) [23], Self-Organising Maps
(SOM) [24], Response Surface Methodology (RSM) [25]
and other classi�cation models [26]. It's noteworthy,
however, that there is a gap in the existing literature
concerning the consideration of chatter in conjunction
with MRR. Both MRR and chatter are intertwined
with machining process variables, yet previous studies
have often overlooked the impact of the table feed
rate on MRR during chatter investigations. In the
contemporary manufacturing landscape, industries are
actively exploring methods to enhance productivity
while ensuring superior surface quality in machined
products. Since productivity correlates with MRR
and chatter intensity adversely a�ects surface �nish,
these two aspects cannot be disregarded. This gap
in understanding prompted the current research. Re-
cently, the neural network approach has gained traction
in various engineering �elds [27{29]. However, there
remains a challenge in selecting the appropriate ac-
tivation algorithm for ANN modelling to avoid over-
and under�tting, emphasizing the need for a robust
strategy in this regard.

2. Chatter signal simulation model

The simulation of a real-time operational chatter signal
has been accomplished by employing a spring-mass
model [30] for the milling mechanism, illustrated in
Figure 2. This model takes into account the intricacies

Figure 2. Spring mass model milling system.

of milling cutters, each equipped with multiple teeth
that engage intermittently with the workpiece. It is
assumed in this model that the milling cutter has a
speci�c number of teeth and a zero-helix angle. As the
machining process unfolds, cutting forces act upon the
milling cutter, causing dynamic displacements along
both the feed (X) and normal (Y ) directions. These
cutting-induced forces play a crucial role in exciting the
structure, leading to vibrations represented as x and y
in their respective directions.

Before delving into the force components, it is
crucial to express the general equation of motion
governing the system in both the feed (X) and normal
(Y ) directions, encapsulated in Eq. (1). This equa-
tion forms the basis for understanding the dynamic
behaviour of the milling mechanism and provides a
foundation for further analysis and exploration of how
the system responds to cutting forces.

mx�x(t) + bx _x(t) + kxx(t) = Fx(t);

my�y(t) + by _y(t) + kyy(t) = Fy(t): (1)

The assessment was carried out with a randomly
assigned rotating tooth number, denoted as \k". The
spindle rotates at an angular speed (
) in radians per
second. When the arbitrary tooth \k" is positioned
at the angular immersion (�k (t) = 
t) measured
clockwise from the y-axis, the dynamic chip thickness
in the radial direction is shaped by vibrations occurring
during both the current and preceding tooth periods is
given by Eq. (2):266664

�x(t; T ) = [xtool(t)� xwork�piece(t)]� [xtool(T � t)� xwork�piece(T � t)]
�y(t; T ) = [ytool(t)� ywork�piece(t)]� [ytool(T � t)� ywork�piece(T � t)]

377775 as

s (�k) = [ftsin�k + (vk;0 � vk)]u (�k) ; (2)

where, `ft sin �k' is the static part of the resulting chip
thickness and (vk;0; vk) are the dynamic displacements
of the cutter at the previous and present tooth periods,
respectively. u(�k) is a unit step function that deter-
mines whether the tooth is in or out of cut, is given by
Eq. (3):

u(�k) = 1 �st < �k < �ex;

u(�k) = 1 �k < �st or �k > �ex; (3)

where, �st and �ex are the entry and exit immersion
angles of the cutter to and from the cut, respectively.
Since, Static chip thickness i.e., `ft sin �k' does not
contribute in the regeneration mechanism and so it
has been removed from the dynamic chip thickness
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Figure 3. (a) Simulated signal in time domain, and (b) Simulated signal in frequency domain.

equation. Therefore, modi�ed dynamic chip thickness
equation can be represented as Eq. (4):

s (�k) = [vk;0 � vk]u (�k) : (4)

Now, after resolving the displacement of the cutter in x
and y direction at given angle �k, 0vk;00 can be written
as xt�T sin �k(t)+yt�T cos �k(t) and 0vk0 can be written
as xt sin �k(t) + yt cos �k(t):

Where, `t' is the time and `T ' is the time period
of the cutter revolution.

Now, placing these values in Eq. (4), we get:

s (�k) =[(xt�T sin �k(t) + yt�T cos �k(t))

� (xt sin �k(t) + yt cos �k(t))]u (�k) : (5)

After rearranging the displacement of cutter in x and
y direction, Eq. (5) can be presented as Eq. (6):

s (�k) =[(xt�T � xt) sin �k(t) + (yt�T � yt)
cos �k(t)]u (�k) ; (6)

where, (xt�T � xt) = �x and (yt�T � yt) = �y
are the current displacement of the cutter in x and y
direction with respect to the previous cutter position.
Therefore, modi�ed dynamic chip thickness equation
can be presented as Eq. (7):

s(�k) = [�x sin �k + �y cos �k]u(�k): (7)

The cutting forces that happen tangentially and radi-
ally on tooth \k" increase in line with the axial depth of
cut (b) and the chip thickness (s). It can be expressed
as Eq. (8):

Ftk = Kkbs(�k); Frk = KrFtk: (8)

By rearranging the radial and tangential forces in the
x and y directions and taking the Fourier transform, it
can be expressed as Eq. (9):

F fF (t)g =
1
2
bKtF [D(t)] � F [f�(t)g];

fF (!)g =
1
2
bKtf[D(!)] � f�(!)gg: (9)

By taking the dirac delta function and Fourier trans-
formation, directional coe�cient matrix can be written
as value of harmonic is changing from r = 0;�1 as
Eq. (10):

[D(t)] =
+1X
r=�1

[Dr]eir!T t: (10)

Authors construct a simulated signal by adding white
Gaussian noise to an original frequency set of 41, 80,
106, 141, and 350 Hz, aiming to mimic a real chatter
signal. Developed simulated signal is presented in
Figure 3(a). A real-time simulated signal was then
created with N (number of teeth) set at 4, and cutting
coe�cients Kt and Kr are 796 N/mm2 and 0.212,
respectively. To identify the frequency peaks of the
simulated signal, Fast Fourier Transform (FFT) was
applied, and the results are shown in Figure 3(b).
Notably, direct FFT on the simulated signal with white
Gaussian noise is discouraged for e�ectively visualizing
its frequency peaks, as evident from Figure 3(b).

3. Proposed signal processing techniques

3.1. Spline Based Local Mean Decomposition
(SBLMD)

The data points, (x0; y0), (x1; y1)� � � (xn; yn) has been
selected for understanding the cubic spline based �t-
ting.

In order to have cubic spline based �tting function
f(x) should follow listed conditions:

i. Outside the (x0; xn) band f(x) must be a polyno-
mial of degree one,

ii. f(x) must be a polynomial of three degree in the
subintervals,

iii. Di�erential and double di�erential of f(x) must be
continuous.

Since in each of the subintervals, f(x) is a cubic
function then obviously f 00 (x) is going to be linear.

Taking equally-spaced values of x so that xi+1 �
xi = h, it can be written as Eq. (11):
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f 00(x) =
1
h

[f 00(xi)� (xi+1 � x)

+ f 00(xi+1)� (x� xi)]: (11)

Integrating twice, we have f(x) presented as Eq. (12):

f(x) =
(x� xi)(xi+1 � x)ai

h� 3!
f 00(xi+1)

+
(xi+1 � x)2ai

h� 3!
f 00(xi) + bi(x� xi): (12)

The constants of integration ai, bi are determined by
substituting the values of y = f(x) at xi and xi+1.
Thus:

ai =
yi
h
� h

3!
f 00(xi); bi =

yi+1

h
� h

3!
f 00(xi+1):

Substituting the values of ai, bi and writing f 00(xi) =
Mi, Eq. (12) takes the form Eq. (13):

f(x) =
(xi+1 � x)

h

"(
(xi+1 � x)2

6
� h2

6

)
Mi + yi

#
+

(x� xi)
h

"(
(x� xi)2

6
� h2

6

)
Mi+1+yi+1

#
:(13)

) f 0(x) =� (xi+1 � x)2

2h
Mi +

(x� xi)2

6h
Mi+1

� h
6

(Mi+1 �Mi) +
1
h

(yi+1 � yi):
To impose the condition of continuity of f 0(x), we get:

f 0(x� ") = f 0(x+ ") as "! 0

) h
6

(2Mi +Mi�1) +
1
h

(yi � yi�1)

= �h
6

(2Mi +Mi+1) +
1
h

(yi+1 � yi)

Mi�1 + 4Mi +Mi+1 =
6
h2 (yi�1 � 2yi + yi+1) ;

i = 1:::::(n� 1):

To get the remaining terms, the �rst derivative values
has been used which are known constants. Cubic
spline will be obtained after putting the value of Mi
in Eq. (13).

To get around the limitations of the Conventional
LMD (C-LMD) method, the aforementioned mathe-
matical details underlying the spline-based interpola-
tion have been used. To obtain the PFs in this method,
cubic spline interpolation substitutes the moving aver-
age in the traditional LMD with the subsequent steps.

1. Find the signal's local extremes �rst. Next, link one
cubic spline line to all local maxima and another
cubic spline line to all local minima. As a result, a
top layer Ptl(t) and a bottom layer Pbl(t) will form.

2. The terms presented in Eq. (14) are used to
evaluate the local mean function m11(t) and the
local envelope estimate function a11(t);

m11(t) =
Ptl(t) + Pbl(t)

2
;

a11(t) =
jPtl(t)� Pbl(t)j

2
: (14)

3. Now, remaining step will be same as in the conven-
tional LMD algorithm as shown in Figure 4.

3.2. Conventional-LMD processing and results
In this section, the conventional Local Mean Decom-
position (LMD) technique was employed to analyse
the simulated chatter signal developed in Section 2.
After decomposition, the PFs are showcased in Figure
5(a). To pinpoint the frequency peaks of the simulated
chatter signal, Fast Fourier Transform (FFT) was
employed. Speci�cally, FFT was employed on the �rst
three PFs, revealing the frequency peaks illustrated in
Figure 5(b). It's worth noting that the spectrums of the
�rst PFs lack clarity and do not align with the original
frequency peaks. This suggests that conventional
LMD may not e�ectively extract the original frequency
peaks.

3.3. SBLMD processing and results
The preceding analysis underscores the inadequacy of
the conventional LMD method in e�ectively examin-
ing signals that exhibit variations in both time and
frequency. In response to this limitation, SBLMD
approach is invoked in this section. The decomposed
PFs resulting from SBLMD applied to the simulated
chatter signal are visually presented in Figure 6(a).
Further insight into the frequency domain of the
�rst three PFs is provided in Figure 6(b). Notably,
Figure 6(b) vividly demonstrates that SBLMD adeptly
captures the original frequencies inherent in the sim-
ulated signals. Consequently, it is unequivocal that
the SBLMD approach is highly recommended for the
nuanced analysis of signals characterized by concurrent
variations in both time and frequency.

4. Acquisition of real milling signal using
microphone

Conclusive experiments have been executed on a
milling machine with the objective of real-time identi-
�cation and extraction of tool chatter features. These
milling trials, speci�cally designed for slotted con�gu-
rations, have been conducted under 27 cutting condi-
tions, outlined comprehensively in Table 1. Notably,
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Figure 4. Algorithm used in SBLMD.

Table 1. Milling parameters with their levels.

level

Parameters 1 2 3

Table Feed (TF) 50 mm/min 75 mm/min 100 mm/min

Cutter Speed (CS) 1000 rpm 2000 rpm 3000 rpm

Axial Depth of Cutter (ADC) 1 mm 1.5 mm 2 mm
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Figure 5. (a) PF using C-LMD, and (b) �rst three PF's FFT.

Figure 6. (a) PF using SBLMD, and (b) �rst three PF's FFT.
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Figure 7. Set-up of microphone during experimentation.

Figure 8. Acquired milling signal using microphone.

in these slotted experiments, the radial depth of cut
consistently remained �xed, equivalent to the diameter
of the milling cutter (10 mm). The experimentation
featured the utilization of a four-tooth High-Speed
Steel (HSS) milling cutter. The chosen workpiece
material for these trials have been on Aluminium alloy
(Al 6061-T6 series), a material widely employed in avi-
ation industries. To provide a visual context, Figure 7
showcases a photograph detailing the experimental
setup, o�ering a glimpse into the practical aspects of
the conducted milling experiments. Moreover, One of
the acquired milling signal using microphone during
experimentation has been shown in Figure 8. Presented
real time machining signal is of Experiment No. 4.

4.1. Evaluation of responses
This study focuses on the MRR as its key response
variable. MRR is quanti�ed through the application
of the relationship outlined in Eq. (15), and a visual
representation of the MRR results can be found in
Figure 9:

MRR =
Initial weight (Wi)� final weight (Wf )

Machining time (Tm)
:

(15)

4.2. SBLMD in real milling signals
After validating the e�ectiveness of SBLMD for simu-
lated signal, now, it has been utlized for processing the

Figure 9. The uctuation in MRR values for all 27
experimental runs.

real milling signal. Extracted PF's using SBLMD are
presnted in Figure 10. Thereafter, in order to sieve out
the noisy data from the orginal signal, two important
indicators, pearson Correlation Coe�cient (CC) and
Net Energy Ratio (NER) are adopted and their out-
comes for each PF's has been presented in Figure 11.
CC is generally adopted to �nd the interdependency of
the retrieved PF's with respect to their original signal
using following Eq. (16):

�(pf; os)=
1

X � 1

XX
k=1

�
pfk��pf
�pf

��
osk��os
�os

�
;

(16)

where, X=signal data, �pf and �os are the mean of
individual PF and acquired machining signal, respec-
tively and �pf and �os are the standard deviation of
individual PF and acquired machining signal, respec-
tively. Whereas, NER are adopted to calculate the
energy content of the individual PF's with respect to
the acquired machining signal.

The determination of CC and NER values is
conducted under normalized conditions. Analysis of
Figure 11 distinctly reveals that the �rst three PFs
carry more signi�cant chatter information. Conse-
quently, to visually enrich the signal with meaningful
chatter details, these initial three critical PFs are
amalgamated and synthesized.

In order to visualize the frequency peaks of the
newly reconstructed chatter rich milling signal, FFT
has been utilized and the spectral domain of the signal
is presented in Figure 12. By observing the Figure 12,
three distinct frequencies can be easily recognized viz.
cutter frequency (!), the multiple of cutter frequency
(2!, 3!: : :) along with chatter frequency (!c). Hence,
it can be concluded that SBLMD is quite able to
extract the chatter features from non-linear and non-
stationary signals.

4.3. Determining the response for the
prediction model

In this study, two responses, i.e., CI and MRR have
been utilized to developed prediction model. Their
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Figure 10. PF's extracted using SBLMD of real milling signal.

Figure 11. (a) Correlation Coe�cient (CC) and (b) Normalized Energy Ratio (NER).

values and ascertaining methods have been illustrated
in the subsequent subsections.

4.3.1. Chatter indicator
To study the impact of milling parameters on chatter,
a novel statistical parameter-speci�cally, the coe�cient
of variance-has been introduced as a Chatter Indicator

(CI) as expressed in Eq. (17):

CI =
Standard deviation (�)

Mean (x )
: (17)

The CI value correlates directly with the presence
of chatter components in the signal. The CI has
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Figure 12. Frequency peaks of the reconstructed milling
signal.

been computed for each of the 27 experimental runs,
and the results are visually presented in Figure 13.
Establishing upper and lower thresholds, denoted by
red and green lines, respectively, using the 3� criterion,
enables the classi�cation of three domains representing
chatter intensity, as depicted in Figure 13. Instances
where CI values fall below the green line are considered
satisfactory, while those surpassing it are deemed
otherwise. This visual representation o�ers a clear and
intuitive understanding of the chatter intensity across
di�erent experimental conditions.

4.3.2. MRR
MRR can be emerged as an alternative strategy for
re�ning the prediction model. To enhance the clarity
of our �ndings, MRR have been computed for each of
the 27 experimental runs by applying Eq. (15). The
graphical representation of these calculations is vividly
presented in Figure 9, providing a visual insight into
the impact of MRR on our predictive model.

5. ANN's structure

In this study, the three layers based ANN model are
used as presented in Figure 14. In the developed model,

three input milling parameters (CS, TF and ADC) has
been used as an input. In hidden layer, 10 neurons have
been considered. In output layer, two responses (MRR
and CI) have been considered. In this study, model has
been trained with LM based training algorithm.

Moreover, in order to assess the e�ect of activation
algorithm on the model, three di�erent activation
algorithms has also been considered and is as follows:

1. Tangent Sigmoid (TANSIG) = 2
1+e�2z � 1;

2. Log Sigmoid (LOGSIG) = 1
1+e�z ;

3. Linear (PURELIN) = z.

6. Result and discussion

6.1. Comparison between activation function
Absolute percentage deviation has been calculated in
order to assess the algorithms' propensity for predic-
tion, and it is shown in Table 2. For each algorithm, the
�nal Average Absolute Percentage Deviation (AAPD)
has been determined.

The Average Absolute Percentage Deviation
(AAAPD) for MRR and CI are 7.615% and 4.310%,
respectively, when TANSIG is employed as a training
function. MRR and CI for LOGSIG as a training
function are 4.250% and 3.745%, respectively. AAPD
for MRR and CI are 5.938% and 11.551%, respec-
tively, when PURELIN is used as a training function.
Figures 15 and 16 demonstrate the percentage error
for MRR and CI using the TANSIG, LOGSIG, and
PURELIN training functions. After analysing all of the
potential combinations of the chosen training functions,
it can be concluded that LM with LOGSIG is the best
combination for predicting the output.

6.2. E�ect of milling inputs on responses
A mathematical model was formulated to delve into the
intricate inuence of speci�c parameters on two crucial
aspects of milling operations: MRR and CI. The key
players shaping the monotonic function of MRR are

Figure 13. The uctuation in CI values for all 27 experimental runs.
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Table 2. Absolute percentage deviation for TANSIG, LOGSIG and PURELIN.

Exp. no. TANSIG LOGSIG PURELIN

MRR CI MRR CI MRR CI

1 22.005 13.389 35.595 13.326 11.017 2.877

2 10.592 4.996 18.901 30.577 3.581 21.326

3 29.440 13.645 0.018 0.012 1.835 31.168

4 1.943 6.866 1.079 8.470 16.505 5.680

5 3.233 1.419 1.196 0.880 1.575 23.488

6 4.216 3.273 0.147 0.369 4.076 4.151

7 0.315 1.658 0.863 1.561 2.335 12.134

8 0.972 3.162 0.756 1.036 2.178 10.054

9 16.351 4.928 0.091 1.017 7.023 43.777

10 32.578 29.707 1.141 0.495 19.054 15.363

11 2.105 0.566 0.439 0.175 3.878 0.596

12 7.587 2.413 0.347 0.108 0.068 10.754

13 8.888 1.539 0.139 0.206 8.826 7.079

14 3.544 1.195 17.645 15.041 10.955 3.268

15 1.787 2.506 0.264 0.461 4.017 2.410

16 8.725 2.265 0.348 0.733 3.536 5.269

17 11.308 3.720 1.476 13.248 2.950 7.094

18 7.539 2.449 0.240 0.235 4.211 4.524

19 7.650 4.097 1.127 0.082 17.637 19.002

20 10.486 3.154 0.121 1.050 6.812 21.645

21 6.124 0.502 0.238 0.059 0.193 1.501

22 0.727 1.608 0.010 0.391 8.330 4.905

23 1.544 1.815 15.131 6.475 7.233 15.477

24 0.305 2.103 9.740 2.321 0.698 2.766

25 4.773 1.455 0.100 0.126 1.088 17.171

26 1.243 1.284 0.188 0.114 0.013 9.702

27 0.604 0.663 7.422 2.542 10.707 8.687

AAPD 7.651 4.310 4.250 3.745 5.938 11.551

Figure 14. ANN Model
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Figure 15. MRR error in TANSIG, LOGSIG and PURELIN.

Figure 16. CI error in TANSIG, LOGSIG and PURELIN.

the table feed rate, axial depth of cut, and radial depth
of cut. When these parameters are introduced, MRR
exhibits a clear and linear ascent.

Chatter, a disruptive phenomenon during milling,
exacts a toll on both surface �nish and tool longevity.
To optimize the milling process for enhanced MRR,
superior surface precision, and prolonged tool life, it
becomes imperative to mitigate the impact of CI. This
indicator is intricately tied to the interplay of input
milling parameters. Visualizing this interaction, the
section employs illustrative contour plots, exempli�ed
in Figure 17, to vividly portray the e�ects of these
interplaying factors on both MRR and CI.

In Figure 17(a) and (d), the charts depict the
variations in MRR and CI concerning the Axial Depth
of the Cutter (ADC) and Cutter Speed (CS) while
maintaining a consistent Table Feed (TF) rate of 75
mm/min. Transitioning to Figure 17(b) and (e), the
graphs showcase the deviations in MRR and CI based
on the ADC and TF rate, with a steady CS set at 2000
rpm. Finally, Figure 17(c) and (f) exhibit the changes
in MRR and CI in relation to the TF rate and CS,
while holding the ADC constant at 1.5 mm.

These visual representations employ a distinct
colour scheme (red, tangerine, yellow, blue, dark green,
and green) to highlight the uctuations in MRR and
CI. The colour spectrum indicates the extent of these
variations, with red and green denoting the minimum
and maximum values of MRR and CI within the con-
sidered range of parameters. This graphical approach

provides a clear visual representation of the observed
trends without replicating existing content.

The suitable range of MRR (green colour) and
CI (green colour) has been estimated after taking into
account all six of these �gures, as shown in Table 3.

After getting the value of Metal removal rate
(MRR) and CI for three cases (Satisfactory, Medium
and Unsatisfactory), a range of milling parameters has
been extracting from the Figure 17, has been presented
in Table 4. This range of milling parameters indicated
the safe zone where, Chatter in minimal having higher
MRR.

Table 3. Suitable ranges for responses.

Group CI MRR

Satisfactory CI � 2.56 MRR � 1.47

Medium 2.56 > CI > 1.29 1475 < MRR < 2.97

Un-satisfactory CI � 1.29 MRR � 2.97

Table 4. Safe ranges for input milling parameters.

Axial depth
of cutter

Table
feed rate

Cutter
speed

MRR 1:25� 2 60� 100 1000� 3000

CI 1� 1:8 50� 100 1000� 2300

Safe range 1:25� 1:8 60� 100 1000� 2300
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Figure 17. Contours plots for MRR and CI.

Table 5. Validation test.

Exp.
no.

ADC CS TF CI MRR Surface view

1 1.7 1600 99 1.46 3.11

6.3. Con�rmation test
The main aim of this work is to obtain optimal param-
eters which will give minimal chatter at optimal MRR.
It is well known facts that whenever chatter minimizes,
MRR also diminishes. In experimental section, CI
and MRR has been calculated for the 27 experiments
and it has been found that for experimental number
27, the value of CI and MRR are 3.158 and 3.69,
respectively. These values are highest values among
all the 27 experimental runs.

However, in order to aforementioned objective,
optimal milling parameters have been ascertained using
ANN based prediction models. Based on ascertained
optimal milling parameters, a range has been selected

and validation experiment has been conducted, as
presented in Table 5. After performing the validation
experiment, CI and MRR have been calculated. It has
been found out that the value of CI and MRR are 1.46
and 3.11, respectively.

In order to validate the optimal parameters, these
values are compared with highest value of CI and MRR
viz. 3.158 and 3.69, respectively. After comparing it
has been found out that, the values of CI and MRR
for the validation experiment, has been decreased by
116.30% and 18.6%, respectively. Additionally, the
CI value for the validation test fell below the stability
threshold, as illustrated in Figure 13. Examining the
surface texture con�rmed the accuracy of the developed
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parameter range. Consequently, the proposed method
proves e�ective in determining stable milling param-
eters that lead to higher MRR and improved surface
�nish. In summary, the derived milling parameters
position themselves within a stable machining zone,
resulting in enhanced MRR.

7. Conclusion

The two major goals of this study are to diagnose
chatter beginning at the early stages and to determine
the setting a realistic of control factors to use during
milling operations in order to achieve a high-quality
surface and greater Material Removal Rates (MRR).
A novel Local Mean Decomposition (LMD) method
based on cubic spline interpolation has been employed
to accomplish the �rst goal. Later, Arti�cial Neural
Networks (ANN) models for the responses viz. Chatter
Indicator (CI) and MRR were designed to accomplish
the goal. Results from the veri�cation test indicate
that, the ascertained range of milling parameters is able
to generate a best surface �nish and a better MRR.
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