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Abstract: In this work, the Cell Formation Problem (CFP) within manufacturing systems is evaluated, 

seeking to optimize production processes. Accordingly, the appropriateness of the existing evaluation measures 

for use in dynamic manufacturing scenarios is investigated with the view of enhancing their accuracy and 

efficacy. The obtained findings indicate the need to reevaluate the commonly adopted evaluation measures for 

CFP, potentially replacing them with data-driven and context-specific approaches. A quantitative methodology 

is successfully used to defines parameters that quantify the quality of evaluation measures, rendering such 

evaluation more robust and adaptable to specific contexts. While grouping efficacy is a commonly accepted 

measure in this research field, it was shown to exhibit drawbacks that do not justify its widespread popularity. In 

response to the identified research gaps, a refined objective function is proposed for the core CFP problem. This 

novel function is designed to enhance solution efficiency and accuracy, ultimately contributing to improved 

manufacturing processes. The aforementioned findings present a significant advancement in the understanding 
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and application of evaluation measures in the CFP domain, offering a foundation for further research and 

potential enhancements in manufacturing optimization practices. 

Keywords: cellular manufacturing; cell formation; performance measures; heuristic methods; grouping 

efficacy; multicriteria optimization. 

 

1. Introduction 

Cellular manufacturing represents a critical approach within lean manufacturing. It is also a fundamental aspect 

of computer-integrated manufacturing, while supporting flexible automation and enabling just-in-time 

production. Accordingly, it is a valuable application of group technology and a sound concept for organizing 

work to reduce market response times, and minimize inventories, lead times, and costs (e.g. [1-4]). The 

application of cellular manufacturing extends across various industries, including aerospace, defense, 

automotive, machining, pipe fabrication, forging, woodworking, cable manufacturing, electronics, and welding 

[5,6]. 

 

Therefore, addressing the challenges within cellular manufacturing – such as the Cell Formation Problem (CFP), 

group layout, group scheduling, and resource allocation [7] – is of interest for both practitioners and researchers. 

Still, the CFP remains the primary concern when designing cellular manufacturing systems. In extant research, 

the CFP is considered as a multi-criteria problem (e.g. [8,9]), and encompasses diverse objectives such as 

intercell flow, intracell workload balancing, machine duplication costs, number of bottleneck operations, 

number of bottleneck machines, number of bottleneck parts, workload of the busiest machine, and workload of 

the busiest part. 

 

The fundamental challenge in various CFP formulations lies in adequately accommodating a 0–1 machine–part 

incidence matrix as input. At its core, CFP involves categorization of parts into part families and machines into 

machine cells. It also entails assigning the part families to suitable machine cells to maximize the reliance on 

intracell operations (processing a part on the machine within the corresponding cell) while minimizing the need 

for intercell operations (processing a part on the machine outside the corresponding cell) [10,11]. As this 

markedly increases the computational complexity CFP is conceptualized as an NP-hard problem.  
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The focus of the present study is establishing the performance measures for this CFP formulation. This research 

focus was motivated by the fact that, despite the core problem involving two optimization variables – number of 

intracell and intercell operations, respectively – all leading algorithms employ a single objective function, 

namely grouping efficacy. The critical question pertains to how one evaluates the quality of a heuristic solution 

for CFP based on a single objective criterion. Consequently, nearly all relevant work in this domain is compared 

based on grouping efficacy, as this measure was intuitively deemed the most suitable in literature. As this is 

clearly inadequate in the CFP context, the work reported here was guided by the following research question 

and objectives: 

Research Question: How can the quality of a measure for evaluating solutions in the CFP be accurately 

quantified and experimentally established, leading to an improved objective function for the core CFP? 

Research Objectives: The primary objective of this research is to challenge and reassess the commonly adopted 

measures used in evaluating solutions for the CFP. Its further goal is to quantitatively establish the parameters 

defining the quality of a measure within a specific context and propose a more suitable objective function for the 

core CFP problem. 

 

Consequently, this paper introduces a novel, more fitting objective function for the core CFP. The contributions 

aim to advance the field of CFP by promoting a deeper understanding of the evaluation measures and proposing 

a more effective objective function to guide problem-solving approaches in this context. 

 

The remainder of the paper is organized into six sections. Section 2 is designated for the literature review, while 

the research problem is delineated in Section 3, along with the key terms and notations. In Section 4, 

performance measures for evaluating the effectiveness of cell formation solutions are introduced, while 

parameters for assessing measure quality are defined and further analyzed based on this quantification in Section 

5. These measures are evaluated in Section 6 through a detailed experimental assessment of solutions obtained 

by applying six prominent approaches for the most widely used benchmark problem instances. The article 

concludes in Section 7, where the study outcomes are summarized before providing recommendations for future 

research in this field. 
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2. Literature review 

Although several meta-heuristic procedures for solving this core problem have been proposed over the years, 

only recently introduced heuristics that have yielded promising results are outlined here and are further utilized 

to analyze performance measures. Specifically, a simulated annealing-based meta-heuristic with variable 

neighborhood (SAYLL) was developed and tested by Ying et al. [1]. Diaz et al. [5] proposed a two-phase 

iterative method denoted as GRASP heuristic for finding lower bounds for the CFP. A hybrid meta-heuristic 

algorithm (GAVNS) that combines genetic algorithm with variable neighborhood search was presented by 

Paydar and Saidi-Mehrabad [12]. More recently, Martins et al. [13] proposed a method based on the Iterated 

Local Search meta-heuristic coupled with a variant of the Variable Neighborhood Descent method that uses a 

random ordering of neighborhoods in the local search phase (CFPAS). A grouping version of the league 

championship algorithm (GLCA) was developed by Noktehdan et al. in 2016 [14]. Danilovic and Ilic [15] 

proposed a Cell Formation Optimization algorithm (CFOPT) in 2019. 

 

Thus far, various performance measures have been proposed, including those outlined below: 

 Grouping efficiency (E): is the first proposed performance measure for evaluating the heuristic cell 

formation solutions, developed by Chandrasekharan and Rajagopalan in 1986 [16]. 

 Grouping efficacy (Г): is a measure proposed in 1990, by Kumar and Chandrasekharan [17], the most used 

measure in literature. Authors conclude that the drawback of the previous measure, E, is that even a bad 

solution having large number of intercellular operations may have efficiency around 75%. 

 Grouping capability index (G): was proposed by Hsu in 1990 (see e.g. [18,19]). This simple measure only 

gives importance to the number of intercellular operations. 

 Weighted grouping efficacy (W): was suggested and tested on large-scale problems by Ng in 1993 [20]. 

 Grouping index (I): was proposed by Nair and Narendran [21]. 

 Linear performance measure (L): was initially proposed by Kattan in 2007, according to Serageldin et al. 

[22]. 

 Second linear performance measure (P): was proposed by Serageldin et al. [22]. The drawback of this 

measure is that it can take negative values. 

 Second grouping efficiency measure (S): was recommended by Agrawal et al. in 2011 [23]. Authors 

proposed two measures and found that S had a better discriminating power. 
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 Weighted modified grouping efficacy (M): was introduced by Al-Bashir et al. in 2018 [24]. The authors 

claim that this measure can be used to logically compare solutions that have the same sum of voids and 

exceptional elements. 

 

In all reviewed articles pertaining to CFP algorithms, the work of Sarker [18] and Sarker and Khan [19], as well 

as Gonçalves and Resende [25] is cited, as these authors performed the most extensive objective function 

analyses and comparisons. Specifically, as a part of their investigations, Sarker [18] and Sarker and Khan [19] 

conducted computations on 25 machine–part incidence matrices to derive the final average-difference matrix of 

absolute differences among the tested performance measures based on the 0.8 weighting factor. While these 

authors emphasized the importance of selecting an appropriate weighting factor, they did not quantify the tested 

measures. As a part of their investigation, Gonçalves and Resende [25] compared grouping efficiency, and 

grouping efficacy and established that the latter was a more suitable performance measure due to its capability 

to incorporate both within-cell machine utilization and inter-cell movements, among other reasons. However, 

even though the authors portrayed the absence of a weighting factor as an advantage of their strategy, it is in fact 

a fundamental drawback when considering its practical application. 

 

As indicated by this brief review, there exists a notable gap in extant literature concerning the selection of an 

objective function for optimizing and validating the results obtained by CFP algorithms, given that: 

 The commonly adopted CFP goal of maximizing intracell operations and minimizing intercell operations is 

imprecise, allowing trivial solutions (such as grouping all machines into a single cell). 

 Existing measures lack the ability to satisfy the criteria incorporating two opposite optimization variables 

without a weighting factor. 

 Currently utilized measures that rely on a weighting factor often fail to distinguish between the two 

opposite optimization criteria. 

 The measures utilized in CFP are not quantified. 

 

These shortcomings have motivated the present study, which has four main objectives: (i) quantifying the 

existing measures for CFP evaluation, (ii) defining a weighting factor that segregates the two opposite 

optimization criteria, (iii) evaluating the existing measures using the proposed quantification, and (iv) 

introducing a novel performance measure superior to all currently available measures. 
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3. Definitions and notations 

For clarity, the main terms related to the basic CFP are defined below. 

Binary machine–part matrix: A matrix comprising of entries that take a value in the [0,1] range, indicating 

which machines are used to produce each part. This matrix can be represented by  ijaA  , whereby an entry ija  

is defined as follows: 






otherwise 

i machine visits j part if 
aij

,0

,1
 

where i denotes the machine index (i=1,…,m), j represents the part index (j=1,…,n), m is the number of 

machines, and n is the number of parts. A simple example of the binary machine–part matrix is given in Table 1.  

 

Table 1 Example of binary machine–part matrix 

 

Block: A sub-matrix of the binary machine–part matrix formed by the intersection of rows representing a 

machine cell and columns representing a part family [18]. In Table 1, the two sub-matrices are shaded in gray. 

Void: A element with 0 appearing inside the diagonal block. In our example, the number of voids is 1. 

Exception: An operation (indicated by 1s) appearing outside the diagonal blocks. In our example, the number of 

exceptions is 0. 

 

3.1 Notations 

m  – number of machines 

n – number of parts 

o – total number of operations (1s) in the machine–part matrix 

v  – total number of zeros (0s) in the machine–part matrix, onmv   

C – number of cells 

1e – total number of intracell operations (1s inside the diagonal blocks) 

ve – total number of voids 

ee – total number of intercell operations (exceptions) 

B – block diagonal space ( veeB  1 ). 
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3.2 Problem formulation 

The CFP objective is to group parts with similar processing requirements into part-families. This objective must 

strike a balance between two opposing criteria – reducing the total number of exceptions and minimizing the 

cell dimensions. Accordingly, the first optimization variable focuses on minimizing exceptions, while the 

second relates to cell dimensions. As the total number of operations within cells represents the difference 

between the overall number of operations and the total number of exceptions, the total number of voids is 

treated as the second optimization variable. 

 

Consequently, the primary CFP objective can be defined as the minimization of both exceptions and voids. 

Since the decrease in the value of one variable increases the value of the other, the crucial challenge in this 

optimization process lies in determining the significance of the relationship between the two variables, which is 

vital for accurately formulating the CFP. Without a clear understanding of this relationship, the optimization 

results may lack clarity for managers seeking to utilize these outcomes. 

 

Therefore, a fundamental parameter in the CFP formulation should quantify the importance of minimizing 

exceptions versus minimizing voids. A straightforward and intuitive parameter for this purpose is the weighting 

factor (q), which ranges from 0 to 1. Accordingly, a value of 0.5 represents equal importance, while 1 signifies 

exclusive emphasis on exceptions, and 0 indicates exclusive focus on minimizing voids. Unlike previously 

proposed weighting factors with unclear optimization implications, this weighting factor clearly depicts the 

importance of minimizing exceptions and voids. 

 

3.3 Performance measures 

It is important to emphasize that exceptions and voids unambiguously define all other variables featuring in the 

existing measures, as outlined below. 

Grouping efficiency: 21 )1(  qqE         (1) 
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where 1 –is the ratio of the number of operations inside the diagonal blocks to the total number of elements in 

the diagonal blocks and is thus given by:
vee

e




1

1
1 , 

2 – is the ratio of the number of voids outside the diagonal blocks to the total number of elements outside the 

diagonal blocks, i.e.:
)()( 1

2
eoev

ev

v

v




 . 

Grouping efficacy: 





1

1
Г ,         (2) 

where  – is the ratio of the number of exceptional elements to the total number of operations: oee / and 

– is the ratio of the number of voids to the total number of operations: oev / . 

Accordingly, 
v

e

eo

eo
Г




 . 

Grouping capability index: oeG e /1 .        (3) 

Weighted grouping efficacy:
 

    eev

e

eqeeoq

eoq
W






1
.     (4) 

Grouping index:
   
   AeqeqB

AeqeqB
I

ev

ev






1

1
,       (5) 

where A is a correction factor, whereby 0A for Bee  , and BeA e  for Bee  . 

Linear performance measure: 









v

e

o

e
L ve

2

1
1 .       (6) 

Second linear performance measure: 
o

ee
P ve 


5.0

1 .      (7) 

Second grouping efficiency measure: 
nmC

eqeq
kS ve









 


1)1(
1 ,    (8) 

where k is a scaling factor frequently set to2. 

Weighted modified grouping efficacy:  





































e

ve

e

ve

ee

eee

ee

eee
M

22

1

22

1

1

1

1

1 , or simply 
eee

e
M




21

1
.     (9) 
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4. Measure quantification 

To effectively compare measures when applied to the same problem, the criteria by which one measure 

outperforms another need to be precisely defined. Accordingly, parameters that quantify the quality of measures 

in the CFP context are established below. 

 

First, given the presence of two optimization variables in CFP, a measure should incorporate a weighting factor. 

Although weighted sum approaches are often constrained in multi-objective optimization, achieving a balance 

between two variables is manageable. However, the relationship between these variables is not clearly defined in 

the existing weighting factors. Moreover, users of the optimization procedure should be able to define the 

impact of optimization variables on the final solution. To meet these requirements, a simple representation of the 

weighting factor ]1,0[q is required, such as 21 )1( xqxqO  , where O is the objective function and x1 and 

x2 are the optimization variables. This approach helps users understand the impact of individual variables on the 

objective value. Furthermore, it's crucial that these optimization variables also need to be clearly defined with 

respect to exception and void minimization, allowing users to unambiguously determine their relative 

importance in their specific context. 

 

The objective function boundaries also require precise definition, particularly in the CFP, given that its objective 

function can be expressed in terms of density, which is a relative quantity that takes bounded and predetermined 

values. This characteristic is invaluable for heuristics but is rare in most combinatorial problems. In each 

iteration, the objective function is calculated and compared with the previous values. As heuristics necessitate 

significant number of iterations, algorithm efficiency directly depends on the objective function characteristics. 

The first significant advantage of bounded objective functions is the possibility to check the distance between 

the current solution and the optimum. Another, perhaps more important, advantage is that bounded objective 

functions enable simple pre-processing, which reduces the size of the processed instance. Feasible space is 

reduced accordingly and after that any other procedure could be proceeded on such reduced instance. The 

evaluation in [15] and their findings confirmed the significant impact of reduction on efficacy in all tested 

instances. It is also important to note that in the CFP all output values are integers, allowing the feasible solution 

set to be markedly reduced.  
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Lastly, as the discrimination power plays a crucial role in evaluation it should be considered when assessing a 

measure's effectiveness. 

 

In the upcoming sub-sections, these key parameters will be quantified for the nine measures presented earlier. 

While this quantification may appear as a basic mathematical analysis of the optimization problem, it is well-

suited to the specific characteristics of the core CFP problem, where the simplicity of quantifying parameters 

using elementary operations offers a distinct advantage. 

 

4.1 Weighting factor 

Some studies have misconstrued the purpose of the weighting factor, incorrectly assuming it's primarily for 

enhancing measure quality. The primary role of a q is to allow users to prioritize specific aspects during the 

optimization process. Among the nine measures discussed previously, only E, W, I, and S incorporate a 

weighting factor, as outlined below. 

• E provides the simplest and most distinct impact of the q on variables (density of operations within diagonal 

blocks and the density of voids), allowing users to define optimization variables from their perspective and 

establish clear priorities. 

• W was designed as an attempt to introduce q into the commonly used grouping efficacy measure. However, 

as a clear separation of concerns is lacking, Equation (4) can be rewritten as 
  eeqBq

eq
W






1

1
, 

indicating that the total number of operations within diagonal blocks is related to q, but the inverse 

relationship involves both q and (1 – q), making it less straightforward. 

• I introduces a more intricate relationship between optimization variables and the q. 

• Like E, S exhibits a simple and distinctly separated the impact of the q on each variable. It has an advantage 

over E as its optimization variables encompass voids and exceptions. 

 

In the discussion that follows, to allow objective comparison of measures that have weighting factors with those 

that do not, q=0.5 is adopted, signifying that both variables are given equal priority in the optimization process. 
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4.2 Void-exception relation 

When optimizing two variables, understanding their influence on the measure's value is crucial. If this 

relationship is unclear, the consumer of the optimization won't know if the obtained result is superior to another 

result. In such cases, quantifying the quality of the obtained result becomes challenging. While measures Г, G, 

W, L, P, S, and M establish a clear and straightforward relationship between the impacts of voids and exceptions, 

E and I lack such clarity. 

 

To quantify the relationship between voids and exceptions, we examine the scenario where the current objective 

value remains constant when ee  is changed by ee  and ve  is changed by ve .  

For Г: 

vvvv

e

eeo

ee

eo

e

eo

eo
Г












 111

 

vvvv eeeoeeoeeoe  1111 )()()(  

v

e

v

e

vv e

e

e

eo

eo

e

e

e



















)(11
 since 0o  and the sign of the exception change is opposite to the 

void change. 

Finally, 







vv

e

eo

e

e

e 1
. 

Therefore, two different partitions are characterized by the same measure value if and only if the ratio of the 

changes is equal to the measure itself. This simple relationship correlates the impact of exceptions and voids 

with the measure. It implies that the impact of variables is almost equal for the near-optimal solutions, and that 

the impact of exceptions increases as the solution quality decreases. Therefore, this measure does not provide 

clear insight into the impact of optimization variables. 

G is solely dependent on exceptions, making it suitable only in rare instances where exceptions are the sole 

concern to the user. 

W is equivalent to Г when q=0.5, due to which the same conclusions apply (other q values are discussed later). 

For L, the exception-void ratio is equal to o/v as shown below: 

.
v

o

e

e

v

e 



 

For P: 
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o

ee
P ve 


5.0

1  

vevvee eeeeee 5.0)(5.0   

5.005.0 





v

e
ve

e

e
ee . 

Therefore, for an equal measure value, the change in the number of voids should be twice the change in 

exceptions. 

M depends on exceptions only, due to which the conclusions related to G apply. 

S considers the number of cells as parameters, which are functions of voids and exceptions. Consequently, the 

number of voids and the number of exceptions cannot be isolated on different sides of the fraction. 

 

On the other hand, measures E and I imply no direct relationship between voids and exceptions. 

E consists of two factors: the density of operations inside blocks and the density of zeros outside blocks. As the 

size of blocks is influenced by the distribution of voids and exceptions, establishing their impact is difficult. 

I provides two different definitions for the link between B and ee (however, the second case is extremely rare): 

0A  for Bee  , and BeA e   for Bee  . 

For A = 0 and q = 0.5: 

ev

ev

eeo

eeo
I






5.05.1

5.05.0
. 

A sufficient condition for I to have value 1 is absence of voids in conjunction with the optional number of 

exceptions. This directly implies a poor discrimination power of this measure. 

 

In conclusion, L and P maintain a constant ratio of the impact of voids and exceptions, making these measures 

convenient for weighting factor implementation. Г and W (q = 0.5) are suitable when the impact of optimization 

variables needs to be adjusted based on the quality measure itself. G and M are applicable in rare scenarios 

where only the number of exceptions is of interest. Finally, E, I, and S make it difficult to extract simple 

conditions for the optimization environment. 
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4.3 Boundaries 

In an ideal scenario without any restrictions on measure boundaries, the best measure would be given by

ve eqeqO  )1( . However, this objective function is unbounded. Consequently, researchers opted to work 

with densities of exceptions and voids, leading to variations in measures primarily based on how density is 

defined. 

 Measures Г, G, W, and P are normalized by the total number of operations (o) and their values are bound 

within the [0, 1] range. 

 In L, exceptions are normalized by o, while voids are normalized by their total number of voids (v). L is 

also bounded within the [0, 1] range. 

 Measure S is normalized by 
k

nmC 
and is also bounded within the [0, 1] range. 

 Conversely, both S and P are unbounded and can have negative values. 

 

4.4  Discrimination power 

A measure's ability to distinguish between solutions is closely tied to its treatment of voids and exceptions. As a 

result, that measure is not necessarily superior to another that does not make such distinction. The difference 

could stem from varying priorities in the void-exception relation for each measure. For a fair comparison of 

measures, it's essential to account for the impact of different void-exception relations on evaluating 

discrimination power. 

 

This evaluation may involve calculating the two-dimensional (void, exception) distribution for each measure 

and using statistical measures derived from this distribution to quantify discrimination power. However, this 

method can be impractical for some measures. 

 

Alternatively, discrimination power of different measures can be evaluated experimentally. In this case, the 

validity of the results relies on the test instances covering a wide range of problem classes. The evaluation 

presented in this paper is based on a well-known list of instances that meet these criteria. 
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5. Experimental comparison of the discrimination power of the key performance measures 

In conventional experimental evaluations of heuristic procedures, algorithms are tested on specific instances, 

and their performance is compared based on the objective function values and execution time. Sensitivity 

analysis is often used to ascertain how the results vary across different test instances. However, the experimental 

evaluation conducted as a part of the present study takes a different approach, where by the test instances are 

characterized by three parameters: the number of cells, the number of exceptions, and the number of voids. 

These parameters allow us to analytically calculate all tested objective functions. The conclusions drawn from 

this evaluation yield a measure ranking that is valid only for the specific set of parameters applied. As such, 

sensitivity analysis does not need to be performed to validate these conclusions. 

 

When adopting this strategy, the challenge lies in generalizing this evaluation to represent various types of real-

life incidence matrices, encompassing sparse, normal, and dense operations, a wide range of optimal values, as 

well as outliers, singletons, and residuals. To achieve this objective, we defined a set of parameter triplets 

derived from the results of well-known CFP heuristics applied to a reference set of 34 test instances. This 

approach resulted in an absolute ranking of the tested measures, applicable to all reference results published in 

the literature. Consequently, the obtained findings do not require sensitivity analysis. 

 

Before presenting further details of our experimental evaluation, it is vital to delineate the procedure selection 

criteria. The selection may seem inappropriate as we compared only very good solutions for each instance, 

which might not effectively represent the solution space. However, including solutions of lower quality would 

complicate the presentation without substantially enhancing the understanding of the assumptions outlined in 

this paper. Moreover, the focus here is on comparing measures, while utilizing the results of these algorithms 

when applied to the specified instances to populate the table with relevant data. This data is then used to draw 

conclusions regarding the advantages and drawbacks of the tested measures. 

 

The reference set of 34 test instances can be accessed via http://mauricio.resende.info/data/cell-formation/. 

Notably, instances denoted as No. 1 and No. 1a, although considered the same source by some authors, are 

distinct. It's essential to explain why we selected these 34 test instances dating back to before the year 2000. 

Despite their age, these instances remain authoritative today due to providing comparisons with the best-

published results and representing the most challenging instances for the observed problem. 

http://mauricio.resende.info/data/cell-formation/
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As shown in Table 2, we utilized approaches SAYLL, GRASP, GAVNS, CFPAS, GLCA, and CFOPT, all of 

which were recently developed and share the same objective of maximizing grouping efficacy (Г). 

 

Table 2 Referent methods sourced from literature 

 

 

The obtained results (as well as those published in the referenced papers) are presented in Table 3, where 

absence of data for certain instances indicates that the algorithms were not tested on those instances by the 

authors of the relevant work. For the weighted functions, we assume q = 0.5. The input variables (o), output 

variables C, ev and ee (highlighted in gray to emphasize variables from which all other data is analytically 

derived), as well as parameters v, e1, and B calculated from previous columns, are presented first, while the 

subsequent columns contain measure values calculated from corresponding variables and parameters. W is 

excluded as it yields identical results to Г when q = 0.5. The first three rows provide the average and minimal 

values for the column, along with the count of entries above the column average. 

 

To highlight specific properties, different labels are used: 

 Non-optimal solutions with a value of 1 are labelled with a. 

 Minimum values are labelled with b. 

 Negative values are labelled with c. 

 The entire S column is labelled with d  as it represents the only unbounded measure. 

 Equal values for different partitions are labelled with e. 

 The entire instance No. 22 is labelled with f, being the only instance where all measure values are 1. 

 Values exceeding the average for the observed column are labelled with g, enabling direct visual 

comparison of measure value deviations. For instance, for instances 1 and 2, measure Г has all but one 

value above the average, while measure L has values spread around the average for the same instances. 

Since we only considered the best results for all instances, measures with better discrimination power 

have fewer entries above the average. 

 

Table 3 Comparison of key performance measures using the most widely used six approaches (q=0.5) 
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5.1 Weighting factor as a tuning parameter 

The weighting factor was proposed as a tuning parameter by several authors, who usually recommend lower 

values for high-dimensional problems, thereby attributing greater significance to the density of zeros outside the 

diagonal blocks [18]. To assess the validity of this perspective, we computed grouping efficiency for five high-

dimensional instances using three q values (0.3, 0.5, and 0.7), as presented in Table 4. 

 

Table 4 Grouping efficiency values for five high-dimensional instances 

 

Observations indicate that the values of E increase with lower q values, resulting in greater disparities between 

E and Г (ranging from 0.1263 in No. 33 to 0.4168 in No. 31). Moreover, solutions featuring a greater number of 

exceptions and fewer voids tend to yield better grouping efficiency. For instance, in No. 30, the highest result of 

E=0.9419 (q=0.3) is achieved with ev=11 and ee=40, followed by the result of E=0.9335  with ev=15 and ee=38, 

and the least favorable result of E=0.8960 with ev=41 and ee=27. 

 

However, irrespective of the chosen q value, the range of E values is significantly narrower compared to the 

range of  Г values. Consequently, the measure's quality for the examined instances is not affected by q. 

6. Discussion of results 

 

The value of Г ranges from 0.42963 (instance No. 18) to 1 (instance No. 22). As outlined in the preceding 

section, Г is more responsive to alterations in the number of voids than to shifts in the number of exceptional 

elements. Instances No. 21 and No. 30 underscore this characteristic. 

 

Measure E falls within the range [0,1] and displays the second largest number of entries above the average, 

indicating relatively lower discriminating power. Its value remains high even with a considerable number of 

exceptional elements in solutions (observed in instances No. 9, 14, 15, 16, 17, 18, 19, 21, 25, 26, 27, 28, 29, 30, 

31), often surpassing Г by more than 0.3 in certain instances. 

 

Measure G is non-negative and solely considers the number of exceptional elements, being insensitive to voids 

within diagonal blocks. Consequently, a smaller number of exceptions results in a higher value of G. 

Calculations across all test instances show that G ranges from 0.52252 to 1. However, its main drawback stems 
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from the potential to attain a value of 1 even if a perfect block diagonal form is not achieved (as seen in 

instances No. 1a, 10, 11), leading to higher values than those obtained when applying Г. 

 

Measure I also adheres to non-negativity and displays the lowest number of entries above the average. However, 

its discrimination power is compromised as this measure can take the value of 1 even when a perfect block 

diagonal form is not achieved (as was the case in instances No. 1, 5 and 8). 

 

Measure L, falling within the [0,1] range, exhibits the second-lowest number of entries above the average. 

Considering that the measure with the lowest number of entries is the unusable measure I, it can be reasonably 

deduced that L boasts the best discrimination power among the tested measures. 

 

Measure P was unable to effectively classify solutions in several instances (No. 3, 4, 21, 30, and 31), rendering 

its discrimination power unacceptable. 

 

Measure S has the inappropriate flexibility to take negative values in certain instances (e.g., No. 9, 28). 

 

Measure M can attain the value of 1 even when a perfect block diagonal form is not achieved (instances No. 1a, 

10, and 11). 

 

In sum, except for L, all tested measures exhibit some of the previously discussed drawbacks. Its advantages are 

further confirmed by the findings reported in Table 5,where the eight measures (W is excluded as it yields 

identical results to Г when q = 0.5) are compared in terms of the void-exception relation (VER), dependencies 

(VE; where ‘ve’ denotes that the measure depends on both voids and exceptions, ‘v’ denotes only voids 

dependence, while the dash is used in all other cases), boundaries (BND), number of entries above average 

(AAVG), 1I and NEG (denoting the existence of 1 as the value of the non-optimal solution and the occurrence of 

negative values, respectively), and SEP (which indicates if the measure struggles to classify solutions that are 

effectively classified by other measures). The favorable entries are shaded in gray, reinforcing the superiority of 

L with respect to all attributes. 

 

Table 5 Summarized comparison results 
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The conclusions drawn from this research are crucial considerations when devising a new optimization 

algorithm for the CFP. Specifically, although Г is commonly considered the optimal measure for CFP, the 

findings presented in this work confirm that it suffers from several notable drawbacks (uncertainty in the impact 

of optimization variables on the final solution in particular), limiting its practical utility. The condition where 

different partitions yield the same measure value only if the ratio of changes equals the measure implies variable 

impact alterations during the optimization process. This uncertainty in the impact of optimization variables on 

the final solution prohibits the creation of a generic measure with a weighting factor, as evidenced by the 

unsuccessful attempt with W. 

 

Conversely, despite the absence of a weighting factor, L possesses commendable qualities, as the impact ratio of 

optimization variables, represented by o/v, essentially mirrors the density of operations and is readily known in 

advance. 

 

Given these insights, a potential generic measure incorporating a weighting factor could be formulated as 

follows: 

  ]1,0[,1
2

1
1 




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


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e
q

o

e
qL ve
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This measure encapsulates all desirable features of the linear performance measure while integrating a clearly 

defined weight function. The user can seamlessly implement any desired relationship between the significance 

of voids and exceptions. For instance, for equal impact, the weighting factor should align with the operations 

density as shown below: 

vo

o
q

v

q

o

q







1
. 

 

It's important to note that while the proposed measure is a compelling example, it may not represent the ultimate 

solution. It serves as a demonstration of how prior research can be leveraged to craft a robust, hybrid measure. 

 

7. Conclusion 

This paper provides an evaluation of the existing performance measures for the core cell formation problem 

(CFP). The idea of questioning commonly used measures for core CFP solutions arose since the favorite 
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measure, grouping efficacy, has some obvious shortcomings. Its main drawback is the inadequate treatment of 

the two optimization variables in single criterion optimization procedures. 

 

The first step in the process of comparing relevant measures from literature was to quantify the rules for 

measure quality. These rules were stated, and measures theoretically compared according to them. It was 

concluded that the best way to compare the discrimination power of measures is experimental evaluation, since 

a suitable test population was available. The aim of the experimental evaluation was to visualize important 

parameters that classify the advantages and disadvantages of the measures regarding the discriminations power. 

Conclusions were summarized accordingly. 

 

The achievements of this research can be succinctly summarized numerically based on the results presented in 

Table 5. The binary variable values in columns 1I, NEG, and SEP play a pivotal role in distinguishing between 

useful and ambiguous objective functions. If any of these columns indicate 'true,' the corresponding measure is 

deemed unsuitable. Consequently, out of the nine measures tested, five are found unsuitable for application in 

CFP. Furthermore, the number of entries above average, used as a criterion to quantify discrimination power, 

underscores the superiority of measures I (83) and L (91) in this regard. Lastly, in addition to the clear criteria 

from columns VE and BND, column VER represents a fundamental criterion, as stated in Section 4.2, revealing 

how the optimization variables influence the objective function's value. For instance, a value of 

veo

e


 1

 for Г 

is not easily interpretable by a manager when deciding to implement the CFP algorithm. On the contrary, the 

value of -o/v for L clearly reinforces the constancy of the ratio as a function of exceptions and voids. Therefore, 

the primary research conclusion highlights the evident drawbacks of the measure implicitly considered as the 

best in CFP optimization. Additionally, a new hybrid measure has been proposed, meeting all the criteria of a 

good measure. 

 

The main contributions of this research are summarized below: 

1. Critique of Commonly Adopted Measures 

2. Quantification of Measure Quality 

3. Development of a New Objective Function 
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In the context of this research, understanding the managerial aspect is crucial for its practical implementation 

and implications within a manufacturing setting. The findings of this study have significant managerial 

implications for decision-makers and practitioners in the manufacturing domain: 

1. Evaluation Measure Selection: Managers can use the insights from this research to make informed 

decisions regarding the selection of appropriate evaluation measures for assessing their manufacturing 

processes. By understanding the limitations and advantages of various measures, they can choose those that 

align best with their specific objectives and operational environment. 

2. Resource Allocation for Optimization: The proposed refined objective function can guide managers in 

allocating resources effectively within the manufacturing system. Optimizing the allocation of machines 

and manpower based on this function can lead to improved operational efficiency, reduced costs, and 

enhanced productivity. 

3. Dynamic Problem Handling: Acknowledging the dynamic nature of the CFP is vital for managers. They 

need to adapt quickly to changes in part requirements, machine capacities, and other parameters. The 

study's emphasis on dynamic problem-solving can guide managers in creating agile production systems. 

4. Strategic Manufacturing Optimization: The research provides a foundation for developing strategic plans 

to optimize manufacturing processes. Managers can integrate the proposed objective function into their 

strategic decision-making processes, enabling them to align manufacturing objectives with broader 

organizational goals more effectively. 

5. Investment and Technology Decisions: Insights from the research can guide managers in making 

decisions related to investments in technology and automation. Understanding the most suitable objective 

function can guide the allocation of resources toward technology that aligns with the manufacturing 

process's optimization goals. 

 

By incorporating the findings and recommendations presented here into their decision-making processes, 

managers can enhance their ability to optimize manufacturing processes, adapt to dynamic challenges, and drive 

overall operational excellence in their organizations.Prior to commencing the optimization process, managers 

should delineate priorities regarding the significance of minimizing extensions versus minimizing cell sizes, 

thereby establishing the weight coefficient. Next, they need to apply the proposed algorithm based on an 

objective function aligned with the measure criteria outlined in this paper. 
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Based on the work reported here, several directions can be proposed for future research in this domain, which 

should focus on (1) further development of performance measures; (2) detailed analytical comparison of 

measures; and (3) introduction of weighting factors with precise rules that define the values of these factors. 
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Table 1 Example of binary machine–part matrix 

Machine Part 

p1 p2 p3 p4 p5 

m1 1 1 0 0 0 

m2 1 1 0 0 0 

m3 0 0 1 1 1 

m4 0 0 1 1 1 

m5 0 0 0 1 1 

 

 

Table 2 Referent methods sourced from literature 

No. Method Algorithm Source 

1 SAYLL 
Simulated annealing with variable 

neighborhood 
[1] 

2 GRASP GRASP heuristic [5] 

3 GAVNS 
Genetic with variable 

neighborhood 
[12] 

4 CFPAS Hybrid VN Descent [13] 

5 GLCA League Championship [14] 

6 CFOPT Hybrid heuristic [15] 

 

Table 3 Comparison of key performance measures using the most widely used six approaches (q=0.5) 

  Alg. C O ev ee v e1 B Г E G I L P S M 

avg                  0.66659 0.87952 0.75740 0.87540 0.85034 0.68498 0.65483 0.63256 

min                  0.42963 0.71717 0.52252 0.73134 0.71974 0.41441 0.77878 0.35366 

above average        100 113 94 83 91 100 136 93 

1 GRASP 2 16 3 2 19 14 17 0.73684
g
 0.85621 0.87500

g
 0.84615 0.85855

g
 0.78125

g
 0.57742

d
 0.77778

g
 

  
CFPAS 

CFOPT 
3 16 0 4 19 12 12 0.75000

g
 0.91304

g
 0.75000 1.00000

a
 0.87500

g
 0.75000

g
 0.77463

d
 0.60000 

1a SAYLL 

GAVNS 

GLCA 

CFOPT 

2 14 3 0 21 14 17 0.82353
g
 0.91176

g
 1.00000

a
 0.83784 0.92857

g
 0.89286

g
 0.74645

d
 1.00000

a
 

2 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

2 20 3 4 15 16 19 0.69565
g
 0.79605 0.80000

g
 0.86667 0.80000 0.72500

g
 0.40839

d
 0.66667

g
 

  GRASP 2 20 4 5 15 15 19 0.62500 0.73849 0.75000 0.82979 0.74167 0.65000 0.23936
d
 0.60000 
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3 SAYLL 

GRASP 
2 46 3 7 44 39 42 0.79592

g
 0.89137

g
 0.84783

g
 0.93617

g
 0.88982

g
 0.81522

e
 0.47295

d
 0.73585

g
 

  

GAVNS 

CFPAS 

GLCA 

CFOPT 

3 46 1 8 44 38 39 0.80851
g
 0.90875

g
 0.82609

g
 0.97701

g
 0.90168

g
 0.81522

e
 0.68377

d
 0.70370

g
 

4 SAYLL 

GRASP 

GLCA 

2 22 4 2 26 20 24 0.76923
g
 0.87500 0.90909

g
 0.85185 0.87762

g
 0.81818

e
 0.56699

d
 0.83333

g
 

  

GAVNS 

CFPAS 

CFOPT 

3 22 2 3 26 19 21 0.79167
g
 0.89683

g
 0.86364

g
 0.91489

g
 0.89336

g
 0.81818

e
 0.75944

d
 0.76000

g
 

5 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

5 23 0 9 54 14 14 0.60870 0.92857
g
 0.60870 1.00000

a
 0.80435 0.60870 0.79487

d
 0.43750 

  GRASP 3 23 9 6 54 17 26 0.53125 0.76810 0.73913 0.73134
b
 0.78623 0.54348 0.43020

d
 0.58621 

6 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

4 21 3 4 56 17 20 0.70833
g
 0.88991

g
 0.80952

g
 0.87234 0.87798

g
 0.73810

g
 0.80057

d
 0.68000

g
 

  GRASP 3 21 6 2 56 19 25 0.70370
g
 0.86077 0.90476

g
 0.79310 0.89881

g
 0.76190

g
 0.69611

d
 0.82609

g
 

7 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

4 35 1 10 61 25 26 0.69444
g
 0.90934

g
 0.71429 0.96825

g
 0.84895 0.70000

g
 0.71933

d
 0.55556 

  GRASP 3 35 6 7 61 28 34 0.68293
g
 0.85531 0.80000

g
 0.85185 0.85082

g
 0.71429

g
 0.55773

d
 0.66667

g
 

8 SAYLL 

GRASP 

GAVNS 

CFPAS 

GLCA 

CFOPT 

3 61 0 9 99 52 52 0.85246
g
 0.95833

g
 0.85246

g
 1.00000

a
 0.92623

g
 0.85246

g
 0.76283

d
 0.74286

g
 

9 SAYLL 

GRASP 

GAVNS 

CFPAS 

GLCA 

CFOPT 

2 91 18 27 69 64 82 0.58716 0.71717
b
 0.70330 0.82775 0.72121 0.60440 -0.77878

c
 0.54237 

10 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

5 24 4 3 76 21 25 0.75000
g
 0.90000

g
 0.87500

g
 0.85965 0.91118

g
 0.79167

g
 0.86000

d
 0.77778

g
 

  GRASP 3 24 10 0 76 24 34 0.70588
g
 0.85294 1.00000

a
 0.74359 0.93421

g
 0.79167

g
 0.66667

d
 1.00000

a
 

11 SAYLL 

GRASP 
3 46 4 0 104 46 50 0.92000

g
 0.96000

g
 1.00000

a
 0.92308

g
 0.98077

g
 0.95652

g
 0.89113

d
 1.00000

a
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GAVNS 

CFPAS 

GLCA 

CFOPT 

12 SAYLL 6 58 10 9 264 49 59 0.72059
g
 0.89814

g
 0.84483

g
 0.85401 0.90347

g
 0.75862

g
 0.82353

d
 0.73134

g
 

  GRASP 5 58 15 7 264 51 66 0.69863
g
 0.87269 0.87931

g
 0.80519 0.91125

g
 0.75000

g
 0.75480

d
 0.78462

g
 

  

GAVNS 

CFPAS 

CFOPT 

7 58 8 9 264 49 57 0.74242
g
 0.91284

g
 0.84483

g
 0.87786

g
 0.90726

g
 0.77586

g
 0.86466

d
 0.73134

g
 

  GLCA 7 58 10 8 264 50 60 0.73529
g
 0.90140

g
 0.86207

g
 0.85507 0.91210

g
 0.77586

g
 0.85670

d
 0.75758

g
 

13 SAYLL 

GLCA 
6 61 10 10 275 51 61 0.71831

g
 0.89985

g
 0.83607

g
 0.85915 0.89985

g
 0.75410

g
 0.81815

d
 0.71831

g
 

  GRASP 5 61 14 9 275 52 66 0.69333
g
 0.87727 0.85246

g
 0.81935 0.90077

g
 0.73770

g
 0.74905

d
 0.74286

g
 

  

GAVNS 

CFPAS 

CFOPT 

7 61 9 10 275 51 60 0.72857
g
 0.90688

g
 0.83607

g
 0.87050 0.90167

g
 0.76230

g
 0.85192

d
 0.71831

g
 

14 SAYLL 

GAVNS 

CFPAS 

GLCA 

10 85 5 37 283 48 53 0.53333 0.89410
g
 0.56471 0.93243

g
 0.77352 0.53529 0.78106

d
 0.39344 

  GRASP 6 85 16 33 283 52 68 0.51485 0.82735 0.61176 0.82703 0.77761 0.51765 0.57428
d
 0.44068 

  CFOPT 8 85 6 36 283 49 55 0.53846 0.88795
g
 0.57647 0.92105

g
 0.77763 0.54118 0.72632

d
 0.40496 

15 SAYLL 7 116 13 27 364 89 102 0.68992
g
 0.90056

g
 0.76724

g
 0.89344

g
 0.86576

g
 0.71121

g
 0.73918

d
 0.62238 

  GRASP 4 116 27 19 364 97 124 0.67832
g
 0.86444 0.83621

g
 0.81633 0.88102

g
 0.71983

g
 0.47510

d
 0.71852

g
 

  

GAVNS 

CFPAS 

CFOPT 

6 116 17 23 364 93 110 0.69925
g
 0.89165

g
 0.80172

g
 0.86923 0.87751

g
 0.72845

g
 0.69571

d
 0.66906

g
 

16 SAYLL 8 126 27 38 562 88 115 0.57516 0.84945 0.69841 0.81695 0.82518 0.59127 0.69024
d
 0.53659 

  GRASP 6 126 35 35 562 91 126 0.56522 0.82997 0.72222 0.78261 0.82997 0.58333 0.55521
d
 0.56522 

  GAVNS 8 126 26 38 562 88 114 0.57895 0.85286 0.69841 0.82192 0.82607 0.59524 0.69500
d
 0.53659 

  CFPAS 8 126 31 35 562 91 122 0.57962 0.84203 0.72222 0.80000 0.83353 0.59921 0.68547
d
 0.56522 

  GLCA 8 126 27 38 562 88 115 0.57516 0.84945 0.69841 0.81695 0.82518 0.59127 0.69024
d
 0.53659 

  CFOPT 9 126 17 43 306 83 100 0.58042 0.85024 0.65873 0.86923 0.80159 0.59127 0.67925
d
 0.49112 

17 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

9 88 9 32 344 56 65 0.57732 0.88717
g
 0.63636 0.89474

g
 0.80510 0.58523 0.78082

d
 0.46667 

  GRASP 6 88 24 27 344 61 85 0.54464 0.81992 0.69318 0.78281 0.81171 0.55682 0.59104
d
 0.53043 

18 SAYLL 

GLCA 
5 111 34 48 289 63 97 0.43448 0.74553 0.56757 0.75362 0.72496 0.41441

b
 0.18000

d
 0.39623 

  GRASP 5 111 24 53 289 58 82 0.42963
b
 0.77033 0.52252

b
 0.80083 0.71974

b
 0.41441

b
 0.23000

d
 0.35366

b
 

  GAVNS 6 111 28 51 289 60 88 0.43165 0.75918 0.54054 0.78039 0.72183 0.41441
b
 0.34167

d
 0.37037 

  
CFPAS 

CFOPT 
7 111 30 49 289 62 92 0.43972 0.75741 0.55856 0.77186 0.72738 0.42342 0.43571

d
 0.38750 

19 SAYLL 

GAVNS 

CFPAS 

7 113 11 50 347 63 74 0.50806 0.86091 0.55752 0.89474
g
 0.76291 0.50885 0.59369

d
 0.38650 
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GLCA 

CFOPT 

  GRASP 5 113 28 43 347 70 98 0.49645 0.79775 0.61947 0.79026 0.76939 0.49558 0.33792
d
 0.44872 

20 SAYLL 

GAVNS 

GLCA 

5 136 30 6 564 130 160 0.78313
g
 0.90069

g
 0.95588

g
 0.83146 0.95135

g
 0.84559

g
 0.72787

d
 0.91549

g
 

  GRASP 4 136 41 1 564 135 176 0.76271
g
 0.88257

g
 0.99265

g
 0.79188 0.95998

g
 0.84191

g
 0.60314

d
 0.98540

g
 

  
CFPAS 

CFOPT 
6 136 25 9 564 127 152 0.78882

g
 0.90955

g
 0.93382

g
 0.85207 0.94475

g
 0.84191

g
 0.78582

d
 0.87586

g
 

21 SAYLL 

GAVNS 

GLCA 

5 153 45 38 547 115 160 0.58081 0.82419 0.75163 0.77667 0.83468 0.60458
e
 0.37258

d
 0.60209 

  
CFPAS 

CFOPT 
6 153 33 44 547 109 142 0.58602 0.84438 0.71242 0.81717 0.82604 0.60458

e
 0.51495

d
 0.55330 

22 SAYLL 

GRASP 

GAVNS 

CFPAS 

GLCA 

CFOPT 

7 131 0 0 829 131 131 1.00000
f
 1.00000

f
 1.00000

f
 1.00000

f
 1.00000

f
 1.00000

f
 1.00000

f
 1.00000

f
 

23 SAYLL 

GRASP 

GAVNS 

CFPAS 

GLCA 

CFOPT 

7 130 11 10 830 120 131 0.85106
g
 0.95198

g
 0.92308

g
 0.92226

g
 0.95491

g
 0.88077

g
 0.90318

d
 0.85714

g
 

24 SAYLL 

GRASP 

GAVNS 

CFPAS 

GLCA 

CFOPT 

7 131 20 20 829 111 131 0.73510
g
 0.91160

g
 0.84733

g
 0.86755 0.91160

g
 0.77099

g
 0.81557

d
 0.73510

g
 

25 SAYLL 

GAVNS 

CFPAS 

GLCA 

CFOPT 

11 131 21 50 829 81 102 0.53289 0.86792 0.61832 0.84727 0.79649 0.53817 0.79168
d
 0.44751 

  GRASP 10 131 21 52 829 79 100 0.51974 0.86477 0.60305 0.84615 0.78886 0.52290 0.76439
d
 0.43169 

26 SAYLL 

GAVNS 

CFPAS 

CFOPT 

12 131 12 61 829 70 82 0.48951 0.89209
g
 0.53435 0.89873

g
 0.75994 0.48855 0.80366

d
 0.36458 

  GRASP 10 131 21 59 829 72 93 0.47368 0.85307 0.54962 0.84211 0.76214 0.46947 0.74180
d
 0.37895 

27 SAYLL 

GAVNS 

CFOPT 

12 130 16 61 790 69 85 0.47260 0.86936 0.53077 0.87045 0.75526 0.46923 0.78845
d
 0.36126 

  GRASP 10 130 24 61 790 69 93 0.44805 0.83409 0.53077 0.82288 0.75019 0.43846 0.71976
d
 0.36126 

  CFPAS 11 130 17 62 790 68 85 0.46259 0.86287 0.52308 0.86345 0.75078 0.45769 0.76322
d
 0.35417 

28 SAYLL 5 219 82 54 510 165 247 0.54817 0.77799 0.75342 0.73968 0.79632 0.56621 -0.00741
c
 0.60440 
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GAVNS 

CFPAS 

GLCA 

CFOPT 

  GRASP 4 219 71 66 510 153 224 0.52759 0.77617 0.69863 0.75726 0.77971 0.53653 -0.26852
c
 0.53684 

29 SAYLL 10 211 58 84 1077 127 185 0.47212 0.80517 0.60190 0.77344 0.77402 0.46445 0.60433
d
 0.43051 

  GRASP 9 211 43 94 1077 117 160 0.46063 0.82396 0.55450 0.81182 0.75729 0.45261 0.57585
d
 0.38361 

  GAVNS 7 211 57 87 1077 124 181 0.46269 0.80325 0.58768 0.77470 0.76738 0.45261 0.42680
d
 0.41611 

  CFPAS 9 211 44 90 1077 121 165 0.47451 0.82660 0.57346 0.81034 0.76630 0.46919 0.58514
d
 0.40199 

  CFOPT 12 211 21 100 1077 111 132 0.47845 0.87720 0.52607 0.89091
g
 0.75328 0.47630 0.71904

d
 0.35691 

30 SAYLL 

GAVNS 

CFOPT 

14 128 11 40 1102 88 99 0.63309 0.92676
g
 0.68750 0.91165

g
 0.83876 0.64453 0.89613

d
 0.52381 

  GRASP 10 128 41 27 1102 101 142 0.59763 0.84323 0.78906
g
 0.76705 0.87593

g
 0.62891 0.80611

d
 0.65161

g
 

  
CFPAS 

GLCA 
14 128 15 38 1102 90 105 0.62937 0.91168

g
 0.70313 0.88593

g
 0.84476 0.64453

e
 0.89206

d
 0.54217 

31 SAYLL 

GAVNS 

CFPAS 

14 167 14 75 1333 92 106 0.50829 0.90706
g
 0.55090 0.90698

g
 0.77020 0.50898 0.83586

d
 0.38017 

  CFOPT 15 167 12 76 1333 91 103 0.50838 0.91455
g
 0.54491 0.91837

g
 0.76795 0.50898

e
 0.84852

d
 0.37449 

32 SAYLL 18 302 52 133 2398 169 221 0.47740 0.85553 0.55960 0.83413 0.76896 0.47351 0.80220
d
 0.38851 

  GRASP 11 302 79 127 2398 175 254 0.45932 0.81853 0.57947 0.77871 0.77326 0.44868 0.63959
d
 0.40793 

  GAVNS 10 302 71 128 2398 174 245 0.46649 0.82903 0.57616 0.79390 0.77328 0.45861 0.61702
d
 0.40465 

  CFPAS 14 302 59 129 2398 173 232 0.47922 0.84671 0.57285 0.81902 0.77412 0.47517 0.74157
d
 0.40139 

  CFOPT 16 302 48 133 2398 169 217 0.48286 0.86262 0.55960 0.84390 0.76979 0.48013 0.78229
d
 0.38851 

33 SAYLL 

GRASP 

GAVNS 

CFPAS 

CFOPT 

10 420 37 36 3580 384 421 0.84026
g
 0.95103

g
 0.91429

g
 0.91913

g
 0.95198

g
 0.87024

g
 0.88458

d
 0.84211

g
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Table 4 Grouping efficiency values for five high-dimensional instances 

No. Approach 
ve  ee  Г  

E  
)3.0( q  

E  
)5.0( q  

E  
)7.0( q  

29 SAYLL 58 84 0.4721 0.8526 0.8052  0.7577 

 GRASP 43 94 0.4606 0.8610 0.8240 0.7869 

 GAVNS 57 87 0.4627 0.8505 0.8032 0.7560 

 CFPAS 44 90 0.4745 0.8639 0.8266 0.7893 

 CFOPT 21 100 0.4784 0.8917 0.8772 0.8627 

30 SAYLL 11 40 0.6331 0.9419 0.9268 0.9116 

 GRASP 41 27 0.5976 0.8960 0.8432 0.7904 

 GAVNS 11 40 0.6331 0.9419 0.9268 0.9116 

 CFPAS 15 38 0.6294 0.9335 0.9117 0.8899 

 GLCA 15 38 0.6294 0.9335 0.9117 0.8899 

 CFOPT 11 40 0.6331 0.9419 0.9268 0.9116 

31 SAYLL 14 75 0.5083 0.9227 0.9071 0.8914 

 GAVNS 14 75 0.5083 0.9227 0.9071 0.8914 

 CFPAS 14 75 0.5083 0.9227 0.9071 0.8914 

 CFOPT 12 76 0.5084 0.9270 0.9145 0.9021 

32 SAYLL 52 133 0.4774 0.8919 0.8555 0.8192 

 GRASP 79 127 0.4593 0.8703 0.8185 0.7667 

 GAVNS 71 128 0.4665 0.8766 0.8290 0.7815 

 CFPAS 59 129 0.4792 0.8871 0.8467 0.8063 

 CFOPT 48 133 0.4829 0.8961 0.8626 0.8291 

33 SAYLL 37 36 0.8403 0.9666 0.9510 0.9355 

 GRASP 37 36 0.8403 0.9666 0.9510 0.9355 

 GAVNS 37 36 0.8403 0.9666 0.9510 0.9355 

 CFPAS 37 36 0.8403 0.9666 0.9510 0.9355 

 CFOPT 37 36 0.8403 0.9666 0.9510 0.9355 

 

 

Table 5 Summarized comparison results 

 

VER VE BND AAVG 1I NEG SEP 

Г Г ve [0,1] 100 no no no 

E - ve [0,1] 113 no no no 

G voids v [0,1] 94 yes no no 

I - - [0,1] 83 yes no no 

L -o/v ve [0,1] 91 no no no 

P -0.5 ve [0,1] 100 no no yes 

S - ve - 136 no yes no 

M voids v [0,1] 93 yes no no 
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