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Abstract: 

An overview has been presented related to the advances in internal combustion 

engines (IC) for the future solutions of automotive industry. This review discusses as many 

current research areas as possible. This evaluation will be of great assistance to students, 

researchers, and enterprises working on the subject of IC engines. Moreover, there are 

numerous technological options for delivering environmentally friendly vehicles with low 

carbon emissions. This paper also examines the methods available as well as the use of 

technology road-mapping to plan for future manufacturer adoption. The low temperature 

combustion (LTC) technique is among the most sophisticated combustion technologies. 

Various LTC techniques like HCCI, PCCI, and RCCI have been discussed in detail. The 

results of the evaluation of LTC against conventional engines were provided in order to 

demonstrate both the strengths and shortcomings of each. The goal of this review article is to 

show new combustion approaches and how they may be utilized to increase the engine's 

thermal efficiency while lowering NOx and particulate matter (PM) emissions. 
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Introduction 

                Vehicle discharges have risen to become the world’s most significant source of air 

contamination, owing to tremendous economic growth [1]. The automotive industry is confronting 

tremendous difficulties in developing efficiency and outflows from internal combustion engines (IC) 

[2]. The depletion of petroleum supplies is a serious issue that has to be addressed by the international 

community using cutting-edge technology [3]. Excessive use of petroleum products contributes to 

global warming and the rapid exhaustion of petroleum resources [4]. New environmental restrictions 

have compelled the hunt for new sorts of technologies to address the problems caused by IC engine 

emissions [5]. Several environmental challenges have arisen as a result of the vehicle sector’s market 

expansion, such as carbon emissions, global warming, greenhouse gas emissions, atmospheric air 

pollution, and climatic changes [6]. In order to prevent knock-like combustion, Hagar et al. [7] 

examined the HCCI engine under various load conditions by varying the amount of dimethyl ether and 

hydrogen fuels injected in to the inlet air. Another benefit is that they mixed fuels such as dimethyl 

ether (DME) and hydrogen (H2) with compressed natural gas (CNG) to ensure stable operation. 

Automobile engines and fuels are encountering difficulties in reducing emissions, improving 

air quality in local cities, and improving fuel efficiency, which decreases CO2 emissions to mitigate 

global warming [8]. To optimise combustion engines’ tolerance to a wide variety of fuels, engine 

researchers must develop technologies designed to maximize engine efficiency and reduce exhaust 

emissions [9]. Therefore, it is important to create new technologies to protect the environment for 

present and future generations. The LTC is a type of advanced IC engine combustion that has sparked 

a lot of interest in recent years [10]. The automobile industry’s difficulties can be mitigated by using 

LTC to improve existing engine technology [11]. LTC-based engines can acheive high thermal 

efficiency while emitting low levels of nitrogen oxides (NOx) and particulate matter (PM) [12].  

                          As LTC has a lower combustion temperature, it consumes less energy and has better 

thermal performance. LTC improves the environment by reducing emissions by eliminating NOx and 

particulate matter levels. LTC-based engines adopt different types of fuels with enhanced performance. 

It uses low-quality fuels in IC engines and has overall better combustion characteristics. This review 

article’s major goal is to determine how cutting-edge LTC technology is being used to effectively 

lower NOx and PM emissions while simultaneously enhancing thermal efficiency. The goal of this 

study is to assess LTC engines and their combustion features by looking at the most recent research. 

This review article discusses the most recent sophisticated technology as well as enhancements to 

older LTC engines. 
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Homogeneous Charge Compression Ignition engine 

HCCI combustion is used to describe the novel LTC concept. Riyadi et al. [13] used a 

promising technique called the HCCI engine, which uses premixed combustion to produce a 

homogeneous, lean mixture that will ignite on its own. Controlling its combustion phasing, however, is 

still a difficult task. Additionally, HCCI engines emit considerable amounts of HC and CO. The 

working principle of the LTC engine is illustrated in Figure 1. The LTC engines have the potential to 

produce the highest brake thermal efficiency (BTE) with the least expenditure [14]. Elkelawy [15] 

studied “the fuel cavitation inside the injector nozzle parameters (such as injection pressure and fuel 

system temperature where fuel premixed ratio, NOx, CO2, and HC emissions are measured) in order to 

develop a methodology for the HCCI combustion mode using diesel aerosol/air mixtures.” The 

Injection pressure of fuel and the temperature of the fuel system have been optimised to provide an 

appropriate fuel premixed ratio and the optimal fuel/air mixture for a wide range of engine operating 

conditions based on engine efficiency as well as engine emission characteristics. The optimal fuel 

injection pressure is about in the range of 150 to 200 bars, and the temperature of the fuel system is 

about in the range of 175 to 200°C.  

Chaudhari and Deshmukh [17] designed premixed LTC engines for clean combustion and 

efficiency gains. For the initiation of combustion in the LTC engine, they controlled crucial variables 

such as inlet air pressure, temperature, pressure, and compression ratio. Wang et al. [18] looked at the 

possibility of a diesel-fueled LTC engine with excellent thermal efficiency while emitting minimal 

NOx and PM at low loads. They achieved a thermal efficiency of 50% with a minimum fuel 

consumption of 168.6 g/KWh and an EGR rate of 56% at a speed of 1900 r/min. The combustion 

mode of HCCI is a viable future technology for the development of 1900 r/min. The combustion mode 

of HCCI is a visible future technology for the development of IC engines due to its great thermal 

efficiency. 

Although HCCI engines have improved thermal efficiency, their limited stable working range 

is widely regarded as their most significant disadvantage. Recent research has suggested that HCCI 

engines and their combustion characteristics can be improved with the use of nanoparticles as fuel 

additives [19]. In order to achieve stable HCCI combustion in the engine cylinder, Elkelawy et al. [20] 

studied “the detailed oxidation mechanism of natural gas in HCCI.” According to their findings, 

“Cycle simulations utilising H2 as an additive to the natural gas have identified the key factors 

influencing the engine’s combustion efficiency and emission characteristics, and they also suggested 

the limits of potential improvement in comparison to traditional natural gas-HCCI engine 

technologies.” Hagar et al. [21] used DME, which will be crucial in regulating the auto-ignition time 

of the HCCI engine combustion, particularly at low intake charge temperatures. Hydrogen may assist 
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in increasing the working range of CNG fuel in HCCI engines and drastically reducing their regulated 

emissions. The viscosity of the mixed gasoline reduces with an increase in DME, while the vapour 

pressure in the fuel system slightly rises. A suitable higher fuel vapour pressure may have beneficial 

impacts on the formation of a homogenous mixture for an HCCI engine. Yu et al. [22] concluded that 

while both hydrocarbon and carbon monoxide emissions are relatively high, with the exception of high 

load situations, an HCCI engine running on DME50 is smokeless and emits nearly zero NOx [22]. 

Phase change materials are used for latent heat storage applications [23]. The addition of nanoparticles 

enhances the phase change material’s thermal conductivity property [24]. So it is used as a better 

choice for thermal energy management and heat transfer application [25]. Aluminium, Steel, and its 

alloy containers are used as encapsulations for phase change materials [26].  

                                Wang et al. [27] focused on the characterization of the HCCI engine’s combustion 

characteristics by using natural gas as fuel at different conditions. They desired to overcome the 

challenges of regulating the combustion process in HCCI engines. They carried out sensitivity 

analyses of start of combustion (SOC) to in-take temperature and excessive air ratio at different 

speeds. Their result suggested that SOC can be controlled by regulating the pressure and temperature 

in the cylinder through the addition of EGR, the addition of water, and modifying the inlet temperature 

at moderate speed. Elkelawy et al. [28] analysed a promising low-temperature technique, the HCCI 

diesel engine, employing ethanol as a fuel additive to boost the amount of oxygen needed for 

combustion in fuel-biodiesel blends. Diesel-biodiesel-ethanol blends have higher specific fuel 

consumption (SFC) than diesel fuel. The higher SFC is a result of the biodiesel blend’s lower energy 

content and reduced calorific value. Increasing the brake power of pure diesel and oxygenated fuel 

mixtures enhanced the thermal efficiency of the brakes. There was improvement in the BTE for 

various three different biodiesel mixtures because of their higher volatility, high viscosity, and lower 

calorific value. Hamit et al. [29] used B20 fuel devoid of the multi-walled carbon nanotube (MWCNT) 

addition. The characteristics of B20 were improved by the addition of MWCNT. Their research 

showed that the inclusion of the MWCNT additive boosted thermal efficiency (33.16%) and enhanced 

HCCI engine performance by utilising 100 ppm preservative B20 fuel. 

Premixed Charge Compression Ignition engine 

   Singh et al. [30] concluded that the achievement of superior thermal efficiency has 

always been challenging in HCCI engines [30]. Jeon et al. [31] promoted research to look for and 

discover superior technologies. PCCI combustion (premixed charge compression ignition) is more 

sophisticated than HCCI combustion. Elkelawy et al. [32] examined diesel engines with partially 

premixed lean charge compression ignition (PPLCCI) combustion that are capable of reducing NOx 

and PM emission output while maintaining improved engine brake thermal efficiency. 
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   Ayush Jain et al. [33] reported on the combustion stability of the PCCI engine by 

analysing the fuel injection parameter. Reducing knocking and minimising the emissions of nitrogen 

oxides have been the main objectives of the PCCI engine. Combustion stability was achieved in the 

PCCI engine by maintaining the pressure of fuel injection at about 700 bar. This was possible owing to 

excellent fuel atomization at a higher FIP. Lower CO and HC emissions can be achieved in PCCI 

engines [34]. Oxyhydrogen gas was used by Nikhil et al. [35] to supplement the fuel in the PCCI 

engine, and they contrasted PCCI mode with and without the addition of oxyhydrogen gas. Their 

findings demonstrated that peak pressure and thermal efficiency were all enhanced by the addition of 

oxyhydrogen gas. They also revealed that their analysis found very little NOx emissions, or less than 

10 ppm. 

                        Strict emission norms have forced all investigations to find advanced technology with 

low emissions. Srihari et al. [36] examined the effect of diethyl ether in biodiesel blends in PCCI-

Direct Injection (PCCI-DI) engines. They used biodiesel produced from cotton seal, and their 

emissions were lower in HC, CO, and NOx values. They also noticed an increase in BTE in the PCCI-

DI engine. Getachew Alemayehu et al. [37] focused on better emission properties in PCCI engines. A 

conventional IC engine with an unacceptable emission range was compared with the newly developed 

PCCI engine. The PCCI engine produced the minimum amount of oxides of nitrogen and PM. They 

employed EGR adjustment at various loads to help the PCCI engine achieve the best performance. In 

the PCCI engine, they were also to create improved thermal efficiency with the least amount of 

negative emission impacts. Figure.2 shows better combustion effects in the PCCI engine. Single-

fuelled and dual-fuelled single-cylinder engine performance characteristics were compared by Shim et 

al. [38]. 

                         The PCCI engine’s combustion performance and engine emission characteristics 

running on ethanol diesel mixes were examined by Elzahaby et al. [39]. In research, a single-zone 

model is used to forecast how the PCCI engine will operate at various premixed ratios of ethanol-

diesel fuel mixtures. The results demonstrated that chemical kinetic behaviour in PCCI combustion is 

highly capable of controlling the ignition of the engine and the combustion process by employing the 

premixed ratio of the ethanol/diesel mixture. They reported that dual-fuel PCCI combustion could 

reduce CO2 emissions and achieve higher thermal efficiency than standard diesel combustion.  

Nachiappan et al. [40] investigated the effectiveness of a PCCI engine running on Tamanu 

biodiesel combined with MWCNT. They discovered that the physiochemical characteristics of 

Tamanu biodiesel were enhanced by the use of nanoparticles. The optimal characteristics of Tamanu 

biodiesel were enhanced by the use of nanoparticles. The optimum choice, according to the results, is 

to add 100 ppm of MWCNT to Tamanu biodiesel in PCCI mode. 
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                         Ramachandran et al. [41] examined “the ideal mixture of biodiesel with nanoparticles 

in a 5.2KW CI engine for various amounts (B10, B20, B30, and B40). About 20% of the fuel provided 

is guaranteed to be vaporised for premixing by the PCCI function. Finally, the ideal amount of desired 

dependent and independent variables was determined by using response surface methodology (RSM) 

to investigate the interactions between the independent variables of the PCCI engine”. The engine was 

used to test and validate the project blend ratio for B25. The results showed a rise in BTE to 31.42% 

and a decrease in BSEC to 9.82 MJ/KWh, as well as a decrease in nitrogen oxides to 691 ppm [42]. 

                           Charitha et al. [43] developed a “Reactivity-controlled compression ignition (RCCI) 

combustion engine” by modifying the intake of a diesel engine. They studied the difference between 

conventional diesel combustion (CDC) engines and RCCI engines and investigated their engine 

performance and emission characteristics. With the addition of cotton seed biodiesel (CSBD), they 

noticed a decrease in NOx and particulate emissions, at decreasing CSBD%, CO2 emissions and 

unburned hydrocarbons (UHC) were reduced. Any further increase in CSBD was reported to result in 

increased CO2 and UHC emissions. The findings revealed that the 10%-20% CSBD, which has a 22% 

average reduction in NOx and an average reduction of 30% in smoke emissions, is effective. By 

combining waste cooking oil and fossil diesel fuel, Elkelawy et al. [44] investigated the performance 

of the engine, its emission characteristics, and the combustion characteristics of the PCCI engine with 

different fuel injection strategies. According to their findings, the in-cylinder pressure peaks have been 

somewhat reduced, the apparent heat release has been decreased, and the average BTE has increased 

by about 10.57% compared to conventional direct injection at premixed ratio 3. Furthermore, average 

CO emissions were reduced by 0.241%, and average NOx emissions were reduced by 408.8 ppm.                                 

  Bo Yang et al. [45] used “low pressure dual-fuel direct injection” (LPDDI) to compare and 

explore combustion performance and emission parameters in an RCCI engine running on diesel and 

CH4 injections, which have a substantial impact on the combustion chamber. This study found that the 

initial diesel injection time of 250°CA ATDC and the newest CH4 injection time of 112°CA ATDC 

yielded the best combustion performance. 

 Uzair et al. [46] developed a deep learning method combined with explainable artificial 

intelligence to assess the heat transfer from the liquid-to-vapour phase shift in nanoporous surface 

coatings. Paykani et al. [47], found that compared to either spark ignition combustion (SI) or 

compression ignition (CI), SI is substantially quicker. By altering both CI and SI engines, the HCCI 

combustion mode improves thermal efficiency while retaining low emissions. With this technology, a 

broad range of fuels, fuel mixtures, and renewable fuels may be employed [48]. By swapping either 

traditional diesel or spark-ignited combustion engines, significant reductions in NOx emissions can be 

accomplished [49]. In addition to lowering particular fuel usage, LTC technology offers notable 
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advantages in the sharp decrease of NOx and PM [50]. Dimitriou et al. [51] concluded that higher 

EGR rates raise the temperature of the intake charge, which improves hydrogen combustion and fuel 

efficiency. There was a reduction in NOx of 90-98% compared to that of normal diesel combustion 

[52]. Figure 3 shows the various ranges of PM emission in advanced LTC technology with reference to 

the conventional engine. Ghaffarzadeh et al. [53] showed that a dual–fuel RCCI engine’s performance 

and emission characteristics are significantly influenced by the timing of the beginning of liquid fuel 

direct injection. 

Emission characteristics  

 Emission characteristics were studied by Avinash Alagumalai [54] and suggested that 

induction of ethanol (10% and 20%) in the intake manifold and injecting waste cooking oil biodiesel 

directly inside the cylinder reduced nitrogen oxide emissions by 60% and smoke emissions by 29%. 

However, unburned HC and CO emissions increased in their investigation. An evaluation of RCCI-

mode combustion engines using gasoline and mineral diesel in single-cylinder research engine was 

performed by Singh et al. [55]. “They found that adding low-reactivity gasoline to the RCCI engine 

made it run better performance. Also RCCI mode combustion engine delivered low NOx and PM 

emissions compared to the baseline CI mode combustion” [56]. However, both HC and CO emissions 

from RCCI mode increased slightly when compared with the CI mode combustion. As far as emission, 

RCCI mode combustion has greater potential for the utilisation of alternative fuels with enhanced 

engine performance and the possible reduction of NOx and PM emissions compared to CI and PCCI 

[57]. Elkelawy et al. [58] examined “The RCCI combustion engine requires a very low Exhaust Gas 

Recirculation (EGR) rate because the rate of combustion is controlled by varying the mixture’s 

reactivity by employing two fuels with considerably different reactivities. RCCI operation with cooled 

EGR resulted in a decrease in pressure rise rate, cyclic variation, and NOx emission but an increase in 

THC emission. At low loads, internal EGR’s lower intake air pressure achieved generally higher net 

indicated efficiencies and lower combustion losses than conventional RCCI. Utilising a higher EGR 

percentage has greater advantages for extending maximum load and reducing particulate and NOx 

emissions, while the combustion and indicated thermal combustion efficiencies decrease.” Elumalai et 

al. [59] analysed “the conversion of a CI diesel engine to dual-fuel RCCI combustion. The effects of 

various energy shares of carbon-free NH3 and carbon-neutral microalgae biodiesel were investigated. 

The outcomes are compared with conventional mode running at 80% load. Operating an NH3 dual fuel 

RCCI raises the ID, which causes a longer CD and lower CP”. The emission of NOx and PM in 

different combustion modes is presented in Fig.4. 
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Studies revealed that emissions of PM and NOx affect the environment and humans [60], and 

Resitoglu et al. [61] analysed the emission control methods of pollutant exhaust gases. Boningari et al. 

[62] revealed the study impact of NOx in the environment and health issues related to these gases, and 

hence it is vital to eliminate these emissions with the help of the latest advanced combustion 

technology [63]. Ranasinghe et al. [64] reviewed the use of advanced low-emission technologies for 

aviation. In this aspect, RCCI significantly contributes to the large reduction of NOx and PM [65]. Zou 

et al. [66] investigated the EGR, which is required for controlling the phases of combustion, and the 

combustion characteristics of RCCI engines are reviewed [67]. 

In the Methanol RCCI mode, when diesel is injected with twin pulses, the thermal efficiency is 

greater than in the traditional dual-fuel mode, the NO emissions are significantly lower, the soot, HC, 

and CO emissions are comparable, and the methanol share is increased [68]. The addition of nano 

cerium oxide and methyl tert-butyl either with gasoline or with diesel further reduces the emissions 

and also improves the performance of the engine [69]. 

Conclusion 

    As a result, a thorough investigation has been conducted into advancements in IC 

engines for future automotive sector solutions. This review discusses as many current research areas as 

possible. Various forms of LTC, like HCCI, PCCI, and RCCI, have been discussed in detail. In the 

end, the advantages of LTC have been presented with a comparison of conventional techniques. 

 More harmful items from engines, like NOx and PM reduction ideas, were discussed. 

Emission characteristics were discussed in detail, and it was found that RCCI has a significant 

impact on reducing NOx and PM compared to PCCI and CI. Though LTC reduces NOx 

emissions considerably, it has various challenges that need to be addressed. 

 Furthermore, for small loads, LTC performs well, and for larger load variations, the 

performance of LTC is minimal. 

 Overall, the research suggests that the LTC has the potential for efficiency improvements over 

conventional engines. Thus, this study showed that all LTC techniques may be utilised to 

eliminate PM and NOx, but the RCCI combustion approach was more effective at doing so 

while also having a great potential to employ alternative fuel in the development of sustainable 

transportation options. 

 The analysis of various LTC strategies demonstrates that a low amount of NOx emissions 

would arise if the temperature of the combustion could be adjusted in any manner. Controlling 

the combustion is the main problem with the LTC. Other issues with LTC technology include 

its constrained working range and greater HC and CO emissions. 
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Future scope 

 Increased heat release rates and peak pressure issues are particularly prevalent with HCCI 

engines, necessitating more study and development. PCCI has overcome the limitations of the HCCI 

mode of combustion but still has to be adequately addressed in order to make it commercially viable. 

Although the exhaust gas recirculation approach reduces NOx emissions, it increases HC and CO. The 

post-treatment equipment would take care of these issues. The water in the diesel emulsion approach is 

one of the most widely used techniques since it doesn’t require any particular engine configuration or 

changes. However, a significant disadvantage is the problem of emulsion stability. Longer emulsion 

stability requires the development of emulsification processes. 

 

Nomenclature 

 

BTE Brake Thermal Efficiency 

CD Combustion Duration 

CDC Conventional Diesel Combustion 

CI  Compression Ignition 

CNG Compressed Natural Gas 

CO Carbon monoxide 

CO2 Carbon dioxide 

CSBD Cotton seed Biodiesel 

DMED Dimethyl Ether 

EGR Exhaust Gas Recirculation 

FIP Fuel Injection Pressure 

g/kW h Gram/KiloWatt-hour 

H2 Hydrogen 

HCCI Homogeneous Charge Compression Ignition 

IC Internal Combustion 

ID Ignition Delay 

IMEP Indicated  Mean Effective Pressure 

LPDDI Low Pressure Dual-fuel Direct Injection 

LTC Low Temperature Combustion 

LTO Low Temperature Oxidation 

MWCMT Multi-Walled Carbon Nano Tube 

NOx  Oxides of nitrogen 

PCCI Premixed Charge Compression Ignition 
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PHCCI Partial Homogeneous Charge Compression Ignition 

PM Particulate Matter 

PPLCCI Partially Premixed Lean Charge Compression Ignition 

ppm Parts Per Million 

RCCI Reactivity Controlled Compression Ignition 

RSM Response Surface Methodology 

SFC Specific Fuel Consumption 

SI Spark Ignition 

SOC Start Of Combustion 

UHC Unburned HydroCarbon 
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Fig.1.a) SI engine b) CI engine c) HCCI Engine [16] 
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Figure.2. PCCI Combustion for improved Diesel engine emissions [37] 

 

 

 

Figure.3. Performance of PM values in different ITC technology [47] 
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Figure.4 Emission of NOx in different combustion mode [60] 
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