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Abstract 

Numerical study is conducted to execute the analysis of rotational stagnation point second-

grade liquid flowing over the spiraling rotatory disk. Heat transmission analysis is accounted.  

The problem is formulated in the coupled partial differential equations forms which are later 

simplified in view of similar variables. The Keller-Box (KB) procedure is adopted for the 

execution of numerical solutions. The involved parameters influences on the velocity and 

temperature profiles are presented and interpreted. The skin-frictions and Nusselt number are 

reported in the forms of numerical data. The present results are verified through the 

comparison with already available material in the literature. This study addressed that the 

thickness layer of boundary augmented against the incrementing viscoelastic and rotational 

parameters. Both rotational and viscoelasticity resist the temperature. The rotational parameter 

rises radial skin-friction and heat transmission rate while diminishes the swirl skin friction.  

Keywords: Rotatory stagnation point; Second-grade fluid; Spiraling disk; Heat transfer; 

Keller-Box method 
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List of Symbols 

T  Ambient temperature r  Radial coordinate  

  Angular velocity 
frC  Radial skin friction  

z  Axial coordinate    Rotation rate parameter 

 f
 Azimuthal shear stresses 

pc  Specific heat 

fC  Azimuthal skin friction   Stress tensor 

  Coefficient of viscosity S  Suction/ injection parameter 

2  Cross -viscosity of the fluid 
wT  Surface temperature  

  Density  T  Temperature 

g,f  Dimensionless similarity variables  k  Thermal conductivity 

θ  Dimensionless temperature    Thermal diffusivity 

br   Disk stretching velocity  Y,q,P,V,U  Variables 

wq  Heat flux w,v,u  Velocity components 

21 A,A  Kinematic tensors V  Velocity field 

  Kinematic viscosity 
1  Viscoelasticity 

Pr  Prandtl number We  Weissenberg number 

wr  Radial stress   

1.  Introduction 

The stagnation point flow investigation is concerned with the motion in surrounding the 

stagnation point of a rigid surface or moving fluid. Such flows have great physical 

significance because they forecast the heat transportation and skin-friction in the stagnation 

region. Due to wide applications of stagnation point flow, several theoretical investigations 

have been reported by the many researchers. Hiemenz [1] was probably first who analyzed the 

flow of viscous liquid impinging on infinitely long flat surface. Homann [2] deliberated the 

axisymmetric Newtonian liquid flow in the neighborhood of stagnation point over a flat 

surface. Hannah [3] extended this research by adopting the flow generation due to disk 

rotation. Weidman and Mahalingam [4] studied the axisymmetric flow of incompressible 

viscous fluid sticking on oscillating porous plate. Mahapatra and Gupta [5] discussed the 
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stagnation-point viscous liquid flowing over the linear stretched sheet. Lok et al. [6] addressed 

the Newtonian liquid flow in stagnation regime of a stretched sheet. Sajid et al. [7] 

numerically inspected the stagnant-point Newtonian liquid flow flowing over a power-law 

lubricant surface. The time-dependent stagnant point viscous liquid flowing over an 

impulsively rotating circular disk is executed by Hayat and Nawaz [8]. The above researchers 

adopted the Hiemenz and Homann flows of viscous fluid where the far field flow is 

irrotational. Turner and Weidman [9] studied the impingement axisymmetric stagnant point 

viscous material flow over a surface executed planar and perpendicular. Takhar et.al, [10] 

discussed the axisymmetric flow of fluid striking the surface circular cylinder. Mabood et al. 

[11] described the non-linear radiative influences in stagnation point Oldroyd-B nanomaterial 

flow. Mathew et al. [12] elucidated the magnetized stratification effects on stagnation point 

ferro-nanomaterial flow through response surface technique. Raman et al. [13] executed the 

multiple slip factors on magnetic stagnation point Casson material flow. 

Heat transfer is a phenomena that transmits energy from one place to another and this 

phenomena is prevalent in our daily life and has ample applications in engineering like gas 

turbine, power plants, cooling of electronic machines and aircraft engine, thermal production 

of space shuttles, etc. The stagnation zone sensitizes that the heat transportation rate is 

maximum and the efficiency of cooling is strongly influenced due to numerous reasons. 

Motivated by such facts, several theoretical studies have been developed to address the energy 

transportation features in stagnant-point flows. Bhattacharyya et al. [14] examined the heat 

transmission nature in the stagnant-point neighborhood and reported that the rate of heat 

transmission reduced against the higher velocity rotation constraint. The axisymmetric heat 

transportation of compressible viscous liquid impinging on cylinder is illustrated by 

Mohammadiun et al. [15]. Dero et al. [16] discussed the electrically conducting water-based 

nanomaterial flow induced by the stagnant point exponential shrinked permeable surface. 

https://scholar.google.com/citations?user=65iXceYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=9ASKS8sAAAAJ&hl=en&oi=sra
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Alizadeh et al. [17] deliberated the time-independent heat transmission of Newtonian fluid in 

non-axisymmetric stagnation point zone. Abbas et al. [18] addressed the heterogeneous-

homogenous chemically reactive and magnetized Newtonian fluid flow near a stagnant-point. 

The energy transport analysis of three dimensional stagnation-point viscous liquid flowing in 

the zone of linear moving surface is examined by Rehman et al. [19]. Mabood and Khan [20] 

studied the heat transport behavior in Newtonian material flowing through the Darcy’s porous 

space. Kamal et al. [21] elaborated the analysis of energy transport and liquid motion for 

Newtonian fluid flowing over the permeable disk and highlighted the heat source influences. 

Yasin et al. [22] examined the Newtonian heating, magnetic field, viscous dissipation, and 

partial slip influences on the energy transport characteristics of Newtonian fluid. Shateyi and 

Makinde [23] presented the heat and flow features behavior of viscous fluid impinging on a 

convective stretched disk. Khan et al. [24] numerically investigate the Darcy- Forchheimer 

flow of viscous fluid over a rotating disk incorporating the partial slip conditions. Chu et al. 

[25] illustrated the Newtonian nanofluid through porous space. Chu et al. [26] analyzed the 

influence of solid volume fractions and heat generation on the flow and thermal 

characteristics. Mustafa et al. [27] inspected the heat transportation in the boundary-driven 

ferrofluid flowing on a rotating disk. Roşca and Pop [28] addressed the rotational stagnation-

point viscous material flow with normal impingement on a radially porous stretching surface. 

Abbasi et al. [29] numerically reported the thermally radiated activation energy influences on 

the rotational stagnant-point hybrid fluid flow. Farooq et al. [30] explore the rotational 

stagnation point flow of carbon nanotubes executed by bi-directional stretching sheet. 

Motion of fluid attracts attention in many real-life problems such as wings of air crafts and 

oscillating bodies. Moreover, this phenomenon is well known for its applications in 

engineering and industries. Natural, industrial, and technological fluids that exhibit shear 

dependent viscosity cannot be analyzed through Navier-Stokes equations. To categorize the 
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rheology of such fluids, various models have been proposed. Viscoelastic fluid models is a 

paramount subclass of the differential type model of non-Newtonian fluid in which grade fluid 

proposed by Rivlin [31] is simple and it covers linear viscoelastic behavior that has broader 

range of implications in the polymer sector. Beard and Walters [32] addressed the elastico-

viscous liquid flowing near the stagnation zoon and show that the viscoelasticity enhance the 

velocity in boundary layer region also stress on the solid boundary.  Ariel [33] presented an 

algorithm for the numerical approximation of the formulated equations of two dimensional 

second-grade non-Newtonian liquid flowing over a circular disk. Baris and Dokuz [34] probed 

the flow of viscoelastic fluid over a moving surface. Labropulu et al. [35] highlighted the time 

dependent flow of viscoelastic fluid near a stagnation zoon. Analytic and numeric 

computations for non-Newtonian second grade material flow under viscous heating induced 

by the convected moving surface is illustrated by Bhuvaneswari et al. [36]. Krishna et al. [37] 

addressed the Ion and Hall flow of time-dependent rotatory second-grade liquid under 

convective heat absorption. Xia et al. [38] considered the Forchheimer-Darcy and Lorentz 

forces to describe the Couette-Taylor second-grade flow situation. Siddique et al. [39] 

discussed the time-dependent second grade model of fractional heat transportation. Mabood et 

al. [40] highlighted the effects of Newtonian heating, suction and mixed convection on the 

flow of second grade fluid. Chu et al.  [41] simulate the hydromagnetized non-Newtonian 

fluid near stagnation point. Zhao et al. [42] reported the thermal transmission in the stagnation 

point flow of electrically conducting fluid. Furthermore, Abbas et al. [43], Yavuz [44], 

Nadeem et al. [45], Nisa et al.  [46], Alamri et al. [47], Khan et al. [48], Saif et al. [49] and 

Tariq et al. [50] examined the different flows of second-grade fluid.  

Owning the tremendous applications of stagnation point flows due to their importance in 

science and engineering like cooling of electronic devices, nuclear reactors metallic plate, and 

by fans, crystal puffing, plastic glass and films drawing continuous costing, production of 
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papers, food processing, wire drawing etc. and keeping the fact in mind that most of the 

industrial fluids are combination of dissimilar stuffs such as oil, water or a mixture of chain 

molecules, these fluids shows non-Newtonian behavior in the response of applied stresses 

Natural, industrial, and technological fluids that exhibit shear dependent viscosity cannot be 

analyzed through Navier-Stokes equations. To categorize the rheology of such fluids, the 

second-grade fluid model is simplest subclass of viscoelastic fluid models in this paper a 

numerical study is carried out to deliberate the rotational stagnation point flow of second-

grade fluid over a circular spiraling disk. The governed physical equations are converted by 

the use of similarity constraints. This non-dimensional model is treated by the utilization of 

Keller-Box scheme. The graphical illustration and numerical benchmarks are produced to 

address and analyze the behavior of versatile involved parameters on physical quantities.    

2. Problem Formulation 

The axisymmetric movement of Rivlin-Erickson type fluid near rotational stagnant-point over 

spiraling disk. The disk is in rotation through the angular velocity   about z axis. The disk 

is stretched in radial direction under velocity 𝑏𝑟 (see Fig. 1). The model is reported in 

cylindrical coordinates ,r  and z  with corresponding velocity components v,u  and w

respectively. Here, 𝑧 = 0 represents the disk surface which maintained at temperature wT  and 

0z  is the space occupied by the fluid and the ambient temperature is assumed to be T .  

Fundamental conservation laws are utilized for the mathematical modeling of the problem. 

For an incompressible fluid the continuity equations is:  

,0. V            (1) 

In the absence of body forces for steady axisymmetric incompressible liquid flow, the 

momentum equation in components form can be expressed as: 
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In above w,v,u  are velocity components along radial azimuthal and axial direction,  is the 

density of the fluid 
zrzrrr ,,,,    and zz  are the component of stress tensor  . Most of 

the industrial fluid are non- Newtonian and have been modeled using relatively simple 

constitutive equation presented by Rivlin [31]:  

,AAApI 2

22211           (5) 

In which p  is pressure, 21 A,A are kinematic tensors,   is coefficient of viscosity 1 is 

viscoelasticity and 2  is cross-viscosity of the fluid and for a second grade fluid theses 

constants satisfy the stable thermodynamic conditions defined by Dunn and Fosdick [51] as 

001   , and 021  . The energy balance equation in the absence of Joule and Ohmic 

dissipations has the following form: 

.Tk
dt

dT
cp

2







           (6) 

Where 
pc  is used to represent the specific heat, T and k denotes the temperature and thermal 

conductivity of the fluid.  In view of Weidman [52] the pertinent boundary conditions satisfy 

by the velocity components along with the surface and ambient temperature conditions are  
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For incompressible axisymmetric second-grade liquid, the equations (1-5) can be expressed 

as: 
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
























































































































































1
2

2

11
2

1

2

222

2

2222

2

2

2

2

2

2

2

1

2

22








 (11) 
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,
z

T

r

T

rr

T

z

T
w

r

T
u 
































2

2

2

2 1
        (12) 

In which  / represents kinematic viscosity and 
pc/k  is the thermal diffusivity. In 

all above cited literature about second grade fluid the similarity variables for which the far 

field flow is irrotational. Weidman [52] suggested that the similarity variables which give rise 

the rotational stagnation point in the obey the mass conservation law are provided as below 

           ,graw,rg,rv,'fra,ru ////  32313132 2      (13)  

Where ,z
a

/ 21











  a  is constant. The temperature equation can be transformed by 

introducing    .TTTθT w    By invoking the above similarity constraints, the 

continuity is automatically satisfied and pair of differential equations is obtained for second 

grade fluid which along with energy equation takes the form  

   ,''gg'gff'''f'f''fWeg''ff'f'''f iv 0222 222222      (14) 

    ,g'''f'''fg''g'fWeg'f'fg''g 0222        (15) 

.'fθPrθ'' 02       1     (16) 

The non-dimensional conditions are:  

        0 ηwhenηθ1ηβ,gη'S,fηf ,      (17) 

          .ηwhenηθη'gη,gη''',fη''f  002     (18) 

In above over prime is the derivative with respect to the 𝜂. The dimensionless numbers 

2/32/3

1 /ρaαWe   depicts the Weissenberg number, 1/32/3ξΩ/aσ  is dimensionless rotation rate 
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parameter,  /Pr  is Prandtl number, β  is stretching parameter and S is suction/ injection 

parameter. The skin friction coefficients along radial and azimuthal directions are expressed 

as 

 2rρ

τ
C,

ρU

τ
C 0zw

f2

W

0zwr

fr



           (19) 

Elucidation of wall shear stresses wr and 
w
 along radial and azimuthal directions are  

Skin friction coefficients in dimensionless form are given as 

  
0ηfr 'gg'''ff''f'fWe''fCRe


 224 ,      (20) 

  
0ηfr g''f''ffg'g'fWe'gCRe

  24        (21) 

where Re  and rRe are the local and rotating Reynold numbers.  

Heat transfer rate by Fourier law of conduction at the surface of disk is 

,
z

T
kq

z

w

0













  

3.  Solution methodology 

The transformed equations (14-16) subject to conditions (17-18) are approximated 

numerically by employing finite difference method which is commonly titled by Keller box 

method in literature. The whole numerical procedure is implemented in four steps.  

Step 1:  Reducing the equations (14-16) into first order system of equations. For this let 

,Yθ',q'P,P'g,W'V,V'U,U'f         (22) 

we get 
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  ,qgP'fWUWVWegfVU'V 0222 2222222      (23) 

    ,Wg'fqUqWeUgfP'P 0222         (24) 

.fYPr'Y 02            (25) 

The associated boundary conditions are  

        0 ηwhenηθ1ηβ,gηS,Uηf ,      (26) 

          .ηwhenηθηPη,gη,WηV  002      (27) 

Step 2:   Computing the derivative by centered difference and rest of dependent variables by 

taking averaging at the midpoint of the net. The derivatives are approximated by the relation

.,J.....,,.........,,j,h, Jjjj,   3210 10
So the equations (22-25) takes the form 




































































2

1

2

1

1

2

1

1

2

1

1

2

1

1

2

1

1

j
j

1jj

j
j

jj

j
j

jj

j
j

jj

j
j

jj

j
j

jj

Y
h

θθ

q
h

PP

P
h

gg

W
h

VV

V
h

UU

U
h

ff

 ,          (28) 

,qgP
h

WW
fVUVWe

gVfU
h

VV

jjj
j

jj

jjjj

jjjj
j

jj

022

2

2

1

2

1

22

2

1

21

2

1

2

1

2

1

2

2

1

2

2

1

2

2

1

2

1

2

2

1

1

































   (29) 
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,gW
h

qq
fqUWe

gUPf
h

PP

jj
j

jj

jjj

jjjj
j

jj

022

2

2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1















































      (30) 

.YfPr
h

YY

jj
j

jj
02

2

1

2

1

1







        (31) 

where
2

1

2

1








jj

j

ff
f  etc. 

Step 3: Equations (28)-(31) are non-linear before factorization we apply the Newton’s method  

for which we  write the Newton’s iterates as follows: For the  thi 1 , iterates, we write 

,fff i

j

i

j

i

j 1 for all dependent variables. After using the above procedure of linearization, 

we write the linear tri-diagonal system of algebraic equations as follows: 

    ,rUU
h

ff
jjj

j

jj
2

1
111

2
         (32) 

    ,rPP
h

gg
jjj

j

jj
2

1
211

2
          (33) 

  ,rqqPPg

gWWVVUUff

jjjjjj

jjjjjjjjj

2

1
31141311211110

9187165143121








  (34) 

  ,rqqPP

ggWWUUff

jjjjj

jjjjjjjj

2

1
4112111109

187165143121








   (35) 

  ,rYYff
jjjjj

2

1
5143121         (36) 

    ,rVV
h

UU
jjj

j

jj
2

1
611

2
         (37) 
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    ,rWW
h

VV
jjj

j

jj
2

1
711

2
         (38) 

    ,rqq
h

PP
jjj

j

jj
2

1
811

2
         (39) 

    ,rδYδY
2

h
δθδθ

2

1
j91jj

j

1jj          (40) 

where  

 
3432 ξξWWehUhξ,ξξWWWeV

2

h
ξ

2

1
j

j

2

1
j

j11jj

2

1
j

j

1 





 

2

1
j

j

2

1
j

j

2

1
j

j

2

1
j

j
VWehf

2

h
ξVWehf

2

h
ξ


 11 65  

2

1
j

2

1
j

j

2

1
j

2

1
j

j WefUWehξWefUWehξ


 22 87  

1112

2

11910

22

9
2

ξξPhWeξ,ξξq
h

Weghξ
2

1
j

j

2

1
j

j

2

1
j

j 


 

2

1
j

j

2

1
j

j ghWeξghWeξ


 2

14

2

13  

 
3432 





2

1
j

j

2

1
j

j11jj

2

1
j

j

1 qWehgh,qqWeP
2

h

 

787565 


2

1
j

j

2

1
j

j

2

1
j

j
UhW

2

h
We,g

2

h
We  

2

1
j

j

2

1
j

j fhfh


 11 109  

2

1
j

2

1
j

j

2

1
j

2

1
j

j WefUWehWefUWeh


 22 1211  

2

1
j

j

2

1
j

j

2

1
j

j fhPrfhPr,YhPr


 11 43121  

Also  
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   

   ,PP
h

ggr

,UU
h

ffr

jj

j

jjj

jj

j

jjj

11
2

1
2

11
2

1
1

2

2








 

    ,
qghWWf

WUhVPh

WeghVfh

UhVV
r

2

1
j

2

1
j

2

1
j

jjj

2

1
j

2

1
j

j2

1
j

2

1
jj

2

1
jj

2

1
j

2

1
j

j

2

1
jjjj

j


























































 2

1

222

22

2

1

2

1
3

2

2

 

    ,
qqf

gWhqUh

We
Ugh

pfhqq

r
jj

2

1
j

2

1
j

j

2

1
j

j

2

1
j

2

1
j

j

2

1
j

2

1
j

jjj

j

2

1
j

2

1
j


























































1

1

2

1
4 2

2

2

2

 

  ,YfPrhYYr
2

1
j

2

1
j

jjjj



 21

2

1
5  

   

   

   

   ,qq
h

θθr

,qq
h

PPr

,WW
h

VVr

,VV
h

UUr

jj

j

j1jj

jj

j

jjj

jj

j

jjj

jj

j

jjj

1
2

1
9

11
2

1
8

11
2

1
7

11
2

1
6

2

2

2

2

















 

Step 04: After writing the equation (32-40) in matrix form having the block elements of 9 × 9 

matrices, which are computed by block-tridiagonal elimination technique which consists of 

forward and backward sweeps.  

4. Validation of Numerical Results 

Table 1 provides the convergence of    00 ''g,''f  and  0θ'  at multiple grid points by fixing 

10040110 .S,.Pr,.,.We   and ..00  In order to validate the present numerical 

scheme we compare the results of  0''f  and  0'g  for viscous fluid on a rigid rotating disk 

(see Table 2). The deep analysis of the results show that the results obtained by finite 

difference show a good agreement 3 to 4 decimal places.  
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5. Results and Discussion 

The variation of radial velocity  η'f  against the rheological parameter We , for several 

values of stretching parameter is examined in Fig. 2. The rheological parameter which 

demonstrates the viscoelasticity of the fluid reduces the radial velocity  η'f  of the fluid for 

rising values of stretching parameter. Furthermore, when only rotating disk is considered the 

decline in velocity is large on the surface of the disk and when stretching of the disk is 

involved, the decline in velocity decreases and it is observed that the effects of viscoelasticity 

dismissed for large stretching of the disk. In many industrial process where the speed of the 

transporting fluids needs to be improved stretching is an important factor. The rise in 

Azimuthal velocity against viscoelasticity of the fluid for the different values of β  is 

observed in Fig. 3. Also, it is noted that the velocity profile of the non-Newtonian fluid has 

maximum amplitude over rotating disk and it declines over stretching disk. Figs. 4-5 are 

plotted to computes the effects of rotation parameter 𝜎 on radial velocity  η'f  and Azimuthal 

velocity  ηg  for various values of stretching parameter β . The rise in radial velocity  η'f is 

noted against the incrementing rotation constraint. It is noted that rise is minimum 

corresponding to the rotation parameter over only rotating disk and rising rate is maximum as 

stretching of the disk is enhanced. The similar response is for radial velocity is reported by 

Weidman [52] for the Agarwal stagnation point flow of Newtonian fluid over rotating disk. 

The rotation parameter 𝜎 rises the azimuthal velocity of the viscoelastic fluid over both 

stretching and stationary disk. Figs. 6-7 displayed similarity velocities  η'f  and  ηg  for both 

suction  0.1,0.4S   and blowing  0.40.1,S   cases. The flow behavior is also analyzed 

for several values of stretching parameter β . The decreasing trend is followed for blowing 

case and the decreasing trend is boosted with rising the stretching velocity of the rotating disk. 

On the other hand, increasing trend is noted for the suction case and increasing behavior is 
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also improved with stretching of disk. The similar response for radial velocity is reported by 

Weidman [52] analyzing the rotational stagnation point flow over a radial stretching sheet 

with suction and blowing effects. The swirl velocity  ηg  show a similar response for both 

suction and blowing flow cases as radial velocity but the difference is that the increasing and 

decreasing behavior of velocity w.r.t blowing and suction minimizes with the stretching of 

disk. The decline in magnitude of swirl velocity occur with stretching parameter is probably 

due to rushing of fluid in radial direction.  

Fig. 8 exhibits the decline in similarity temperature profile against the variation of viscoelastic 

parameter 𝑊𝑒 for both 0β  and 0β . The decline in temperature of the fluid over rotatory 

disk is maximum and it cut off as stretching is involved. The temperature of the viscoelastic 

fluid also shows fall for several values of β  in Fig. 9. It is observed that over non-rotating 

disk the rotation declines the temperature at large scale and fall in temperature reduces as 

stretching is involved. Fig. 10 reflects the Prandtl number Pr  nature on temperature of the 

viscoelastic fluid over stretching and non-stretching disk. The decline in temperature against 

Prandtl number Pr  is noted due to the fact that Prandtl number rises the heat transfer rate 

which cools the rotational system and as a result the decline in temperature inside the thermal 

boundary layer is noticed.  

In Tables 3 and 4, the radial and swirl skin frictions are computed and presented for various 

values of rotation parameter   and stretching parameter for both viscous and viscoelastic 

fluid. The rotation parameter rises the radial skin friction for viscous as well as non-

Newtonian fluid. The rise is reliable with the fact that the viscoelastic boundary layer become 

thinner in radial direction with boosting rotation. The swirl or azimuthal skin friction is 

decreasing function of rotation parameter. The decreasing behavior is followed by swirl skin 

friction for viscous fluid 0We  and decline is strengthen for viscoelastic fluid. Under the 
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influence of rotation the azimuthal boundary layer in viscoelastic fluid becomes thicker and as 

a result the azimuthal skin friction decreases. Both radial and azimuthal skin frictions are 

decreasing function of radial stretching parameter of the disk for several values of We . The 

stretching of the disk in radial direction thinner the viscoelastic boundary layer in both radial 

and azimuthal directions and as a result the corresponding shear stresses reduces. 

Furthermore, under the influence of strong rheology, radial skin friction has small magnitude 

with strong rotation and opposite trend is noted for azimuthal skin fraction with strong 

rotation.  

The variation of Nusselt’s number against the rotation parameter   and stretching parameter 

𝛽 can be seen in table 5 for various values of We . Numerical values of Nusselt’s number rises 

against rotation parameter for viscous fluid 0We  and viscoelastic fluid 0We . Similar 

trend is noted for Nusselt’s number against the stretching parameter for both viscous and 

viscoelastic fluid. Furthermore, heat transfer rate increases with viscoelastic parameter We , 

because for higher values of viscoelastic parameter We  the rotating fluid over a stretching 

disk has lower thermal conductivity, which overcomes the conduction and therefore rises the 

variation in heat transfer rate. Due to this reason, the reduction in thermal boundary layer 

thickness and rise in heat transfer rate over a spiraling disk is examined.  

6. Conclusions  

Numerical analysis is made to express the rotational stagnation point second-grade liquid 

flowing over the spiraling rotatory disk. The problem is formulated in the coupled partial 

differential equations forms which are later simplified in view of similar variables. The 

Keller-Box (KB) procedure is implemented for the numerical solutions of physical model. 

Below are the final remarks of this conducted research: 
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 Both viscoelastic parameter and rotation parameter increase the radial and azimuthal 

boundary-layer thicknesses.  

 The impact of viscoelastic parameter and rotation parameter are strengthened with the 

stretching of the disk. 

 The radial and azimuthal velocities decline for blowing case and suction case.  

 The temperature profile is decreasing function of rotation parameter, viscoelastic 

parameter and Prandtl number.  

 The rotation parameter rises the radial skin friction while reduces the swirl skin 

friction.  

 Both rotation and stretching parameters growth the heat transfer rate over spiraling 

disk.  
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Fig. 1: Geometry of the problem.  
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Fig. 4. Variation of radial velocity  η'f  with   when 02.We   and ..S 20  

Fig. 5. Variation of swirl velocity  ηg  with   when 02.We   and ..S 10  

Fig. 6. Variation of radial velocity  η'f  with S  when 02.We  and ..20  
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Fig. 8. Variation of temperature profile  ηθ  with We  when  20.S  and 𝑃𝑟 = 4.0. 

Fig. 9. Variation of temperature profile  ηθ  with   when 2002 .S,.We   and 𝑃𝑟 = 4.0. 
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Table 3: Variation of radial and swirl skin frictions against rotational parameter with 0.5β   

and .0.S 1  
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and .0.S 1  
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Fig. 1: Geometry of the problem. 

 

 

Fig. 2. Variation of radial velocity  η'f  with We  when 10.  and ..S 05  
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Fig. 3. Variation of swirl velocity  ηg  with We  when 10.  and ..S 20  

 

Fig. 4. Variation of radial velocity  η'f  with   when 02.We   and ..S 20  
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Fig. 5. Variation of swirl velocity  ηg  with   when 02.We   and ..S 10  

 

Fig. 6. Variation of radial velocity  η'f  with S  when 02.We  and ..20  
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Fig. 7. Variation of swirl velocity  ηg  with S  when 02.We   and ..20  

 

Fig. 8. Variation of temperature profile  ηθ  with We  when  20.S  and 𝑃𝑟 = 4.0. 
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Fig. 9. Variation of temperature profile  ηθ  with   when 2002 .S,.We   and 𝑃𝑟 = 4.0. 

 

Fig. 10. Variation of temperature profile  ηθ  with Pr  when 2002 .S,.We   and ..50

Table 1: Convergence of    00 ''g,''f  and  0'θ  for various number at grid points when  

10040110 .S,.Pr,.,.We   and ..β 00  
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Grid points  0''f   0''g   0''f  

200 3.1363328 -1.4013549 2.2212672 

400 3.1359176 -1.4010349 2.220381 

500 3.1358678 1.4009965 2.2202746 

1000 3.1358014 -1.4009452 2.2201328 

2000 3.1357848 -1.4009324 2.2200974 

3000 3.1357817 -1.4009301 2.2200908 

5000 3.1357801 -1.4009289 2.2200875 

10000 3.1357794 -1.4009283 2.2200861 

20000 3.1357793 -1.4009282 2.2200857 

30000 3.1357792 -1.4009282 2.2200856 

50000 3.1357792 -1.4009282 2.2200856 

 

Table 2: Comparison of  0''f  and  0'g  when 0βS   and .We 0  

2   0''f   0'g  

Present Lok et al.  [53] Present Lok et al. [53] 

0 2.000011 2.00000 -1.339197 -1.33919 

25 6.819139 6.81915 -1.7080642 -1.70806 

100 17.05556 17.05561 -2.167531 -2.16752 

225 30.48817 30.48822 -2.5617991 -2.56178 

400 46.44322 46.44340 -2.906941 -2.90692 

625 64.56087 64.56092 -3.216604 -3.21660 
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Table 3: Variation of radial and swirl skin frictions against rotational parameter with 0.5β   

and .0.S 1  

  Radial skin friction Swirl skin friction 

00.We   50.We   01.We   00.We   50.We   01.We   

0.0 2.131884 1.774703 0.782649 -1.879153 -1.363186 -1.036682 

0.5 2.177293 2.131468 1.235408 -1.882072 -1.346105 -1.012119 

1.0 2.312618 3.172399 2.541887 -1.890696 -1.296779 -0.941905 

1.5 2.535295 4.816952 4.561773 -1.904654 -1.220392 -0.835389 

2.0 2.841467 6.952039 7.103464 -1.923399 -1.124033 -0.705161 

 

Table 4: Variation of axial and swirl skin frictions against stretching parameter with 

50.  and .0.S 1  

β  Radial skin friction Swirl skin friction 

00.We   50.We   01.We   00.We   50.We   01.We   

0.0 2.481262 4.509229 6.142849 -1.522795 -1.010654 -0.354739 

0.5 2.177293 2.131468 1.235408 -1.882072 -1.346105 -1.012119 

1.0 1.577820 0.447832 -2.036308 -2.176116 -1.518813 -1.274356 

1.5 0.752212 -0.698510 -4.305664 -2.431099 -1.623040 -1.405607 

2.0 -0.261424 -1.361850 -5.786673 -2.659341 -1.692473 -1.481461 

 

Table 5: Variation of Nusselt’s number against rotation parameter and stretching parameter 

with .0.S 1 and 04.Pr  . 

  Nusselt’s number β  Nusselt’s number 
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00.We   50.We   01.We   00.We   50.We   01.We   

0.0 2.633004 2.739910 2.780009 0.0 2.130364 2.299833 2.355965 

0.5 2.636729 2.746533 2.785276 0.5 2.636729 2.746532 2.785276 

1.0 2.647737 2.765821 2.800629 1.0 3.051624 3.154722 3.188188 

1.5 2.665551 2.796206 2.824865 1.5 3.411054 3.528017 3.560684 

2.0 2.689470 2.835546 2.856293 2.0 3.732331 3.871926 3.905467 
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